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Abstract—Extreme Multi-label text Classification (XMC) aims
to find the most relevant labels (i.e., the positives) for a document
from an extremely large label set. The remaining labels are
regarded as the negatives. Recently, the deep learning-based
methods have been widely used to solve XMC, most of which
use sigmoid as the activation function of output layer and use
binary cross entropy loss as the learning objective. However, the
existing methods suffer from the following limitations. First,
the score of each label is predicted independently, where the
label rank-missing problem is ignored. Second, the cardinalities
of the positives and the negatives are extremely unbalanced
in XMC, which makes the classifier more biased towards the
majority one. In this paper, we use label group to denote the
positive and the negative labels and propose a novel XMC model
leveraging Group-wise label Ranking (X-GRank) to address
those limitations. Specifically, X-GRank uses the newly proposed
GRank loss to rank the label groups. Then, X-GRank solves the
label imbalance problem by constraining the backward gradient
amplitude between label groups. Extensive experiments show that
X-GRank outperforms the state-of-the-art methods on five widely
used datasets.

Index Terms—Extreme Multi-label Text Classification, Deep
Learning, Group-wise Ranking

I. INTRODUCTION

Text classification is a key task in the field of natural
language processing (NLP), which can be divided into multi-
class and multi-label classification problems based on whether
the classes/labels are mutually exclusive. Extreme Multi-label
text Classification (XMC) aims to tag a document with relevant
labels from an extremely large label set. XMC becomes in-
creasingly important due to the fast-growing of online contents
and the urgent need for the better organization of the messy big
data. For example, Wikipedia needs to tag a new article from
more than one million labels. Compared with the traditional
multi-label classification methods [1], XMC focuses on how
to extract uncertain positive labels from numerous candidate
labels, which leaves researchers with open challenges.

In this paper, we introduce a concept of label group and
view text classification from a novel unified perspective. For
a given document, its associated labels are regarded as a
positive group, denoted as Gp. Other irrelevant labels are
treated as a corresponding negative group, denoted as Gn. Gp

and Gn satisfy |Gp|+ |Gn| = L, where |Gp| and |Gn| are the
cardinalities of Gp and Gn, and L is the number of labels
of the corpus. In this perspective, multi-class classification
means that there is a constraint of |Gp| = 1, and multi-label
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Fig. 1. Comparison of multi-class classification and multi-label classification
in current deep learning methods.

classification allows |Gp| >= 1. For XMC, there may be an
L as large as millions, and |Gp| is far less than |Gn| and L.

Nowadays, the superiority of deep learning-based text clas-
sification methods has been frequently reported [1]–[5]. Most
of the existing models stack a full connection layer on the
text encoder to output the scores of each label. For multi-
class classification, as shown in Fig. 1 (a), softmax and cross
entropy (CE) loss always act as the activation function of
the output layer and the learning objective. The scores of
softmax can be viewed as a probability distribution due to
the sum of all scores is 1.0, which results in maximizing the
positive labels is equivalent to minimizing the negative labels
and vice versa. For multi-label classification problem, to adapt
|Gp| >= 1, softmax and CE is replaced by sigmoid and binary
cross entropy (BCE) [1], [3], so that the model can predict all
labels independently, as shown in Fig. 1 (b). Sigmoid and BCE
loss is the currently most widely used combination in multi-
label classification [1], [2]. However, this combination brings
the following problems in XMC:
• The ranking learning between labels is missing, but we

hope all scores in Gp are greater than those in Gn.
• The sparse positive labels lead to serious label imbalance

in XMC, which may hinder the model convergence.
To address the problems above, we explore the label ranking

learning mechanism and label balancing mechanism for XMC.
Specifically, we use gp and gn denote the scores of labels in
Gp and Gn, respectively. First, from the perspective of label
ranking, it needs to compare the scores between gp and gn,
and then optimize Objraw : gip > gjn, i = 1, · · · , |Gp|, j =
1, · · · , |Gn|. However, Objraw can be hardly used as a loss
function due to the non-differentiability and slow convergence.
In this paper, we made a series of smooth transformations on



Objraw and proposed a new efficient differentiable Group-
wise label Ranking (GRank) loss function, which offers the
comparison between label groups with linear time complexity.
Subsequently, the problem of label imbalance can be addressed
by GRank loss through the equivalent backward gradients
between groups involved.

