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Abstract—In this paper, we propose a novel target detection
algorithm that addresses the challenge of difficult recognition
and localization in sea surface general purpose target detection.
The proposed algorithm is based on an improved YOLOv7,
incorporating an efficient non-parametric attention mechanism
module-SimAM into the original network, which reduces the
model parameters and enhances the expressiveness of the net-
work as well as the extraction ability of the model for important
features. Additionally, we introduce a new module, CN-CSP, that
merges the strengths of CSP and ConvNext, thereby improving
the network’s learning ability while reducing the computational
overhead. Furthermore, the integration of the rssp module into
the backbone of YOLOv7 enables the network to extract features
in a more comprehensive and multi-scale manner. Experimental
results on The Sea Surface Target Dataset indicate the superiority
of the proposed algorithm, achieving detection accuracy of 78.3%
with improvements of 3.1% compared to the original YOLOv7
model.

Index Terms—Yolov7; ConvNext; marine target detection;
attention mechanism;

I. INTRODUCTION

The ocean holds a significant position in the global eco-
nomic growth, and its exploration and utilization of marine
resources is vital. Recently, deep learning techniques have
gained considerable attention and have been increasingly used
in various real-world applications, including object detection,
video surveillance, autonomous driving, and face recogni-
tion. These deep learning-based target detection algorithms
demonstrate better results than traditional methods and are
characterized by faster detection and higher accuracy. Target
detection algorithms can be classified into two categories:
two-stage and one-stage target detection algorithms. Two-
stage algorithms such as SPP-Net [1], Faster R-CNN [2],
and R-FCN [3], first generate the region proposal and then
perform detection. Conversely, one-stage algorithms such as
SSD [4]and YOLO [5]–[10] series algorithms directly obtain
the location and class information of the target and exhibit
faster detection. The major contributions of this work can be
summarized as follows:
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(1). A CN-CSP architecture is proposed, which is derived
from the combination of ConvNext [11] and CSPnet [12].
This architecture not only enhances the learning capability
of CNN, but also significantly improves the target detection
performance.

(2). we have optimized the MPConv module in YOLOv7
[10] by incorporating the SimAM [13] module to create the
Sim MPConv module. The Sim MPConv module effectively
suppresses irrelevant information without adding any addi-
tional parameters, leading to improved performance without
increasing computational complexity. It also enhances detec-
tion accuracy and recognition of small targets on the sea
surface.

(3). A novel RSPP module is introduced, which integrates
the residual and SPP [1] structures. This module effectively ex-
tracts rich feature information from the input image, enabling
a deeper network, and results in improved detection accuracy.

II. ARCHITECTURE

A. The Overview of the YOLOv7 algorithm

The YOLOv7 algorithm [10] optimizes the balance between
detection accuracy and efficiency through innovative strategies.
Specifically, it integrates the extended efficient long-range
attention network (ELAN), model scaling using cascaded
models [14], and convolutional reparameterization [15]. The
YOLOv7 network comprises three modules: Backbone, Neck,
and Prediction. The Backbone module contains ELAN and
MPConv convolutional layers. The ELAN layer increases
feature diversity by directing different feature groups to en-
hance learning ability without compromising gradient paths.
The MPConv module has a convolutional layer and Maxpool
layer, forming two branches. Their features are combined by
Cat to improve feature extraction.The Neck module uses a
Path Aggregation Feature Pyramid Network (PAFPN) [14] to
fuse features from different levels through bottom-up paths,
enabling smoother information transfer from lower to higher
levels. The Prediction module adjusts the channel numbers
for P3, P4, and P5 features from the PAFPN using RepVGG
Blocks [15]. Finally, 1×1 convolution predicts confidence,
category, and anchor boxes.



B. Integration of Efficient 3D Attention Module
The attention mechanism plays an important role in facilitat-

ing the effective identification of key regions in complex visual
scenes. As shown in Eqs(1) to (3) and the left part of Figure 1
, SimAM [13] module evaluates each neuron in each network
by defining a linear differentiability energy function, where
t is the target neuron, x is the neighboring neuron, and λ is
the hyperparameter. e lower energy indicates that the neuron is
more differentiated from its neighbors, and the neuron is more
important.The neurons are weighted according to importance
by 1/E as shown in equation (4).
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Fig. 1. The SimAM module and the Sim MPConv structure.

In our experiments, we integrated the SimAM attention
mechanism with MPConv to formulate the Sim MPConv mod-
ule, as illustrated in Figure 1 on the right. The Sim MPConv
module enhances the contribution of neurons that convey
more relevant information and effectively mitigates the impact
of irrelevant features, thereby strengthening the network’s
feature representation capability and enhancing the model’s
target localization accuracy while reducing the influence of
background interference.

