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Abstract—Knowledge Tracing (KT) traces students’ changing
knowledge states and predicts future performance based on their
past performance. However, most existing methods underestimate
the impact of students’ learning processes on performance predic-
tion, and thus do not model the learning process well. To address
this issue, we propose a novel Simulated Learning Process Model
for Knowledge Tracing, which simulates the student’s learning
process by reviewing historical performance and enhancing the
role of related knowledge in prediction before solving exercises.
We first use a state acquisition module to obtain the knowledge
state. Then we mine important historical information to assist in
solving the target exercise. Finally, a knowledge enhancement
module is used to improve the knowledge prediction of the
target exercise. Extensive experiments on four real-world datasets
demonstrate that our method is effective and outperforms the
state-of-the-art models.

Index Terms—Knowledge tracing, Learning process, Historical
performance, Knowledge enhancement

I. INTRODUCTION

In recent years, the usage of various online education
systems has increased significantly, and students generate a
significant amount of learning data on these platforms and
systems [3]. The primary research task for these learning data
is to infer the student’s mastery level of knowledge based on
these learning records, and then provide him with follow-up
personalized services, such as learning path suggestions [6],
course recommendations [5], and adaptive testing [18].

Knowledge Tracing (KT) [2] is an emerging research area
in online learning, which uses the student’s past performance
to predict the student’s future performance. In recent years,
KT has gained widespread applications, drawing increasing
attention from academia, and various methods for dealing with
it have been proposed [4], [7], [9], [16], [19], [20].

Most existing KT methods employ Recurrent Neural Net-
works (RNNSs) to process students’ learning records [4], [13],
[21]. To predict student’s performance more accurately, there
are some methods that have considered the influence of the
student’s learning process. Existing methods for studying
student’s learning process primarily suggest that student’s
forgetting behavior and learning ability will influence final
performance.

However, the existing methods are primarily restricted to
the forgetting effect and the learning ability difference [10],
[14], [15], which do not fully model student’s learning process,
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Fig. 1. The learning process after students get a new exercise. In particular,
e1, €4, and eg are exercises that involve the FDS.

thus limiting the model’s predictive accuracy. In addition to
the factors described above, we believe that the following
learning process also affects the performance: After receiving
a new exercise, students will go through a process of reviewing
whether they have done similar problems, and then search
for related knowledge and information to generate an idea to
solve this new exercise. For example, as shown in Fig. 1,
there has a student who is given a new exercise that involves
the Formula for the Difference of Square (FDS). To complete
this new exercise, first, he will review whether he has done
exercises about the FDS before. If the student has solved
similar exercises correctly or used the same concept (FDS)
correctly to solve some exercises, the probability of the student
solving this new exercise correctly should be higher, and vice
versa. Furthermore, whether he did exercises related to the
FDS or not, he will go through a process of searching for the
FDS in his mind to solve this new exercise.

Therefore, we propose a novel Simulated Learning Process
Model for KT (SLPKT), which can model the student’s
learning process described above. Specifically, after the student
get a new(target) exercise, we first use a knowledge state
acquisition module to obtain the knowledge state. Then, to
mine important historical information, we trace historical
states based on the similarities between the target’s knowledge
concept and the knowledge concepts of the historical exercises.
Finally, a knowledge enhancement module is used to improve
the prediction accuracy of the target exercise. Furthermore, we
conduct a series of experiments on four public datasets and
compare them to existing KT methods. Our results indicate
that SLPKT outperforms existing KT methods in predicting
student performance.

We summarize the key contributions of SLPKT below:

o To our knowledge, SLPKT is the first time that students’

learning processes are fully simulated to predict their
performance after they get the new exercises.



o We design a historical review module to retrieve historical
important information to assist in solving the target
exercise, and a related knowledge enhancement module
that can enhance the role of knowledge related to the
target exercise in predicting performance.

o Numerous experimental results on four public datasets
show that SLPKT outperforms the state-of-the-art mod-
els, demonstrating the effectiveness of our method.