In addition, due to the huge label set of XMC, it is an
inevitable challenge for solving the XMC with the limited
computational resources. To reduce the calculation cost, divid-
ing the training process into multiple cascaded stages, usually
including a retrieving stage and a ranking stage, has become
a prevalent method [2]–[4], [6]. The retrieving stage gathers a
shortlist of candidate labels from the original large label set,
and the ranking stage boosts the positive labels from retrieved
labels. However, most of the existing methods train those
stages not in an end-to-end way, such as AttentionXML [2]
and X-Transformer [4], which brings unavoidable cascaded
errors. In this paper, we designed a new XMC model with
GRank loss, named X-GRank, which includes a retrieving
task and a ranking task. We trained X-GRank in end-to-end
way to eliminate the cascaded errors. Moreover, we used label
features to enhance the label representation, which further
improved the performance of the X-GRank. We summarize
three major contributions of this paper as follows:
• We proposed a novel Group-wise label Ranking loss

based on the perspective of positive and negative label
groups. GRank loss addressed the rank-missing and label
imbalance problems of the existing XMC models.

• We proposed a new XMC model with GRank loss. We
trained X-GRank end-to-end to eliminate the cascaded
errors in existing methods.

• We conducted extensive experiments on five widely
datasets of XMC. The experimental results show our
model achieves remarkable results on those datasets.

II. RELATED WORK

We summarized the existing work into traditional machine
learning methods and deep learning methods.

The traditional methods can be divided into three classes:
one-vs-all, tree-based, and embedding-based methods. One-
vs-all methods, such as DiSMEC [7], have good classifica-
tion results, but with heavy computational overhead. Tree-
based methods generate a tree hierarchy through recursive
partitioning and the representative models, including Parabel
[8] and BonSai [9]. However, the cascaded errors of tree-
based methods cannot be ignored. Embedding-based methods
attempt to address the data sparsity issue through matrix
compression and decompression, which is unfriendly to tail
labels [1].

Deep learning-based methods show their strong learning
ability in XMC. Many novel network structures have been
proposed, including dynamic pooling technology in XML-
CNN [1], attention mechanism in AttentionXML [2], negative
sampling strategy in LightXML [3], and label structure learn-
ing [10]. Those methods continuously refresh the leaderboard
of XMC.

Fig. 2. The structure of X-GRank.

In addition, the problem of tail labels is a great challenge
in XMC. Tail labels are referred to the infrequently occurred
labels, which have limited training samples and are harder to
predict than the frequently occurred ones (referred to as head
labels). Many existing XMC approaches [1], [7], [9] treat all
labels with equal importance, which may lead XMC to favor
head labels. Propensity score [11] is proposed to measure the
model performance on tail labels. Label features are important
to label learning. Effective utilization of label features in X-
Transformer [4], ECLARE [5] significantly improves precision
on accessible benchmark datasets.

III. PROPOSED METHOD

A. Research formulation

Given a document corpus, D =
{
(di : G

i
p, G

i
n)
}N

i=1
, where

di is the i-th document, N is document size of corpus. Gi
p,

Gi
n are positive and negative label group of di. Our goal is

to learn a function f(di) ∈ RL, which outputs the correlation
scores of all labels for the given document. The function f
should be optimized to make the scores of labels in Gi

p to be
higher than that in Gi

n.

B. The structure of X-GRank

We proposed a novel XMC model, named X-GRank. It
consists of three components, as shown in Fig. 2: 1) a text
encoder, 2) a label retriever, 3) a label ranker.

Text encoder aims to get an appropriate vector to represent
a document. In this paper, we use pre-trained transformer
models such as bert-base-uncased [12] as the text encoder.
To make full utilize of implicit representations between each
transformer layer, we concatenate the hidden states of “[CLS]”
token of last five layers as the document representation, which
is the same as LightXML [3].

Both label retriever and label ranker use the newly proposed
loss function, GRank. So, we will first introduce the rationales
of GRank, and then explain the application of GRank.

