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Abstract—This paper presents a symbolic approach to model
checking quantum circuits by using a set of laws from quantum
mechanics and basic matrix operations with Dirac notation. We
use Maude, a high-level specification/programming language
based on rewriting logic, to implement our symbolic approach.
As a case study, we use the approach to formally specify and
verify the correctness of the quantum teleportation protocol,
which is an important quantum communication protocol in
the early work of quantum communications. Moreover, our
implementation can be used as a general framework to formally
specify and verify quantum circuits in Maude in an effortless
way, where only an initial quantum state and a sequence of
actions describing how a quantum circuit works in a simple
way are required.
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I. INTRODUCTION

Quantum circuits are a model of quantum computation
used in quantum computing. They are composed of a se-
quence of quantum gates, measurements, initializations of
qubits, and possibly other actions. Quantum gates operate on
quantum bits (qubits), the quantum counterpart of classical
bits, and manipulate the state of a quantum system to
perform quantum computations. The outputs of quantum
circuits are quantum states, which can be measured to
obtain classical outcomes with probabilities from which
other actions can take place. Quantum circuits play a crucial
role in quantum algorithms as they are used to design and
implement quantum algorithms before actually running on
quantum computers. Because quantum computing is counter-
intuitive and radically different from classical computing,
the likelihood of errors in quantum algorithms and circuits
is much higher than in classical algorithms. Therefore, it
is critical to verify that quantum circuits (or algorithms)
enjoy desired properties. There is a symbolic approach [1]
to (semi-)automatically reasoning about quantum circuits in
Coq1, an interactive theorem prover, but it often requires
human users to provide necessary lemmas to complete its
proofs. Meanwhile, model checking is a formal verification
technique widely used in both academia and industry to
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automatically verify that a system satisfies some desired
properties. Although there are some model checkers ded-
icated to quantum programs [2], [3], there is still a gap
between model checking quantum programs and quantum
circuits, which should be filled in.

In this present paper, we propose a symbolic approach to
model checking quantum circuits by using a set of laws from
quantum mechanics and basic matrix operations with Dirac
notation [4]. Concretely, quantum states, quantum gates, and
measurements are described in Dirac notation instead of
using explicitly complex vectors and matrices as Paykin
et al. proposed in [5], making our representations more
compact. Using the set of laws, we can automatically reason
about quantum operations on quantum data, such as qubits.
We use Maude [6], a high-level specification/programming
language based on rewriting logic, to formalize quantum
states, some basic gates (e.g., Hadamard and controlled-
NOT gates), and measurements on a standard basis with
Dirac notation. As a case study, we use our approach to
analyze the quantum teleportation protocol, which is an im-
portant quantum communication protocol in the early work
of quantum communications. Moreover, our formalization
takes the probabilities into account and so we are able
to analyze both the quantitative and qualitative properties
of the quantum teleportation protocol with a built-in LTL
model checker in Maude. Although we only use the quantum
teleportation protocol as a case study, our implementation
can be used as a general framework to formally specify
and verify quantum circuits in an effortless way, where
only an initial quantum state and a sequence of actions
describing how a quantum circuit works in a simple way
are required. Our implementation is publicly available at
https://github.com/canhminhdo/QTC-Maude.

The rest of the paper is organized as follows: § II Pre-
liminaries, § III Symbolic Reasoning, § IV Quantum Tele-
portation Protocol, § V Formal Specification, § VI Symbolic
Model Checking, § VII Related Work, and § VIII Conclusion.

II. PRELIMINARIES

This section briefly describes some basic notations from
quantum mechanics based on linear algebra and Kripke
structures.



A. Basic Quantum Mechanics

In classical computing, the fundamental unit of informa-
tion is a bit whose value is either 0 or 1. In quantum comput-
ing, the counterpart is a quantum bit or qubit, which has two
basis states, conventionally written in Dirac notation [4] as
|0⟩ and |1⟩, corresponding to one-bit classical values, whose

values are two column vectors
(
1
0

)
and

(
0
1

)
, respectively.

In quantum theory, a general state of a quantum system
is a superposition or linear combination of basis states. A
single qubit has state |ψ⟩ = α |0⟩ + β |1⟩, where α and
β are complex numbers such that |α|2 + |β|2 = 1. States
can be represented by column complex vectors as follows:

|ψ⟩ =

(
α
β

)
= α |0⟩ + β |1⟩, where {|0⟩ , |1⟩} forms an

orthonormal basis of the 2D complex vector space. The basis
{|0⟩ , |1⟩} is also called as the standard basis. Formally, a
quantum state is a unit vector in a Hilbert space H, which
is equipped with an inner product satisfying some axioms.