C. Efficient CN-CSP Structure
The ConvNext-Block structure originates from the Con-

vNext [11] architecture, and we propose a novel integration
of the ConvNext-Block with the CSP structure to form the
ConvNext-Block-CSP (CN-CSP), which is depicted in figure
2.

The CN-CSP structure employs the Layer Normalization
(LN) layer, which stabilizes the model and reduces the oscil-
lation of gradients during training. the structure incorporates
the Gaussian Error Linear Unit (GELU) [16]function, which
not only overcomes the gradient vanishing issue, but also
accelerates the training speed compared to the traditional
sigmoid function. And this module effectively enhances the
performance of the network while also optimizing the utiliza-
tion of each computing unit and reducing extraneous resource
consumption.

Fig. 2. The ConvNext-Block and the structure of CN-CSP.

D. The RSPP Structure

The residual edges present in the residual [17] structure,are
pivotal in enabling the network to learn nonlinear represen-
tations and accelerate the training process. Moreover, the
spatial pyramid pooling layer, as shown in figure 3 on the left
part, effectively captures both global and spatial information
of the feature map, significantly enhancing the network’s
generalization ability. Through the integration of these two
components and additional modifications, the Residual Spatial
Pyramid Pooling (RSPP) structure is formed, as depicted in
figure 3 on the right. The RSPP structure enables the extraction
of features more efficiently, leading to improved prediction
performance without sacrificing computational efficiency.

Fig. 3. The SPP Module and the RSPP structure.

E. The Yolov7-marine Architecture

As depicted in figure 4, the improved network architecture
of YOLOv7 is presented. By incorporating the RSPP structure
into the backbone of YOLOv7, the deep feature extraction
capability of the network is improved. The MpConv structure
in YOLOv7 is then advanced by adding the 3D attention
mechanism, SimAM, to form Sim-MPConv, which enhances
the feature extraction capability. Finally, by integrating the
CN-CSP structure into the neck of YOLOv7, the learning
ability of the CNN is boosted while making the network more
efficient.

III. EXPERIMENTS

In order to evaluate the performance of the improved
YOLOv7 algorithm, we trained and evaluated the algorithm
on a commonly used dataset of The Sea Surface Targets.

A. Experimental Setup

We use Common target dataset on The Sea Surface Target
Dataset to conduct experiments and validate our object de-
tection method. All our experiments did not use pre-trained
models. That is, all models were trained from scratch.



Fig. 4. Improved network model based on Yolov7 network.

The Sea Surface Target Dataset, consisting of 7150 images,
encompasses ten categorical classes, specifically lighthouse,
sailboat, buoy, railbar, cargoship, navalvessels, passengership,
dock, submarine, and fishingboat. The dataset is partitioned
into training set, validation set, and test set, utilizing a ratio
of 7:2:1, respectively.

In order to rigorously evaluate the performance of the
proposed method, a series of experiments were carried out
with the following parameter settings. The input images were
preprocessed by resizing to a resolution of 640x640 pixels.
The optimization algorithm employed in the experiments was
Stochastic Gradient Descent (SGD), with a learning rate of
1e-2 was applied to the model via a weight decay of 5e-4,
and the learning rate was adapted via the Cosine Annealing
schedule. The batch size for training was set to 20, with a
total of 300 training epochs being performed.The software
environment for the experiment is: operating system Linux ,
Python 3.10, PyTorch 1.11.0, CUDA 11.5.2, GPU: RTX 3090.

TABLE I
ABLATION EXPERIMENTS ON THE SEA SURFACE TARGET DATASET

Method RSPP Sim MPConv CN-CSP mAP0.5(%) Patams(M) FLOPS(G)
G1 × × × 75.20 36.90 104.70
G2 × ✓ × 76.30 36.90 104.70
G3 × × ✓ 76.60 38.72 108.10
G4 × ✓ ✓ 76.90 38.72 108.10
G5 ✓ × × 77.10 37.58 107.00
G6 ✓ ✓ ✓ 78.30 39.05 109.80