C. GRank: Group-wise ranking loss

1) Design of GRank loss: Generally, XMC uses the scored
top-k labels as the prediction result. Consequently, we hope



all positive labels have higher scores than the negative labels,
which can be formalized as a loss function:

Loss =

|Gp|∑
i=1

|Gn|∑
j=1

max(gjn − gip, 0) (1)

However, Equation (1) has three disadvantages: 1) It is not
globally differentiable, resulting in slow convergence. 2) It is
not robust during training, where all label pairs are optimized
independently, lacking mutual constraint of gradient ampli-
tudes between them. 3) It has a high computational complexity,
which is O(|Gp| × |Gn|). In particular, XMC has numerous
labels, which will produce a huge number of label pairs.

In order to solve the above problems, we note that Equation
(1) is equivalent to making the smallest positive label greater
than the largest negative label, namely, min(gp) > max(gn).
Therefore, the reformed loss function is:

Loss = max(0,max(gn) +max(−gp)) (2)

Due to Equation (2) only includes the max function and is not
differentiable, we use the softened smooth maximum function
log-sum-exp (LSE) [13] to approximate the max function.
LSE is defined as:

LSE(x1, · · · , xn) = log(exp(x1) + · · ·+ exp(xn)) (3)

In particular, max(0, x) can be approximated as LSE(0, x) =
log(1+exp(x)). Therefore, we propose the following smooth-
ing loss based on Equation (2):

Loss = log(1 +

|Gn|∑
j=1

exp(gjn)

|Gp|∑
i=1

exp(−gip)) (4)

Equation (4) is essentially designed to optimize the ranking
relationship between positive and negative label groups, so
we call it Group-wise Ranking (GRank) loss.

2) Analysis on GRank loss: GRank loss can effectively
solve the disadvantages mentioned in Equation (1). First,
GRank loss is differentiable, which uses LSE(x) approxi-
mates max(x) with the limited bounds:

max(x) ≤ LSE(x) ≤ max(x) + log(n) (5)

where n is the element size of x, and the first inequality is
strict unless n = 1 and the second inequality is strict unless
all arguments are equal.

Second, GRank loss has solved the label imbalance problem
of XMC. GRank loss is robust in training and has a balanced
optimization for positive and negative groups. We denote
s =

∑|Gn|
j=1 exp(gjn)

∑|Gp|
i=1 exp(−gip), and the derivative of

Equation (4) is:
|Gn|∑
j=1

∂Loss

∂gjn
=

s

(1 + s)
,

|Gp|∑
i=1

∂Loss
∂gip

=
−s

(1 + s)
(6)

Obviously, there is a mutual constraint gradient between the
two groups, which solves the label imbalance problem and can
improve the robustness of the model training.

Third, GRank loss has low computational complexity, which
is line time complexity with O(L).

D. The retrieving stage

In this stage, we aim to obtain a shortlist of candidate labels
from the original labels to reduce the computational cost in
the ranking stage. A common method is to divide the original
labels into some clusters, and each label belongs to one cluster.
Clusters with positive labels are viewed as positive clusters,
and clusters without positive labels are negative clusters. So,
the cluster prediction is a small-scale XMC task, as shown
in Fig. 2. The labels in the positive clusters will generate the
shortlist of candidate labels.

1) Label clustering: To handle large-scale label sets, we use
a Probabilistic Label Tree (PLT) to partition labels, which is
widely used in LightXML [3], Bonsai [9] and AttentionXML
[2]. PLT is constructed through a top-down hierarchical clus-
tering until the termination condition is met. Each original
label is the leaf node of PLT, and the parent node of the leaf
node is the label clustering we need. Since a deeper PLT is
more prone to error propagation, we use a two-layer PLT with
the same building ways in LightXML and AttentionXML.

