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Abstract—The database project is the process of engineer-
ing a database model from conceptual modeling to database
implementation. Existing tools allow the conceptual modeling
of relational and geographical databases separately, but none
integrates both in a single solution. This paper presents an
Model-Driven Development framework for creating relational
and geographical database models. The framework comprises
an extended relational metamodel to adhere to geographical
database concepts present in the OMT-G, an Entity-Relationship
modeling tool, Query View Transformation rules between OMT-
G and the extended metamodel, and Model-To-Text transforma-
tions to generate ANSI SQL/SFS code.

Index Terms—MDA, database, software engineering

I. INTRODUCTION

The database project consists of different abstraction levels
that converge to the database implementation using a Database
Management System (DBSM) and a structured language. A
database system project can be considered a set of sequenced
transformations from high abstraction models to a specific
platform model. At the early level, the database requirements
gather textual business information necessary to create a
database structure. Afterward, the database designers, consid-
ering a modeling technique, transform this textual business
description into a graphical model. The conceptual modeling
is responsible for describing the business information model
using a graphical notation at a higher abstraction level. It
allows an early visualization of the structure of a database
and how these structures are related to each other [1].

The next level results from a transformation from conceptual
database modeling to a logical model. The logical model
considers additional constructions to the conceptual database
modeling to avoid anomalies, redundancy, and inconsistency.
This level does not consider any implementation characteristic
using a specific technology or language. However, it can con-
sider the kind of database modeled, e.g., relational databases.
The physical model is the consequence of transforming from
the logical model considering a target DBSM and a database
language. This level considers some specific technologies for
the implementation of the modeled database.

There are several modeling languages and notations for
modeling a relational database, such as ER [2]; Crow’s
Foot [3]; and IDE1FX [4]. Several modeling options exist for
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a geographical database system, such as UML-GeoFrame [5],
[6] and the OMT-G [7]. However, these languages do not
offer a solution integrating different models and approaches.
In general, a geographical database system cannot be projected
using a relational notation; otherwise, it is possible to model
a relational system using some constructions present in geo-
graphical notation since it extends the relational concepts.

Conversely, Model-Driven Engineering (MDE) provides a
software development process based on model transformations
that separate the business modeling from specific technologies
until effective software implementation. The Model-Driven
Architecture (MDA) specifies abstraction levels from techno-
logically independent models to a specific platform model to
assist software development. The MDA uses a Computational
Independent Model (CIM); a Platform Independent Model
(PIM); and a Platform Specific Model (PSM) [8].

Applying the MDA in the software development process im-
plies using metamodels, which define the concepts of another
model at a lower level. Several metamodels intend to provide
concepts for a database system, such as the Common Ware-
house Metamodel (CWM) [9] for interchanging information
between the Meta Object Facility (MOF) [10], Unified Mod-
eling Language (UML) [11] and XML Metadata Interchange
(XMI). It provides a generic model for several languages and
notations, including the relational model. However, it does
not include any geographical concept. It provides a simple
mapping between relational and oriented-object concepts, the
Enhanced Entity-Relationship (EER) [12] metamodel, which
provides concepts for all ER constructions using Chen’s nota-
tion. Although a case tool supports the metamodel, it does not
provide constructions for other modeling languages, such as
Crow’s Foot; and the Generic Database Modeling Metamodel
(GEDBM) [13], which gathers concepts of relational database
modeling languages and several notations. The metamodel is
supported by a semi-automatic tool and a SQL code generator
but is strictly directed toward relational concepts.

This paper presents a framework for designing database
systems, which uses a metamodel for relational and geograph-
ical database system projects that gathers the concepts of
several modeling languages and notations. The relational part
was constructed by observing the extant modeling languages
and notations used in the database development process. The
geographical part of the metamodel was constructed by ob-



serving the concepts of the OMT-G model. The methodology
is composed of the revised GEDBM, which can be instantiated
by a set of Query-View-Transformation (QVT) [14] rules from
an adherent modeling language and; an existing CASE tool or
by a new one constructed from the GEDBM concepts. A set
of QVT rules from the OMT-G model to the GEDBM will be
defined to prove the validity of geographical databases.