The evolution of a closed quantum system can be per-
formed by a unitary transformation. If the state of a qubit is
represented by a column vector then a unitary transformation
U can be represented by a complex-value matrix such that
UU † = U †U = I or U † = U−1, where U † is the
conjugate transpose of U . U acts on the Hilbert space
H transforming a state |ψ⟩ to a state |ψ′⟩ by a matrix
multiplication such that |ψ′⟩ = U |ψ⟩. There are some
common quantum gates: the Hadamard gate H , the identity
gate I , the Pauli gates X , Y , and Z, and the controlled-
NOT gate CX . Note that the CX gate performs on two
qubits, while the remaining gates perform on a single qubit.
Their matrix representations are as follows:

I2 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

H = 1√
2

(
1 1
1 −1

)
, CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

For example, the Hadamard gate on a single qubit per-
forms the mapping |0⟩ 7→ 1√

2
(|0⟩ + |1⟩) and |1⟩ 7→

1√
2
(|0⟩ − |1⟩). The controlled-NOT gate on pairs of qubits

performs the mapping |00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→
|11⟩ , |11⟩ 7→ |10⟩, which can be understood as inverting
the second qubit (referred to as the target) if and only if the
first qubit (referred to as the control) is one. For the sake of
simplicity, we do not take the Pauli gate Y into account in
this present paper because it is not used in our case study.

A quantum measurement is described as a collection
{Mm} of measurement operators, where the indices m
refer to the measurement outcomes. It is required that the

measurement operators satisfy
∑
mM †

mMm = IH. If the
state of a quantum system is |ψ⟩ before the measurement,
then the probability for the result m is as follows:

p(m) = ⟨ψ|M †
mMm |ψ⟩,

the state of the quantum system after the measurement is
Mm|ψ⟩√
p(m)

provided that p(m) > 0. For example, if a qubit is in

state α |0⟩+β |1⟩ and measuring with {M0,M1} operators,
we have the result 0 with probability |α|2 at the post-
measurement state |0⟩ and the result 1 with probability |β|2
at the post-measurement state |1⟩, where M0 = |0⟩ × ⟨0|
and M1 = |1⟩ × ⟨1|.

For multiple qubits, we use the tensor product of Hilbert
spaces. Let H1 and H2 be two Hilbert spaces. Their tensor
product H1 ⊗H2 is defined as a vector space consisting of
linear combinations of the vectors |ψ1ψ2⟩ = |ψ1⟩ |ψ2⟩ =
|ψ1⟩ ⊗ |ψ2⟩, where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2. Systems of
two or more qubits may be in entangled states, meaning that
states of qubits are correlated and inseparable. For example,
we consider a measurement of the first qubit of the entangled
state 1√

2
(|00⟩ + |11⟩). The result is 0 with probability 1

2

leaving its state |00⟩ or 1 with probability 1
2 leaving its

state |11⟩. In either case, a subsequent measurement of
the second qubit gives a non-probabilistic result, which is
immediate to the result of the first measurement before.
Entanglement shows that an entangled state of two qubits
cannot be expressed as a tensor product of single-qubit
states. We can use H and CX gates to create entangled
states as follows: CX((H ⊗ I) |00⟩) = 1√

2
(|00⟩+ |11⟩).

B. Kripke Structures

A Kripke structure K is ⟨S, I, T,A, L⟩, where S is a set
of states, I ⊆ S is the set of initial states, T ⊆ S × S
is a left-total binary relation over S, A is a set of atomic
propositions and L is a labeling function whose type is
S → 2A. Each element (s, s′) ∈ T is called a state transition
from s to s′ and T may be called the state transitions
(with respect to K). For a state s ∈ S, L(s) is the set
of atomic propositions that hold in s. A path π is an
infinite sequence s0, . . . , si, si+1, . . . such that si ∈ S and
(si, si+1) ∈ T for each i. We use the following notation
for paths: πi ≜ si, si+1, . . ., where ≜ is used as “be
defined as.” πi is obtained by deleting the first i states
s0, s1, . . . , si−1 from π. Let P be the set of all paths. π
is called a computation if π(0) ∈ I . Let C be the set of all
computations.