B. Ablation Experiments

In order to evaluate the contribution of the proposed im-
provements to the overall performance of the model, we con-
ducted a set of ablation experiments on the Sea Surface Target
Dataset. The results of these experiments are summarized in
Table 1, which indicates the utilization of the RSPP, CN-CSP,
and SimAM methods. These ablation experiments were able
to evaluate each of the improvements and allowed us to assess
their efficacy in improving model performance.
As illustrated in Table 1, the performance evaluation of the
YOLOv7 algorithm was carried out in several experiments.
The first experiment showed a detection accuracy of 75.2%

with the original YOLOv7 algorithm. The second experiment
aimed to enhance the detection accuracy by incorporating the
SimAM module into the YOLOv7 algorithm. This integration
resulted in an improvement of 1.1% in the detection accuracy,
without increasing the number of model parameters.The third
experiment focused on integrating the CN-CSP structure into
the YOLOv7 algorithm, which resulted in an improvement
of 1.4% in the detection accuracy, with a small increase
in the computational cost of the model. The fourth exper-
iment combined the structures from the second and third
experiments, resulting in a further improvement of 1.7% in
the detection accuracy.The fifth experiment added the RSPP
structure to the YOLOv7 algorithm, which resulted in an
improvement of 1.9% in the detection accuracy. The final
experiment incorporated the RSPP structure into the fourth
experiment,resulting in a substantial improvement of 3.1% in
the detection accuracy.

In conclusion, these experiments demonstrate the effective-
ness of incorporating different structures into the YOLOv7
algorithm, in improving its detection accuracy.

C. Analysis

In this study, we conduct a comprehensive evaluation of the
improved YOLOv7 algorithm in comparison to the current
mainstream target detection algorithms on The Sea Surface
Target Dataset. The experimental results are presented in
Tables 2.The results reveal the superiority of the improved
YOLOv7 algorithm in terms of accuracy compared to the
existing methods.

As demonstrated in Table 2, the improved YOLOv7 model
achieved an average accuracy of 78.3% on The Sea Surface
Target Dataset, outperforming YOLOV5s (6.0) and YOLOX-
s by 7.1% and 6.3%, respectively, in terms of accuracy. In
addition, the improved YOLOv7 model showed a remarkable
improvement in detection accuracy with regards to map0.5
and map0.5-0.95, with an increase of 3.1% and 1.5% over the
original YOLOv7, respectively.

Figure 5 illustrates a comprehensive performance evaluation
of various algorithms on The Sea Surface Target Dataset. The
first row displays the detection of cargo ships under foggy
conditions. The results reveal that the improved YOLOv7
algorithm has an accuracy of 87%, which is 5% higher than
YOLOv7. The second row showcases the success of the im-
proved YOLOv7 algorithm in identifying small targets on the
sea surface that were previously missed by YOLOv7. More-
over, the improved YOLOv7 network demonstrates greater
accuracy than YOLOv7 for identifying other targets. The third
row demonstrates that the overall accuracy of the improved
YOLOv7 model is higher than that of the YOLOv7 network
under normal conditions.

IV. CONCLUSION

In this paper, we address the challenges in surface target
detection by improving the YOLOv7 network architecture.
The proposed improvements aim to tackle the difficulties in
detecting surface targets and coping with complex surface



TABLE II
COMPARISON OF DETECTION ACCURACY OF DIFFERENT TARGET DETECTION ALGORITHMS ON THE SEA SURFACE TARGET DATASET

Methods lighthouse sailboat buoy railbar cargoship navalvessels passengership dock submarine fishingbooat mAP@0.5(%) Map@0.5-0.95(%)
Retinanet 60.34 86.62 95.60 39.32 50.25 94.20 82.41 65.41 58.64 35.48 66.83 37.30
YOLOv5s(6.1) 68.10 80.00 92.30 63.50 42.10 91.30 89.30 74.20 73.50 38.20 71.20 39.90
YOLOX-s 69.30 79.30 92.60 63.80 45.80 91.50 89.90 75.60 73.40 38.80 72.00 40.60
YOLOv7 72.60 88.70 94.40 63.80 48.60 94.80 91.30 78.60 81.60 37.10 75.20 44.10
YOLOv7-marine 86.80 86.20 95.20 65.20 54.50 96.40 91.00 82.00 81.40 44.30 78.30 47.80
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Fig. 5. Performance of different algorithms on The Sea Surface Target Dataset.

environments. The network structure is enhanced by incorpo-
rating the MPConv module from the original architecture with
an efficient 3D attention mechanism to form the Sim MPConv
structure, and by adding the CN-CSP structure to the YOLOv7
neck, which enhances feature extraction capabilities. Addition-
ally, the RSPP structure is utilized in the YOLOv7 backbone to
significantly improve network prediction accuracy. Experimen-
tal results demonstrate that the proposed method effectively
improves the accuracy of sea surface target detection without
significantly increasing the number of model parameters or
computational effort. The effectiveness of the approach has
been validated on both the Sea Surface Target Dataset in-
dicating its general applicability and potential for practical
use. Further improvement in accuracy for sea surface target
detection is expected in future studies.
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