After that, a set of Model-To-Text (M2T) [15] rules for
ANSI/SQL and SFS/SQL specifications can be generated
from the GEDBM independently of the modeling language
used; the GEDBM will be constructed using the Ecore from
Eclipse Modeling Framework (EMF) [16]; the QVT rules will
be implemented using EMF’s Model-To-Model (M2M); the
M2T rules will be implemented using Acceleo [17]; and the
graphical ER tool will be constructed using the Graphical
Modeling Framework (GMF). We aim to provide a framework
for both database teaching and development. Besides, it can
be extensible for several notations and modeling languages,
amplifying the framework’s applicability in various domains.
We also provide some set of transformations between different
models and target platforms to facilitate the database develop-
ment process (for both relational and geographical databases).

II. METAMODELS FOR DESIGNING DATABASE SYSTEMS

The GEDBM metamodel is based on the conceptual and
logical database project and is generic for the most used
relational modeling languages and notations. The modeling
languages adherent to GEDBM is ER Chen’s Notation, Crow’s
Foot, and IDE1FX. The metamodel consists of meta-classes
such as Database, Relationship, Entity, and Field that represent
aspects of conceptual modeling languages. Besides, it defines
others like PrimaryKey, ForeignKey, and Check that represent
aspects of the logical project, such as the uniqueness of a
record, referential integrity, and attributes integrity. Thus, it
is possible to build graphical tools for relational modeling
languages using this metamodel. In the same way, if any tool
exists with a modeling language adherent to GEDBM, it can
be integrated into the GEDBM core by mapping its concepts.

The OMT-G metamodel is used to model geographical
databases. The meta-class Schema contains the meta-class
Element and the meta-class BaseRelationship that represent
entities and relationships, respectively. The Element is special-
ized in Conventional, which can be geoObject and geoField.
Thus, the created entities can represent three data types
that exist in the OMT-G model: non-spatial (Conventional),
discrete (geoObject), and continuous (geoField).

Furthermore, in the OMT-G, there are five different meta-
class types to represent geographic fields (Network Class,
Isoline, Sampling, Tesselation, and AdjacentPolygons), so the
class geoField is specialized in five meta-classes that represent
these types. The same thing occurs with the class geoObject,
this meta-class is specialized in geoObjectWithGeometry and
geoObjectWithGeometryAndTopology, and these two meta-
classes are specialized too: the first one in Polygon, Point,
and Line; and the second one in Node, UnidirectionalLine, and
BidirectionalLine. Similarly, the meta-class baseRelationship,

which represents the relationship between two entities, is
specialized in association, Aggregation, generalization, Spa-
tialAgregation, and cartographicGeneralization.

III. METHODOLOGY

In this section, we present the MDD methodology (Fig-
ure 1) for relational or geographical database projects. In the
relational part we use the GEDBM metamodel, which gathers
generic concepts for several modeling languages. Our extended
metamodel uses the OMT-G to ensure the representation of
geographical concepts. Furthermore, we present a set of M2M
transformation rules for mapping concepts from the OMT-G
to the GEDBM metamodel and a set of M2T transformation
rules, which transforms the instance of the GEDBM meta-
model in SQL and SFS code. The proposed methodology relies
on the MDA to specify metamodels and transformation sets.

Fig. 1. The proposed MDD approach.

The MDA is a software development approach created by
OMG where the metamodel has an important role in software
development. In the MDA, the transformation process among
models in different levels of abstraction is responsible for the
software construction. The MDA approach contributes to the
development of applications more independent of technology
once models can be combined and new models from new tech-
nologies can be later added. It increases the interoperability
of the project and facilitates its maintenance.

Our methodology starts by selecting one of the several
modeling languages that can be used in GEDBM or the OMT-
G model. In this step, it is possible to interconnect existing
tools to instantiate these models once their concepts adhere
to the ones present in GEDBM. Suppose it is chosen the ER
modeling tool. In that case, the GEDBM is directly instantiated
(in this case, the modeling tool should be constructed using
the GEDBM, or its metamodel should adhere to the GEDBM).
If the OMT-G model is chosen, it is possible to execute a
transformation using the QVT language between the chosen
model and the GEDBM metamodel. Otherwise, the GEDBM
can be manually instantiated. The Object Constraint Language
(OCL) is used in the metamodel validation to guarantee
correctness (with minimum concepts required for GEDBM).