II. RELATED WORKS

The existing KT methods can be roughly divided into
two types: traditional knowledge tracing and deep knowledge
tracing. Since most of the current works are deep knowledge
tracing, thus we mainly introduce deep knowledge tracing.

A. Traditional knowledge tracing

Bayesian Knowledge Tracing (BKT) [2] is a classic proba-
bility model on KT, which can be regarded as a special case
of the hidden Markov model (HMM). Performance Factors
Analysis (PFA) [12] and Learning Factors Analysis (LFA) [1]
are essentially traditional psychometric models.

B. Deep knowledge tracing

Deep Knowledge Tracing (DKT) [13] introduces deep learn-
ing to KT for the first time. Augmenting Knowledge Tracing
by Forgetting (DKT+Forgetting) [9] adds forgetting features to
the DKT. Dynamic Key-Value Memory Network (DKVMN)
[21] introduces memory enhancement neural networks into
KT. To obtain knowledge state, Exercise-Enhanced sequen-
tial modeling for student performance prediction (EERNNA)
[17] calculates the attention weights between hidden states
by calculating the cosine similarity between the exercises.
Context-aware Attentive Knowledge Tracing (AKT) [4] uses
the same text feature extraction method as the EERNNA
model, and further mines students’ guessing and mistaken
behavior from the proposed semantic features. A Graph-based
Interaction model for Knowledge Tracing (GIKT) [19] uses
graph convolutional networks to capture exercise representa-
tions and knowledge concepts from the diagram of exercises,
and uses a recap module to review relevant historical exercises
to help students solve problems. Learning Process-consistent
Knowledge Tracing (LPKT) [15] directly uses a learning-
gain module and a forgetting module to model the student’s
learning process to monitor the student’s knowledge state.

Although small parts of these methods modeled student’s
learning process, they are all limited to the forgetting effect
and learning ability difference. These methods do not take
good account of the impact of student’s learning process.
Therefore, we proposed SLPKT to simulate the learning pro-
cess of students after they receive a new exercise to improve
the performance and interpretability of the model.

III. PRELIMINARY

In an online education system, assuming there are the set
of students S = {sj,ss,...,87}, the set of exercises E =
{e1,e3,...,e;}, and the set of knowledge concepts L

{11,12,...,17}. Since each exercise is related to a specific
knowledge concept, a dictionary is used to represent the
relationship between the exercise and the concept, such as
dictionary dict = {...,e; : [L,...,1,,],...}, indicating that
e; isrelated to 1,,,, ..., and 1,,, and so on.

In the KT task, students answer a series of exercises
provided by the online learning platform sequentially, and the
system will provide feedback on each exercise’s accuracy once
the student has responded. Given an interaction sequence X
= {x1, X2, ..., X;} and a new question e;; 1, where x; =
(et, ct, ap), €, is the exercise, c; is the value corresponding
to e, in the dictionary dict, and a; indicates whether the e,
is answered correctly (1 means correct, 0 means false). The
goal of KT is to monitor students’ changing knowledge state
during the learning process and predict their performance at
the next learning step ¢ + 1.

IV. METHODOLOGY

In this section, we will introduce SLPKT in detail. As shown
in Fig. 2, the model consists of four modules : (a) knowledge
state acquisition module, (b) historical knowledge state review
module, (c) related knowledge enhancement module, and (d)
prediction module. Specifically, after the student is given a
new exercise, the knowledge state acquisition module first
obtains the knowledge state based on his past performance.
Then the historical state review module reviews his historical
performances to mine important historical information. Fur-
thermore, the knowledge enhancement module enhances the
role of related knowledge of this new exercise in predicting
performance. Finally, we use the prediction module to predict
student’s performance on this new exercise.