2) Label retrieving task: The key part of label retrieving
task is to predict the positive clusters, which can be formalized
as: D =

{
(di : G

i
cp, G

i
cn)

}N

i=1
, where Gi

cp, Gi
cn are the

positive and the negative clusters, respectively. We denote gcp,
gcn as the scores of Gcp and Gcn. So, the GRank loss of
retrieving task can be formalized as:

Lossretr = log(1 +

|Gcn|∑
j=1

exp(gjcn)

|Gcp|∑
i=1

exp(−gicp)) (7)

E. The ranking stage

In this stage, we need to learn the label representation first.
Label representation is an appropriate vector in a hyperspace
to represent a label, which includes two parts in this paper.
First, considering that a label may have textual features, such
as title and description, we utilize a text embedding block
to embed and average those text features through bag-of-
words representation. Then, we add an identity embedding
layer for each label, which takes the input of the unique
identity number of a label in the label set. The label identity
embedding is initialized randomly, and then concatenated with
label text embedding as the final label representation. The
overall structure of label representation learning is shown in
right part of Fig. 2.

The label ranking task is to predict the scores of retrieved
labels. We divide the retrieved labels into positive and negative
groups, denoted as G∗

p and G∗
n, respectively. The label scores,

gp and gn, are performed by the dot product of the document
and label representations. We apply GRank loss again in
ranking task, namely:

Lossrank = log(1 +

|G∗
n|∑

j=1

exp(gjn)

|G∗
p|∑

i=1

exp(−gip)) (8)

F. Model training

The retrieving task produces the candidate labels. The rank-
ing task extracts the positive label group from the candidate



labels. Therefore, those two tasks have cascading dependen-
cies. In order to reduce error propagation between tasks, we
trained X-GRank through end-to-end learning. The intensity of
model learning for those two tasks is different during model
training. At the beginning of training, X-GRank should pay
more attention to the retrieving task, and the ranking task
should be prominent at the end of training. As a result, We
designed a dynamic task weighting mechanism with linear
schedule, which can be formulated as:

Loss = (1− λ) ∗ Lossretr + λ ∗ Lossrank (9)

where λ = 0.5∗e/E, e = 1, · · · , E, e is the number of current
epochs, E is the number of total epochs.

IV. EXPERIMENTS

A. Datasets and experiment setup

We use five widely used XMC datasets1, including Eurlex-
4K, AmazonCat-13K, Wiki10-31K, Wiki-500K and Amazon-
670K. Those datasets follow the same processing as X-
Transformer2 [4] and AttentionXML3 [2]. The detailed sum-
mary statistics of each dataset are shown in Table I, where
Ntrn, Ntst are the numbers of training and test samples,
respectively. L is the number of labels, L̄ is the average
number of labels per sample, L̂ is the average number of
samples per label, Lp is the percentage of tail labels (sample
number per label < 5) in all labels, and Wtrn and Wtst are
the average number of words per-training and test sample
respectively. Lf denotes whether the dataset has label features.

TABLE I
DETAILED STATISTICS OF DATASETS.

Datasets Ntrn Ntst L L̄ L̂ Lp Wtrn Wtst Lf

Eurlex-4K 15,449 3,865 3,956 5.30 20.79 46.07 1248.58 1230.40 Yes
AmazonCat-13K 1,186,239 306,782 13,330 5.04 448.57 17.95 246.61 245.98 Yes

Wiki10-31K 14,146 6,616 30,938 18.64 8.52 75.84 2484.30 2425.45 Yes
Wiki-500K 1,779,881 769,421 501,070 4.75 16.86 43.42 808.66 808.56 Yes

Amazon-670K 490,449 153,025 670,091 5.45 3.99 76.31 247.33 241.22 No

For each dataset, we use raw texts as input, which are
truncated or padded to the maximum length. For datasets
with small-scale labels like Eurlex-4K, AmazonCat-13K and
Wiki10-31K, the number of label cluster is set to 1 and all
labels are participated in ranking. In order to make a fair
comparison with LightXML, we adopt the same model in-
tegration strategy as LightXML, that is, we use three different
pre-trained transformer models, including bert-base-uncased
[12] roberta-base [14] and xlnet-base-cased [15], to train three
sub-models to integrate. For large-scale datasets like Wiki-
500K and Amazon-670K, three different label clusters are
used for model training. Our model is implemented in PyTorch
DistributedDataParallel4 module with NCCL as the backend.
Our Experiments are conducted on eight NVIDIA Tesla V100
GPUs (32 GB memory each). X-GRank is trained by AdamW

1http://manikvarma.org/downloads/XC/XMLRepository.html
2https://github.com/OctoberChang/X-Transformer
3https://github.com/yourh/AttentionXML
4https://pytorch.org/docs/stable/distributed.html

TABLE II
HYPERPARAMETERS OF ALL DATASETS.