After that, it is possible to generate ANSI SQL 92/99/03
or SFS/SQL standard code using a set of transformation rules
that uses the M2T specification. The SFS is a specification
proposed by OGC that defines how spatial or vector compo-
nents of geographical data should be stored in a database; and



how to store, read, query, and update these components using
SQL. The PostgreSQL and Oracle Database are widely used
DBMS with geographical extensions based on the SFS/SQL.

Besides, other tools, models, and target platforms can be
added to the methodology. When it is desired to integrate
an existing tool, it must use the GEDBM or the OMT-G as
metamodel; or its metamodel must comply with the GEDBM.
In this case, it is possible to specify a new QVT transformation
from the existing model to the GEDBM. Finally, another target
platform can be added by creating a new set of transformation
rules in M2T from GEDBM to the target platform.

A. The Revised GEDBM Metamodel

The methodology uses the GEDBM as the core of the MDA
approach for database design. However, the original GEDBM
is not prepared to support concepts from geographical model-
ing languages and models. Therefore, we present a modified
version of the GEDBM metamodel, where some modifications
were performed to add geographical concepts to the GEDBM.
The modifications include analyzing if geographical construc-
tions from the OMT-G model adhere to the GEDBM. The
metamodel also accepts the min-max notation. The GEDBM
metamodel can be seen in Figure 2.

In the OMT-G, entities have different types. So, it was nec-
essary to extend the representation of entities and relationships
so that they could represent geographical types that do not
exist in relational modeling. For this, it was added the enu-
merations EntityType and RelationshipType. So, as primary
keys and foreign keys are not represented in some modeling
languages in the conceptual model, we decided to substitute
them. The meta-class Field was modified to a common field
(CommonField) or an identifier field (IdentifierField), and they
can refer to an Entity. Now, the rules to generate SQL code
are simpler: the foreign keys are automatically generated, and
the primary keys result from instances of the IdentifierField.

Additionally, the concepts of the weak and associative entity
were added to the metamodel. Then, the meta-class Entity was
modified to be the parent of common entities (CommonEntity)
and associative entities (AssociativeEntity). Furthermore, a
common entity can now be represented as a StrongEntity or
WeakEntity. So, the metamodel is now formed by a base meta-
class DataBase that contains Entities and Relationships with
two or more Cardinalities. There is an associated cardinality
for each entity, so it is possible to represent the relationships
between an entity and itself and between two or more entities.
Moreover, an AssociativeEntity refers to exactly two other
entities without a relationship between them (the associative
entity is a result of the relationship of these two others enti-
ties). Besides, an Entity has many Fields that are specialized
in CommonFields or IdentifierFields.

B. From OMT-G Model To GEDBM Model

The first set of transformation rules — QVT — uses the
OMT-G as the source Platform Independent Model and the
GEDBM as the target Platform Independent Model. This
transformation set will generate an equivalent GEDBM model

with the occurrences of geographical concepts presented in
the OMT-G modeling project. The QVT provides the trans-
formation rules because it is a standardized specification for
transformations between different models.

Firstly, the root element Schema is selected to be mapped to
a Database element in GEDBM using the Schema2DataBase
transformation. After, all classes present in a schema are
mapped to entities in the target model based on their type.
All these classes’ attributes are also mapped using the At-
tribute2CommomField transformation. Identifier attributes are
mapped using the Attribute2IdentifiesField transformation. Fi-
nally, the geographical relationships are mapped based on their
type, with one transformation for each type in the OMT-G.

C. From GEDBM Metamodel To SFS/SQL Code

The second set of transformation rules is responsible for
generating the SFS/SQL code from the GEDBM (which was
previously instantiated from a relational or a geographical
modeling project). The GEDBM is the source Platform Inde-
pendent Model from this transformation, while the SFS/SQL is
the target Platform Specific Model. We use M2T specification
because it generates text artifacts from models. The process
begins with the ToSQL transformation, which creates the text
file of the generated SQL. Next, the ToDataBase transforma-
tion generates the name of the database to be created, and the
ToEntity maps all entities to tables in the following order: the
entities that do not have foreign keys and the entities that have
foreign keys of the generated entities.