The syntax of a formula φ in LTL for K is as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | ⃝ φ | φ U φ
where p ∈ A. Let F be the set of all formulas in LTL for K.
An arbitrary path π ∈ P of K and an arbitrary LTL formula
φ ∈ F of K, K,π |= φ is inductively defined as follows:

• K,π |= ⊤



• K,π |= p iff p ∈ L(π(0))
• K,π |= ¬φ1 iff K,π ̸|= φ1

• K,π |= φ1 ∧ φ2 iff K,π |= φ1 and K,π |= φ2

• K,π |= ⃝φ1 iff K,π1 |= φ1

• K,π |= φ1 U φ2 iff there exists a natural number i such
that K,πi |= φ2 and for all natural numbers j < i,
K,πj |= φ1

where φ1 and φ2 are LTL formulas. Then, K |= φ iff
K,π |= φ for each computation π ∈ C of K. ⃝ and U are
called the next temporal connective and the until temporal
connective, respectively.

In this paper, a state is expressed as a braced associative-
commutative (AC) collection of name-value pairs. The order
of elements is not relevant in AC collections, such as sets.
AC collections are called soups, and name-value pairs are
called observable components. That is, a state is expressed as
a braced soup of observable components. The juxtaposition
operator is used as the constructor of soups. Let oc1, oc2, oc3
be observable components, and then oc1 oc2 oc3 is the
soup of those three observable components. Since the order
is irrelevant because of AC, oc1 oc2 oc3 is the same as
some others, such as oc3 oc2 oc1. A state is expressed
as {oc1 oc2 oc3}. In this paper, rewrite rules are used to
specify state transitions. Concretely, we use Maude [6],
a programming/specification language based on rewriting
logic. Maude makes it possible to specify complex systems
flexibly and is also equipped with an LTL model checker.

III. SYMBOLIC REASONING

This section introduces some terms used in our symbolic
reasoning and a set of laws used to reduce terms.

A. Terms

Terms are built from scalars and basic vectors with some
constructors.

• Scalars are complex numbers. We extend rational num-
bers supported in Maude to deal with complex numbers.
Some constructors for scalars, such as multiplication,
fraction, addition, conjugation, absolute, power, and
square root are formalized, but we do not mention them
here to make the paper concise.

• Basic vectors are the standard basis written in Dirac
notation as |0⟩ and |1⟩.

• Constructors for matrices consist of scalar multiplica-
tion of matrices ·, matrix product ×, matrix addition
+, tensor product ⊗, and the conjugate transpose A†

of a matrix A.
In Dirac notation, ⟨0| is the dual of |0⟩ such that ⟨0|† =

|0⟩ and |0⟩† = ⟨0|; similarly for ⟨1|. The terms |j⟩×⟨k| and
⟨j| × |k⟩ may be written shortly as |j⟩ ⟨k| and ⟨j|k⟩ for any
j, k ∈ {0, 1}. By using these notations, we can intuitively
explain how quantum operations work. For example, the X
gate performs mapping |0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩. Therefore,
we formalize the X gate as |0⟩ ⟨1|+|1⟩ ⟨0| in Maude instead

of using explicitly the matrix representation
(
0 1
1 0

)
. It is

immediate that X |0⟩ = |1⟩ ⟨0|0⟩+ |0⟩ ⟨1|0⟩ = |1⟩ because
of the use of some laws in Table I and similarly for X |1⟩.

We conventionally formalize some basic matrices Bi for
i ∈ [0..3] as follows:

B0 = |0⟩ × ⟨0|, B1 = |0⟩ × ⟨1|,
B2 = |1⟩ × ⟨0|, B3 = |1⟩ × ⟨1|.

The CX , X , Z, and H gates are then a linear combination
of the matrices Bi as follows:

CX = B0 ⊗ I2 +B3 ⊗X ,
X = B1 +B2, Z = B1 + (−1) ·B3,

H = 1√
2
·B0 +

1√
2
·B1 +

1√
2
·B2 + (− 1√

2
) ·B3.

B. Laws
We use a set of laws in Table I derived from the properties

of quantum mechanics and basic matrix operations and
thus they are immediately sound (see their proofs in Coq
in [1]). Because |0⟩ and |1⟩ can be viewed as 2 × 1
matrices, then the laws actually describe matrix calculations
with Dirac notation, zero and identity matrices, and scalars.
These laws are described by equations in Maude and are
used to automatically reduce terms until no more matrix
operation is applicable. Some laws dedicated to simplifying
the expressions about complex numbers are also formalized
in Maude by means of equations, but we do not describe
them here to make the paper concise.