A. Knowledge State Acquisition

During the learning process, since student’s mastery of
knowledge is constantly changing, we need to model the entire
process of student learning to capture the changing knowledge
state. For each learning step, we connect the exercise and the
answer, and then project them into the d-dimension through
linear transformations. So the input of the model is:

xy = Wlle; @ ay] + by, ()

where @ denotes the vector concatenation operation, W, €
R24% ig the weight and b, is the bias. Then, we use LSTM
to obtain the basic knowledge state h:

hy = LSTM (x¢,h;_1), 2
where h; and h;_; represent student’s knowledge states.

B. Historical Knowledge State Review

Whenever students are faced with a new problem, most
of them first will review whether they have done similar
exercises or used the same knowledge concept to solve some
exercises. Thus, when completing the prediction task of KT, it
should not only depend on the current knowledge state but
also consider whether the historical knowledge states have
reference significance for the current prediction work.
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Fig. 2. The architecture of SLPKT. Assuming that ¢ is the current learning step, our task is to obtain the student’s knowledge state generated at this learning
step, and then predict student’s performance in exercise e;+1 based on the knowledge state hy.

Therefore, we use an attention-based neural network model
to calculate the similarities between the knowledge concept
involved in the target exercise and the knowledge concepts
involved in all historical exercises. Then, according to these
similarities, the corresponding historical knowledge states are
integrated into the current knowledge state. In addition, we
do not use the basic scaled dot attention mechanism because
learning is temporary and memory declines.

Specifically, there are a key, query and value embedding
layer that map inputs to keys, queries and values respectively.
Let q; and k; represent the query and the key, which cor-
respond to the knowledge concept involved in the exercise
answered by the learner, and v, is the value corresponding to
the knowledge state at the learning step ¢:

@ = K_()(er), ke =Q_()(er), vi =V_()(hy),  (3)

where c; and h; are the knowledge concept and the knowl-
edge state respectively. And we use the softmax function to
calculate the oy ., of the scaled dot product attention value:

exp(—0 - D(t + 1,m))afy km
Vd

where k,,, is the concept embedding through K_(-) at the
learning step m, and 1 < m < ¢ means we depend on all the
past learning steps. >0 is a learnable decay rate parameter
and D(t + 1,m) is temporal distance measure between time
steps ¢ 4+ 1 and m.

Considering that a student may complete all the exercises
many days apart, the relative distance of the exercises and the
interval time are used to control the decay rate of the decay
function simultaneously:

=

O p1.m = Softmaz(

), @

1, if the interval time > 0,
0, otherwise.

®)

t+1
D(t+17m) = (| t+1—m | +Zt) . Z Yt+1,m5
n=m-+1 (6)
q?+1kn

Vd

Then, according to the similarities of the calculated con-
cepts, the corresponding historical knowledge states are inte-
grated into the current knowledge state, and theses important
historical information is used to assist in problem-solving:

Vit1,n = Softmax( ), Vn < t+1.

t
h/ist = h, + Z (Ut s1m " Vim)-

m=1

)

C. Related Knowledge Enhancement

Since students’ mastery of each knowledge concept has its
own independent evolution process, and students also will have
a process of searching for related knowledge in their minds
to solve the exercise after they get a new exercise. Therefore,
to be able to better simulate this learning process, we need to
enhance the role of knowledge mastery related to the target
exercise on prediction.

To model the above behavior, we first calculate the correla-
tion between the target exercise and the knowledge state, and
the module’s inputs are the target exercise and the knowledge
state, as shown in the Fig. 2 (c). Then, we normalize the
correlation of each learning step with the correlation calculated
by all previous learning steps:

ay = h?iStW[et+1 ey h?iSt o (et+1 o h?iSt)
@ (err1-hy™),

af_,_l’t = Softmaz(ay),

(®)

where e;,; is the exercise at the learning step ¢ + 1 and
h/"st is the knowledge state which has reviewed the historical
information at the learning step t, W € R%*4? ¢ is the
dimension of e.y;’s embedding vector.