The transformation PrintRelationshipAsEntity generates the
code for the associative entity. The PrintSelfRelationship does
the same for self-relationships. ThePrintConventionalEntity
generates SQL code, while PrintGeographicEntity, PrintArcN-
odeTopology, and PrintGeospatialFeature transformations print
SFS code. The last transformations generate codes for fields,
primary and foreign keys, text and numeric limits, default
value, integrity, and check constructions.

D. Discussion

The meta-modeling allows a system construction by defin-
ing different abstraction models, starting from a high abstrac-
tion model to a particular model. The database project also
uses different designing levels, from requirements engineering
to a physical project specification using a specific technol-
ogy. Therefore, using the MDD methodology, it is possible
to generate the physical project performing model-to-model
transformations from a conceptual model.

The methodology uses a generic metamodel, which allows
the use of several relational modeling languages and notations.
Once it gathers common concepts from these notations and
languages, it can generate graphical representations using a
single metamodel. Besides, suppose a graphical representation
instantiates (directly or indirectly) the metamodel and ex-
ists another graphical representation directly constructed over
GEDBM. In that case, it is possible to generate an equivalent
graphical representation between these modeling (because the
metamodel instance is unique for both modeling in this case).



Fig. 2. The GEDBM metamodel.

This feature could be interesting in a database team where the
designers do not know or use the same modeling language.

The methodology can also be adapted to other geograph-
ical models (e.g., UML-GeoFrame), requiring a new set of
transformation rules between the new model and the GEDBM.
Then, any existing transformations can be realized from the
GEDBM without needing new or modified transformation
rules. Likewise, the methodology allows code generation to
any other specification (since their concepts are present in
GEDBM). In this case, generating new transformation rules
for the new specification code is necessary.

IV. DESIGNING A DATABASE USING THE GEDBM

This section presents the developed components of the
proposed framework for database modeling. We used GMF
to develop the graphical environment; EMF to define and
create the metamodels; the M2M and Acceleo to generate
text artifacts based on ANSI SQL patterns; and OCL for
constraining the models. The environment is available for the

Eclipse Framework and is a set of plugins. Figure 3 illustrates
the environment for developing diagrams using the Entity-
Relationship diagram and the palette of items.

Fig. 3. The graphical tool for ER modeling of the framework.



Once a diagram is modeled, it can access its metamodel,
where all the structures designed can be found. The EMF tree
diagram can add additional information not graphically repre-
sented in the model. For example, fields such as Integrity and
text limits can be inserted for each attribute. The instantiated
metamodel for a Project Management System example can
be seen in Figure 4. It is possible to generate the diagram
directly from a modeling instance using the metamodel if the
user prefers to instantiate the model in the tree view.

Fig. 4. The proposed MDD approach.

The Figure 5 shows a modeling example of the behavior
of the metamodel while using the GEDBM tool to create a
self-relationship, a ternary relationship, and simple modeling.
It is possible to see (the dotted lines) that every rectangle
is instanced as an Entity’s object while every diamond is
instanced as a Relationship. Cardinality is associated to only
an entity, but every relationship has at least two cardinalities
constraining them. So, it is possible to generate the cardinality
for ternary relations and self-relationships, for example.

Fig. 5. The metamodel behavior for relationships and cardinality.

Similarly, the specialization concept and the associative
entity modeling behavior can be seen in Figure 6. In order
to represent the specialization concept, an entity can be a
subgroup of other entities allowing the design of a hierarchical
structure. The associative entity is referent to exactly two
common entities because it is the consequence of a many-
to-many relationship. Besides, some concepts are directly
instantiated, such as fields and constraints (text limit, numeric
limit, default value, integrity, and check).

Fig. 6. The metamodel behavior for specialization and associative entities.

The OMT-G diagram is modeled using the OMT-G Designer
tool [18], a set of plugins for the Eclipse. This tool is inde-
pendent of our solution and is used to provide geographical
modeling in the proposed framework. The tool was developed
using an MDD approach with EMF and GMF. The OMT-
G Design tool is responsible for instantiating the concepts
of the OMT-G metamodel present in the solution. Once
this metamodel is instantiated, it is possible to execute the
transformation to the GEDBM using a QVT transformation.
This process generates a GEDBM model instantiated with the
concepts modeled in geographical notation, and an equivalent
relational model can be generated. Then, the SQL/SFS code
is generated from the GEDBM instance using Acceleo.