Datasets E B d C Kc Lt

Eurlex-4K 50 32 512 1 3,956 512
AmazonCat-13K 20 32 512 1 13,330 512

Wiki10-31K 50 32 512 1 30,938 512
Wiki-500K 20 128 128 60 32 128

Amazon-670K 50 64 128 80 32 256

[16] optimizer. The initial learning rate is 1E − 4 with a
warm-up proportion as 0.1. Other hyperparameters are given
in Table II, where E is the number of epochs, B is the batch
size, d is the dimension of label embedding, C is cluster size
which is the number of labels in a cluster, Kc is the top-k
retrieved cluster, Lt is the maximum length of input tokens of
transformer model.

B. Metrics
We employ the widely used Recall (R@k) and Precision

(P@k) [1], [3], [4] as the evaluation metrics in retrieving and
ranking stages, respectively. In addition, Propensity Scored
Precision (PSP@k) [11] is used to examine the performance
on tail labels. R@k, P@k and PSP@k are defined as:

R@k =

∑
j∈rankk(ŷ)

yj∑
j yj

P@k =
1

k

∑
j∈rankk(ŷ)

yj

PSP@k =
1

k

∑
j∈rankk(ŷ)

yj
pj

(10)

where yj ∈ {0, 1}L is the true binary vector, rankk(ŷ) is the
indices of the k, and pj is the propensity score of label j.

C. Experimental results

Fig. 3. Changes of recall results with varying k values, where k is the
retrieved label size.

1) Results of the retrieving stage: In retrieving stage, we
evaluate the label recall results on Wiki-500K and Amazon-
670K. The comparison methods include LightXML, Parabel
[8] and FastXML [17]. LightXML is one of the best deep
learning-based method. Parabel and FastXML are classic tree-
based methods. As shown in Fig. 3, the recall of X-GRank
substantially outperformed Parabel and FastXML. For exam-
ple, on the Wiki-500K dataset, R@512 of Parabel is 59.11%,
while R@512 of X-GRank achieves 92.18%, with an increase
of 33.07%. Although LightXML performed better than Parabel
and FastXML, X-GRank outperformed LightXML when the
retrieved label size k is greater than 64 on the Wiki-500K and
Amazon-670K.



TABLE III
COMPARING X-GRANK AGAINST THE STATE-OF-THE-ART XMC METHODS ON P@k

Datasets Metrics DiSMEC Parabel Bonsai XT XML-CNN AttentionXML X-Transformer LightXML X-GRank

Eurlex-4K
P@1 83.21 82.12 82.30 79.17 75.32 87.12 87.22 87.63 88.05
P@3 70.39 68.91 69.55 66.80 60.14 73.99 75.12 75.89 76.67
P@5 58.73 57.89 58.35 56.09 49.21 61.92 62.90 63.36 63.50

AmazonCat-
13K

P@1 93.81 92.98 92.98 92.50 93.26 95.92 96.70 96.77 97.35
P@3 79.08 79.14 79.13 78.12 77.06 82.41 83.85 84.02 84.08
P@5 64.06 64.51 64.46 63.51 61.40 67.31 68.58 68.70 68.97

Wiki10-31K
P@1 84.13 84.19 84.52 83.66 81.41 87.47 88.51 89.45 89.92
P@3 74.72 72.46 73.76 73.28 66.23 78.48 78.71 78.96 78.64
P@5 65.94 63.37 64.69 64.51 56.11 69.37 69.62 69.85 69.67

Wiki-500K
P@1 70.21 68.70 69.26 65.17 59.85 76.95 77.28 77.78 78.26
P@3 50.57 49.57 49.80 46.32 39.28 58.42 57.47 58.85 59.54
P@5 39.68 38.64 38.83 36.15 29.81 46.14 45.31 45.57 45.94

Amazon-670K
P@1 44.78 44.91 45.58 42.54 33.41 47.58 - 49.10 49.36
P@3 39.72 39.77 40.39 37.93 30.00 42.61 - 43.83 44.73
P@5 36.17 35.98 36.60 34.63 27.42 38.92 - 39.85 40.37

Note: The results of all baselines are cited from Table 3 in LightXML [3].