Then, we put this correlation and knowledge state into the
Gate Recurrent Unit (GRU) with an attentional update gate
(AUGRU) for updating, which is a module transformed by
DIEN [22].

u =o(W, [flt—h h?m] +b.),

= 2
U = Qg pq Ut

€))

where u, is the update gate of GRU, W € R%*? is the weight,
b is the bias, T is the attention update gate and hj} is the
hidden states of AUGRU. And h, is the final knowledge state
generated by SLPKT:

fi, = (1) feo + 6 b (10)

D. Prediction

In the student’s learning process, after the student is given
a new exercise e;41, he will get a knowledge state to solve
this new exercise according to the above process. Therefore,
we use the relevant knowledge state h; to infer the student’s
performance on e;1. We first connect the knowledge state
h; and the exercise e;;1, and then project them to the output
layer through a fully connected network activated by sigmoid:

(1)

where W, is the weight and b, is the bias. Output y;;
indicates the expected performance of the student in ;.

Vi1 = 0(Wyler1 @ h] +b,) € [0,1],

TABLE I
DATASET STATISTICS.
Dataset ASSIST2009  ASSIST2012  ASSIST2017 EdNetl
Students 3,852 27,485 1,709 5,000

Exercises 17,737 53,065 3,162 12,022

Concepts 123 265 102 142
Interactions 282,606 2,709,436 942,816 676,985
Avg.length 82.72 93.64 551.68 126.32

V. EXPERIMENT

In this section, we conducted several experiments to inves-
tigate the effectiveness of SLPKT. First, we assess prediction
error by comparing our model to other baselines on four
common datasets. Then, we performed an ablation study
on the historical knowledge state review module and the
related knowledge enhancement module to demonstrate their
effectiveness. Finally, we investigate the effect of different
fixed lengths on our model and visualize the knowledge state
obtained from each module to demonstrate that SLPKT has
learned a more meaningful knowledge state.

A. Datasets

Four public datasets are used to evaluate the model’s validity
which are commonly used in KT tasks. Table I shows the
statistics for all datasets. We filter records without knowledge
concepts. A brief description of all datasets is listed below:

ASSIST2009 comes from ASSISTments, an online tutoring
system created in 2004. ASSIST2012 is collected from the
same platform as ASSIST2009 during the school year 2012-
2013. In this dataset, each exercise is only related to one

knowledge concept, but one knowledge concept corresponds
to several exercises. ASSIST2017 was utilized in the 2017AS-
SIST data mining competition. EdNetl is a dataset of all
student interactions with the system that Santa collected over
two years.

B. Training Details

Data Preprocessing. We first sort all of the students’
learning records based on the learning steps of the answers,
and then set all input sequences of the dataset to a fixed length
of 200. For sequences shorter than a fixed length, it is filled to
a fixed length with a vector of zeros. And student interactions
with a sequence length of less than 3 are removed from all
datasets.

Training Settings. We performed a standard 5-fold cross-
validation on all models for all datasets. For each fold, 80%
of the students are divided into the training set (60%) and the
validation set (20%), and the remaining 20% as the test set.
We randomly initialize all parameters in an even distribution,
all hyperparameters are learned on the training set, and the
test set is evaluated using the model that performs best on
the validation set. Finally, we set some necessary parameters:
The number of dimensions d mentioned in the text is 128, the
batch size is 64, and the learning rate of the Adam algorithm
is 0.002 for all trainable parameters. Finally, we select the area
under the ROC curve (AUC) and accuracy (ACC) as evaluation
indicators.

C. Baseline Methods

We compare the model with several previous methods. For
a fair comparison, all of these methods are tuned for optimal
performance.

« DKT [13] uses RNNs to assess student’s knowledge
state, but we use LSTM in our implementation.

e DKT+ [9] adds forgetting features to the DKT, which
are the interval time of the same exercises, the interval
time of adjacent exercises, and the number of historical
exercises of the target exercise.