The proposed MDD approach avoids human mistakes since
it is automatic and assisted by a CASE tool, demanding only
more time from the designer in database system early re-
quirements. When designing a system not using an automated
approach, some mistakes can be non-intentionally added to
the development process. These mistakes are avoided because
the transformations from models to models use formal speci-
fications (QVT and M2T) based on OCL. So, if a concept is
modeled in early phases, the same concept will be guaranteed
to be present in the final database system.

V. RELATED WORK

The CWM uses the MOF to allow the modeling of object-
oriented notations such as UML and the XMI. The relational
package of CWM covers the SQL standard and relational
DBMS concepts. There is no official tool associated with



CWM, but it has several vendors that implement its core. The
revised GEDBM allows several relational modeling languages
and has an MDA tool for Chen’s notation. It also integrates
with the OMT-G geographical model for modeling geographi-
cal concepts. The revised GEDBM does not aim to replace or
exceed the CWM. Instead, it could be integrated into the CWM
since its core is generic for relational languages. Besides, the
GEDBM can be easily mapped to the CWM since it adheres
to the MOF, extending the scope for geographical databases.

The EER metamodel aims to provide all concepts for the
Enhanced Entity-Relationship model [1], which extends the
original ER notation [2]. It is supported by the ERRCASE
tool, a graphical tool for Eclipse IDE. The EERCASE was also
developed using the EMF and GMF. The SQL/DDL generation
for PostgreSQL and the model validation were constructed
using Epsilon Validation Language and Epsilon Generation
Language. The EER metamodel claims to be a technologically
independent model, but it only provides concepts for Chen’s
notation. The GEDBM gathers concepts for several modeling
languages. It also provides concepts for some notations, such
as MIN-MAX. Besides, the new GEDBM gathers geographical
concepts, unlike the EER metamodel. Besides, it does not
represent MIN-MAX notation, while the GEDBM does. The
EERCASE tool is bounded to Chen’s notation and generates
SQL code for PostgreSQL. The GEDBM allows code gener-
ation for the ANSI/SQL, a standard specification for SQL.

The original GEDBM does not gather concepts for geo-
graphical models limiting the metamodel scope. In the revised
and extended GEDBM, the OMT-G model concepts are added
to the original metamodel to enable geographical modeling.
Besides, a new set of M2T rules for SQL/SFS is proposed,
expanding the metamodel applicability. Besides, the OMT-G
Designer was integrated to guarantee a graphical interface for
at least one geographical modeling language.

VI. CONCLUSION

This paper presented a revised metamodel for relational
and geographical database projects, supported by an automatic
code generator for ANSI/SQL and SFS/SQL. The metamodel
allows projects to use several modeling languages and no-
tations for relational databases. The geographical part was
constructed by mapping the OMT-G concepts directly into the
extended GEDBM metamodel. The revised GEDBM aims to
fit the gap of generic models for database development since
there is no generic model that includes concepts from both
geographical and relational models. Besides, current metamod-
els are bound to specific languages and notations, limiting the
designer’s choice of the most appropriate approach.

It also presented an MDA methodology to assist the
database project that allows the integration of tools since the
metamodel is generic for extant modeling languages. A set
of QVT rules was developed from OMT-G to the extended
GEDBM. A set of M2T transformations for ANSI/SQL and
SFS/SQL was adapted and reused from the original GEDBM
to generate automatic codification. It developed a modeling

tool based on Chen’s notation, consisting of a set of plug-
ins for Eclipse using the EMF for the revised GEDBM,
the GMF for the ER’s visual concepts, and the Acceleo for
both cartridges for code generation. The developed framework
provides a substantial difference from other ER tools because
it is not bound to a specific language or notation and allows
geographical modeling. It is also extensible since it was
constructed on top of GEDBM. The code generation uses
the ANSI/SQL and the SFS/SQL patterns to overcome the
technological dependency of certain DBMS.

For future work, it is necessary to apply OCL rules to
guarantee the database normalization process and avoid in-
consistent models. The OCL assists in the identification of not
well-formed modeling before model-to-model transformations
or code generation. A reverse engineering Domain Specific
Language is proposed using the Xtext tool, which provides
grammar constructions for metamodels.
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