2) Results of the ranking stage: We compared X-GRank
with those state-of-the-art traditional and deep learning-based
methods of XMC, including DiSMEC [7], Parabel [8], Bon-
sai [9], XT [18], XMC-CNN [1], AttentionXML [2], X-
Transformer [4], and LightXML [3]. Table III shows the
results of P@k on the five datasets. It is worth noting that
the result of X-Transformer on Amazon-670K is not reported
because of the hardware limits. In order to compare with
baselines under the same conditions, we followed the metrics
used in baselines to focus on top prediction by varying k at
1, 3, and 5.

Compared with the traditional methods, the deep learning
methods have made great progress on XMC. X-GRank, X-
Transformer [4] and LightXML [3] are transformer-based
approaches using a pre-trained transformer model. LightXML
is the current state-of-the-art method of XMC on those five
datasets. X-GRank outperform LightXML on all datasets
except the metrics P@3 and P@5 on Wiki10-31K, which
demonstrate the effectiveness of our X-GRank.

D. Ablation analysis
We conducted the following ablation analysis: 1) the com-

parisons between GRank loss and BCE loss; 2) the contri-
butions of label text features. All those experiments were
conducted on the single model, using “bert-base-uncased” to
initialize the parameters of the text encoder. We conducted the
ablation study on Eurlex-4K and Wiki10-31K datasets. The
results are shown in Table IV.
• X-BCE-1 w/o LF uses the combination of sigmoid and

BCE loss without label text features.
• X-GRank-1 w/o LF uses GRank loss without label text

features.
• X-GRank-1 w/ LF uses GRank loss and label text

features.

TABLE IV
RESULTS OF THE ABLATION STUDY OF X-GRANK

Datasets Metrics X-BCE-1 w/o LF X-GRank-1 w/o LF X-GRank-1 w/ LF

Eurlex-4K
P@1 84.27 86.30 86.65
P@3 71.81 73.82 74.93
P@5 59.59 61.99 62.11

Wiki10-31K
P@1 87.71 88.63 89.63
P@3 76.99 77.72 77.89
P@5 67.63 68.75 68.10

TABLE V
COMPARISON OF X-GRANK AGAINST THE BASELINES ON PSP@k

Datasets Metrics DiSMEC Parabel Bonsai XML-
CNN

Attention
XML X-GRank

Eurlex-4K
PSP@1 38.45 37.20 37.33 32.41 44.97 45.04
PSP@3 46.20 44.74 45.40 36.95 51.91 53.28
PSP@5 50.25 49.17 49.92 39.45 54.86 57.12

AmazonCat-
13K

PSP@1 51.41 50.92 51.30 52.42 53.76 55.63
PSP@3 61.02 64.00 64.60 62.83 68.72 69.27
PSP@5 65.86 72.10 72.48 67.10 76.38 75.78

Wiki10-31K
PSP@1 10.60 11.69 11.85 9.39 15.57 15.27
PSP@3 12.37 12.47 13.44 10.00 16.80 16.89
PSP@5 13.61 13.14 14.75 10.20 17.82 18.01

Wiki-500K
PSP@1 27.42 26.88 27.46 - 30.85 33.50
PSP@3 32.95 31.96 32.25 - 39.23 40.73
PSP@5 36.95 35.26 35.48 - 44.34 42.81

Amazon-670K
PSP@1 26.26 26.36 27.08 17.43 30.29 32.21
PSP@3 30.14 29.95 30.79 21.66 33.85 34.60
PSP@5 33.89 33.17 34.11 24.42 37.13 39.02

Note: The results of all baselines are cited from Table 6 in AttentionXML [2].