For example, we would like to reduce the term
CX × ((H ⊗ I)× |0⟩ ⊗ |0⟩) to check whether its result is
1√
2
· |0⟩ ⊗ |0⟩ + 1√

2
· |1⟩ ⊗ |1⟩. The term says that the H

gate acts on the first qubit followed by the CX gate where
the control and target bits are the first and second qubits,
respectively. The simplification of the term goes as follows:

H × |0⟩
= ( 1√

2
·B0 +

1√
2
·B1 +

1√
2
·B2 + (− 1√

2
) ·B3)× |0⟩

= 1√
2
·B0×|0⟩+ 1√

2
·B1×|0⟩+ 1√

2
·B2×|0⟩ +(− 1√

2
)·B3×|0⟩

= 1√
2
· |0⟩ × ⟨0| × |0⟩+ 1√

2
· |0⟩ × ⟨1| × |0⟩ + 1√

2
· |1⟩ × ⟨0| ×

|0⟩+ (− 1√
2
) · |1⟩ × ⟨1| × |0⟩

= 1√
2
· |0⟩+ 1√

2
· |1⟩

(H ⊗ I)× (|0⟩ ⊗ |0⟩)
= (H × |0⟩)⊗ (I × |0⟩)
= ( 1√

2
· |0⟩+ 1√

2
· |1⟩)⊗ |0⟩

= 1√
2
· |0⟩ ⊗ |0⟩+ 1√

2
· |1⟩ ⊗ |0⟩

CX × ((H ⊗ I)× (|0⟩ ⊗ |0⟩))
= (B0 ⊗ I +B3 ⊗X)× ( 1√

2
· |0⟩ ⊗ |0⟩+ 1√

2
· |1⟩ ⊗ |0⟩)

= (B0 ⊗ I)× ( 1√
2
· |0⟩ ⊗ |0⟩) + (B0 ⊗ I)× ( 1√

2
· |1⟩ ⊗ |0⟩) +

(B3 ⊗X)× ( 1√
2
· |0⟩ ⊗ |0⟩) + (B3 ⊗X)× ( 1√

2
· |1⟩ ⊗ |0⟩)

= 1√
2
· (B0 × |0⟩)⊗ (I × |0⟩) + 1√

2
· (B0 × |1⟩)⊗ (I × |0⟩) +

1√
2
· (B3 × |0⟩)⊗ (X × |0⟩) + 1√

2
· (B3 × |1⟩)⊗ (X × |0⟩)

= 1√
2
· |0⟩ ⊗ |0⟩+ 1√

2
· |1⟩ ⊗ |1⟩

Using the laws, the term is reduced to a normal form that
is a linear combination of the tensor product of the standard



Table I
A SET OF LAWS USED FOR SYMBOLIC REASONING

No. Law
L1 ⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨1|1⟩ = ⟨0|1⟩ = 0
L2 Associativity of ×,+,⊗ and Commutativity of +
L3 0 ·Am×n = Om×n, c ·O = O, 1 ·A = A
L4 c · (A+B) = c ·A+ c ·B
L5 c1 ·A+ c2 ·A = (c1 + c2) ·A
L6 c1 · (c2 ·A) = (c1 · c2) ·A
L7 (c1 ·A)× (c2 ·B) = (c1 · c2) · (A×B)
L8 A× (c ·B) = (c ·A)×B = c · (A×B)
L9 A⊗ (c ·B) = (c ·A)⊗B = c · (A⊗B)
L10 Om×n ×An×p = Am×n ×On×p = Om×p

L11 Im ×Am×n = Am×n × In = Am×n

L12 A+O = O+A = O
L13 Om×n ⊗Ap×q = Ap×q ⊗Om×n = Omp×nq

L14 A× (B +C) = A×B +A×C
L15 (A+B)×C = A×C +B ×C
L16 (A⊗B)× (C ⊗D) = (A×C)⊗ (B ×D)
L17 A⊗ (B +C) = A⊗B +A⊗C
L18 (A+B)⊗C = A⊗C +B ⊗C
L19 (c ·A)† = c∗ ·A†, (A×B)† = B† ×A†

L20 (A+B)† = A† +B†, (A⊗B)† = A† ⊗B†

L21 Im
† = Im,O†

m×n = On×m, (A†)† = A

L22 |0⟩† = ⟨0| , ⟨0|† = |0⟩ , |1⟩† = ⟨1| , ⟨1|† = |1⟩

basis with scalars. The whole process is conducted automat-
ically in Maude and the result is the same as expected. The
key idea is to reduce the matrix multiplication in the form
of ⟨i|j⟩ into a scalar and simplify the matrix representation
by absorbing ones and eliminating zeros (see the law with
label L3). In this manner, our symbolic reasoning about
matrices can be conducted automatically by rewriting in
Maude instead of explicitly calculating matrices.