« DKVMN [21] proposes a new dynamic key-value
storage network model, which has a static matrix and
a dynamic matrix to store and update the mastery of
corresponding concepts respectively.

e SAKT [11] introduces the self-attention model to cap-
ture the correlation of relevant exercises from previous
interactions to make predictions.

e AKT [4] uses two self-attention encoders to learn
context-aware representations of exercises and answers,
and it uses hyperparameters to retrieve knowledge gained
in the past that is relevant to the current exercise.

e GIKT [19] uses a graph convolutional network to
capture exercise representations from the relation graph
of exercise and knowledge concepts, and uses a recap
module to capture long-term dependencies.

o« LPKT [15] is designed to complete KT tasks by sim-
ulating students’ learning and memory processes, and
the model monitors students’ knowledge state by directly



TABLE 11
AUC AND ACC VALUES OF ALL COMPARISON METHODS ON FOUR DATASETS.

ASSIST2009 ASSIST2012 ASSIST2017 EdNetl
Method
AUC ACC AUC ACC AUC ACC AUC ACC
DKT 0.7455 0.7265 0.7291 0.7351 0.7235 0.6910 0.6857 0.6898
DKT+ 0.7528 0.7283 0.7405 0.7395 0.7286 0.6996 0.6723 0.6684
DKVMN 0.7345 0.7181 0.7186 0.7251 0.7142 0.6802 0.6752 0.6861
SAKT 0.6874 0.6857 0.7188 0.7258 0.6683 0.6980 0.6846 0.6983
AKT 0.7627 0.7293 0.7698 0.7553 0.7582 0.7190 0.7302 0.7130
GIKT 0.7686 0.7242 0.7719 0.7466 0.7652 0.7090 0.7380 0.7166
LPKT - - 0.7770 0.7568 0.7935 0.7338 0.7371 0.7156
KSGAN 0.7740 0.7355 0.7736 0.7557 0.7791 0.7247 0.7426 0.7181
CoKT 0.7685 0.7329 0.7435 0.7385 0.7911 0.7339 0.7399 0.7102
SLPKT 0.7813 0.7387 0.8038 0.7679 0.8016 0.7387 0.7636 0.7300
I« indicates that the model is not suitable for the dataset.
2 The best results are bold, and the second-best results are italics.
modeling students’ learning processes using learning gain TABLE I

module and forgetting module.

e KSGAN [8] uses a Graph-Attention Network (GAT)
based model that leverages the knowledge structure be-
tween concepts and exercises to predict students’ perfor-
mance.

e CoKT [7] retrieves the sequences of peer students who
have similar question-answering experiences to obtain the
inter-student information to make predictions.

D. Student Performance Prediction

One of the most important metrics for evaluating the KT
method is the experimental results of student’s performance
prediction, so we conduct extensive experiments on all datasets
to compare SLPKT to all baselines of student performance
prediction and report the results of the five test folds in
Table II. To provide robust evaluation results, performance was
evaluated using AUC and ACC in all experiments. From Table
II, we can see that SLPKT outperforms all other KT methods
across all datasets and metrics, thus we believe that SLPKT
is more aligned with students’ learning processes, resulting
in more accurate predictions of their future performance. In
addition, we note that on the ASSIST2012 dataset, the model
is significantly better than the state-of-the-art LPKT model
(AUC is improved by 2.6%), which indicates that the model
has good adaptability to model the learning process of a large
number of students.

E. Ablation Experiments

In this section, we conduct some ablation experiments to
further show how each module in SLPKT affects final results.
The prediction results of these variants are provided in Table
III:

« —HSRRNE (Remove Historical State Review Module
and Related Knowledge Enhancement Module): there is
no simulation of the learning process after the students
get a new exercise.

ABLATION STUDY ON FOUR DATASETS.