1) Effects of the GRank loss: X-BCE-1 w/o LF and X-
GRank-1 w/o LF use the same input. Because of the con-
tribution of ranking between labels and the avoidance of the
imbalance between positive and negative label groups, GRank
loss is superior to BCE loss in multi-label classification. The
ablation results have strongly verified this conclusion. As
shown in Table IV, P@1, P@3, and P@5 of X-GRank-1 w/o
LF increased by 2.03%, 2.01% and 2.40% on Eurlex-4K than
that of X-BCE-1 w/o LF.

2) Effects of the label text features: Label text features are
a piece of text that is potentially associated with the content of
the document. Specifically, we observed that label text features
are always mentioned in document on Eurlex-4K and Wiki10-
31K datasets. Therefore, label text features may become a
strong signal to characterize the relevance between the given
document and a label. As shown in Table IV, compared with
X-GRank-1 w/o LF, P@1 and P@3 of X-GRank-1 w/ LF
increased by 0.35% and 1.11% on Eurlex-4K, which verified
the positive effects of label features. In addition, when the
label text feature is added to X-GRank-1 on Wiki10-31K, P@1
increased by 1.0%. Therefore, we added label text features as
one of the inputs of X-GRank.

E. Performance on tail labels

We verified the performance of X-GRank on tail labels.
The comparison results are shown in Table V. X-GRank
almost completely outperformed AttentionXML on small-



scale datasets. In addition, the large-scale datasets, Wiki-500K
and Amazon-670K, contains many tail labels. The average
sample numbers per label of those datasets are only 16.86
and 3.99, and the tail labels account for 43.42% and 76.31%
of all labels, respectively. Compared with AttentionXML, X-
GRank has achieved better performance on all metrics except
PSP@5 on Wiki-500K. The experimental results verified the
superiority of effectiveness of X-GRank on tail labels.

F. Evaluations of efficiency

TABLE VI
COMPARISONS OF EFFICIENCY WITH DIFFERENT METHODS

Datasets Metrics Attention
XML-1

Light
XML-1

X-
GRank-1

Wiki-
500K

Train Time (ms/sample) 7.5 6.9 8.71
Inference Time (ms/sample) 4.20 3.75 3.36

Model Size (GB) 3.11 1.47 0.714

Amazon-
670K

Train Time (ms/sample) 12.8 14.1 8.44
Inference Time (ms/sample) 8.59 4.09 3.12

Model Size (GB) 5.52 1.53 0.797

We compare the efficiency of X-GRank with AttentionXML
and LightXML of single model, marked with suffix of “-
1”. The experiment is carried out under the same hardware
with one Tesla V100 GPU. The input token lengths of At-
tentionXML, LightXML and X-GRank are set to 128. The
results on the Wiki-500K and Amazon-670K datasets are
shown in Table VI. Specifically, for the Amazon-670K dataset,
the training time of X-GRank-1 is 8.44ms per sample, which
is lower than that of AttentionXML-1 and LightXML-1 with
a remarkable reduction range of 34.06% and 40.14%. The
reason why X-GRank-1 is faster than LightXML-1 is that
we optimized the implementation of cluster retrieving of X-
GRank-1, which reduces the data exchange between the CPU
and GPU. The model size of X-GRank-1 is the smallest
among the compared models, because the dimension of label
embedding of X-GRank-1 is 128 while that of LightXML-
1 is 400, which cuts down 182 million parameters. The
experimental results verified the superiority of X-GRank in
efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel GRank loss to solve
the rank-missing and label imbalance problems in the ex-
isting work. We apply GRank loss to XMC problem and
proposed a new model named X-GRank, which includes a
label retrieving task and a label ranking task. The former
is a cluster-granularity multi-label classification to generate
the label candidate shortlist. The latter aims to rank the
retrieved labels. Both tasks used the GRank loss to boost
the results. X-GRank is trained in an end-to-end way. With
extensive experiments, X-GRank shows high efficiency with
the best precision on widely used large scale datasets, such
as Wiki-500K and Amazon-670K, compared to the current
state-of-the-art methods. In the future, we plan to apply the
idea of group ranking to more scenarios, such as multi-label
image classification, image and text matching, dense passage

retrieval, which opens a new perspective for researchers in a
wide range of applications.
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