Dataset ‘ -HSRRNE -HSR -RNE  SLPKT
ASSIST2009 | 00 075 07304 07366 07987
ASSISTI2 | {oc  g7ts  o7ss 07515 07679
ASSISTXIT | {60 G700 07279 07198 0787
EDNETL | Acc oo 0713 07152 07300

« —HSR (Remove Historical State Review Module): this
variant model can only simulate the process of searching
for related knowledge in student’s mind and enhance
related knowledge in the prediction.

« —RNE (Remove Related Knowledge Enhancement
Module): this variant model can only simulate the pro-
cess of students reviewing the historical states to mine
historical important informance.

Table III shows that SLPKT is superior to all variant models,
proving that the modules we added are practical. First, the
role of the Related Knowledge Enhancement Module plays
a crucial role in SLPKT, and if we removed it, it would
lead to the greatest decline in the results. Then, reviewing
the historical state in the KT task is more effective than not
considering it. Finally, adding either of these two modules
will be better than not adding them, which also shows that
reasonable modeling of the student’s learning process will
improve the accuracy of the prediction results.

F. Length Analysis and Knowledge State Visualization

To investigate the effect of different fixed lengths on our
model, we evaluate our method’s performance on all datasets
with four different lengths: 50, 100, 150 and 200, as shown
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Fig. 4. Student’s knowledge state evolution process, in which statel, state2,
and state3 are the knowledge state output of the knowledge state acquisition
module, the historical state review module, and the related knowledge en-
hancement module respectively.

in the Fig. 3. Shorter learning sequences of students often
determine that the model cannot learn better performance.
As the length increases, SLPKT can also maintain good
performance.

To show SLPKT has obtained a more reasonable knowledge
state, we visualize the knowledge state evolution process,
as shown in Fig. 4. The probability in the knowledge state
represents the student’s mastery of the current exercise and
knowledge concept. In addition, correct answers are indicated
by 1 and incorrect answers are indicated by 0. If the probability
is closer to the actual answer, that means we have obtained a
more accurate knowledge state. For the historical state review
module, the state2 of e3-e;5 obtain a more accurate knowledge
state based on the historical information than statel. For the
related knowledge enhancement module, the changes of state3
and state2 in e3-es, eg, and eg1-e12 explain well that we have
successfully enhanced the role of related knowledge.

VI. CONCLUSION

In this paper, we propose SLPKT by modeling the student
learning process after they get a new exercise. Compared to
the existing KT methods, we consider the students’ learning
processes after they get a new exercise. To mine historical
important information, we trace historical states based on
the similarities between the target’s knowledge concept and
the history exercises’ knowledge concepts. And a knowledge
enhancement module is used to improve the role of the
target exercise’s knowledge in performance predicting. We
validated the performance of SLPKT on four public datasets
and compared it to 9 excellent methods. Experimental results
show that our method achieves better performance. In future
work, we will further explore the better ways to simulate the
learning process to improve the performance.

ACKNOWLEDGMENT

The works described in this paper are supported by The Na-
tional Natural Science Foundation of China under Grant Nos.
61772210 and U1911201; The Project of Science and Technol-
ogy in Guangzhou in China under Grant No. 202007040006.

REFERENCES

[1] Cen, H., Koedinger, K., Junker, B.: Learning factors analysis—a general
method for cognitive model evaluation and improvement. In: ITS. pp.
164-175 (2006)

[2] Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisi-
tion of procedural knowledge. USER MODEL USER-ADAP 4(4), 253—
278 (1994)

[3] Fischer, C., Pardos, Z.A., Baker, R.S., Williams, J.J., Smyth, P, Yu, R.,
Slater, S., Baker, R., Warschauer, M.: Mining big data in education:
Affordances and challenges. Review of Research in Education 44(1),
130-160 (2020)

[4] Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge
tracing. In: KDD. pp. 2330-2339 (2020)

[5] Jiang, W., Pardos, Z.A., Wei, Q.: Goal-based course recommendation.
In: LAK. pp. 36-45 (2019)

[6] Liu, Q., Tong, S., Liu, C., Zhao, H., Chen, E., Ma, H., Wang, S.:
Exploiting cognitive structure for adaptive learning. In: KDD. pp. 627—
635 (2019)

[71 Long, T., Qin, J., Shen, J., Zhang, W., Xia, W., Tang, R., He, X.,
Yu, Y.: Improving knowledge tracing with collaborative information.
In: WSDM. pp. 599-607 (2022)

[8] Mao, S., Zhan, J., Li, J., Jiang, Y.: Knowledge structure-aware graph-
attention networks for knowledge tracing. In: KSEM. Lecture Notes in
Computer Science, vol. 13368, pp. 309-321 (2022)

[9] Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F,, Ohkuma, T.:

Augmenting knowledge tracing by considering forgetting behavior. In:

WWW. pp. 3101-3107 (2019)

Nedungadi, P., Remya, M.: Incorporating forgetting in the personalized,

clustered, bayesian knowledge tracing (pc-bkt) model. In: CCIP. pp. 1-5

(2015)

Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing.

EDM (2019)

Pavlik, PI., Cen, H., Koedinger, K.R.: Performance factors analysis - A

new alternative to knowledge tracing. In: AIED. vol. 200, pp. 531-538

(2009)

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J.,

Sohl-Dickstein, J.: Deep knowledge tracing. In: NIPS. pp. 505-513

(2015)

Qiu, Y., Qi, Y., Lu, H., Pardos, Z.A., Heffernan, N.T.: Does time matter?

modeling the effect of time with bayesian knowledge tracing. In: EDM.

pp. 139-148 (2011)

Shen, S., Liu, Q., Chen, E., Huang, Z., Huang, W., Yin, Y., Su, Y.,

Wang, S.: Learning process-consistent knowledge tracing. In: KDD. pp.

1452-1460 (2021)

Sheng, D., Yuan, J., Zhang, X.: Grasping or forgetting? MAKT: A

dynamic model via multi-head self-attention for knowledge tracing. In:

SEKE. pp. 399-404 (2021)

Su, Y., Liu, Q., Liu, Q., Huang, Z., Yin, Y., Chen, E., Ding, C., Wei, S.,

Hu, G.: Exercise-enhanced sequential modeling for student performance

prediction. In: AAAIL vol. 32 (2018)

Wang, F, Liu, Q., Chen, E., Huang, Z., Chen, Y., Yin, Y., Huang, Z.,

Wang, S.: Neural cognitive diagnosis for intelligent education systems.

In: AAAL vol. 34, pp. 6153-6161 (2020)

Yang, Y., Shen, J., Qu, Y., Liu, Y., Wang, K., Zhu, Y., Zhang, W., Yu,

Y.: Gikt: a graph-based interaction model for knowledge tracing. In:

ECML/PKDD. pp. 299-315 (2020)

Yu, Y., Huang, C., Chen, L., Chen, M.: Using multi-feature embedding

towards accurate knowledge tracing. In: SEKE. pp. 287-292 (2022)

Zhang, J., Shi, X., King, 1., Yeung, D.Y.: Dynamic key-value memory

networks for knowledge tracing. In: WWW. pp. 765-774 (2017)

Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C., Zhu, X., Gai,

K.: Deep interest evolution network for click-through rate prediction.

In: AAAL vol. 33, pp. 5941-5948 (2019)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]



	Introduction
	Related Works
	Traditional knowledge tracing
	Deep knowledge tracing

	Preliminary
	Methodology
	Knowledge State Acquisition
	Historical Knowledge State Review
	Related Knowledge Enhancement
	Prediction

	Experiment
	Datasets
	Training Details
	Baseline Methods
	Student Performance Prediction
	Ablation Experiments
	Length Analysis and Knowledge State Visualization

	Conclusion
	References