IV. QUANTUM TELEPORTATION PROTOCOL

We use quantum teleportation protocol [7] as a case study
to demonstrate how our symbolic reasoning can be used to
model check quantum circuits in Maude. The protocol takes
advantage of entanglement in quantum mechanics to send
an unknown quantum state |ψ⟩ from a sender to a receiver
by using only three qubits and two classical bits. The circuit
depicted in Fig. 1 shows how the protocol works. The single
wires denote qubits referred to as qi, while the double wires
denote classical bits referred to as ci. The sender acts on q0
and q1, and the receiver acts on q2 as follows:

• First, we prepare an unknown state |ψ⟩ = α |0⟩+β |1⟩
at q0, where α and β are complex numbers such that
|α|2+ |β|2 = 1. Initially, q1 and q2 are in the state |0⟩.

• Second, we apply a sequence of quantum gates to
manipulate three qubits. We first apply the H gate on
q1 followed by the CX gate on q1 and q2 in order to
make an entangled state shared between the sender and
the receiver. The sender then applies the CX gate on
q0 and q1 followed by the H gate on q0.

• Third, we measure the qubits q0 and q1 and immedi-
ately obtain two classical outcomes (0 or 1) stored in
c0 and c1, respectively.

• Fourth, we conditionally apply single-qubit Z and X
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Figure 1. Quantum teleportation protocol

gates on q2 depending on the two classical bits in c0
and c1. Concretely, we use the X gate if c1 equals 1
and follow by the Z gate if c0 equals 1.

At the end, the receiver will have |ψ⟩ and the sender will
not have anymore. We would verify whether the sender can
send correctly an arbitrary unknown quantum state to the
receiver at the end by using our symbolic model checking.

V. FORMAL SPECIFICATION

A. Formalization of Qubits, Gates, and Measurements

Qubits are formalized as the linear combination of tensor
product of the standard basis in Dirac notation with scalars
and similarly for quantum gates. Because |0⟩ and |1⟩ can be
viewed as 2×1 matrices, then qubits and quantum gates are
basically matrices. Quantum gates act on qubits (a quantum
state) formalized as a matrix multiplication with a determin-
istic transition in Maude. In this paper, we only consider
projective measurements on the standard basis, and thus the
measurement operators are {M0,M1}. A measurement of
a single qubit in a quantum state is formalized by two state
transitions with probabilities p(m) for m ∈ {0, 1}, making
a non-deterministic probabilistic transition. Each of the two
transitions shows how its measurement operator acts on the
single qubit in a state and is formalized similarly as quantum
gates, however, with respect to the probabilities.

B. A Generic Formalization of Quantum Circuits

A whole quantum state is formalized as a collection
of qubits associated with indices in circuits, where each
element is one of the forms as follows:

• (q[i] = |ψ⟩) denote a single qubit in state |ψ⟩ at qi,
• (q[i, . . . , j] = |ψ⟩) denote an entangled state in

state |ψ⟩ at qi, . . . , qj where the order of i, . . . , j is
relevant.

Classical bits are formalized as a map from indices in
circuits to Boolean values, where each entry is in the form
of (i 7→ b), meaning that the value of the classical bit stored
at ci is b whose value is either 0 or 1.

A sequence of quantum gates, measurements, and condi-
tional gates in a quantum circuit is formalized as a list of
actions in which each action is one of the forms as follows:



• I(i) applies the I gate on qi,
• X(i) applies the X gate on qi,
• Z(i) applies the Z gate on qi,
• H(i) applies the H gate on qi,
• CX(i, j) applies the CX gate on qi and qj ,
• M(i) measures qi with the standard basis,
• c[i] == b ? AL checks if the classical bit at ci

equals b, then a list AL of actions is executed.
Based on the actions formalized above, we can describe the
circuit for quantum teleportation protocol as follows:
H(1) CX(1, 2) CX(0, 1) H(0) M(0) M(1)
(c[1] == 1 ? X(2)) (c[0] == 1 ? Z(2))

Let KC be the Kripke structure formalizing a quantum
circuit. There are five kinds of observable components in
our formalization as follows:

• (qstate: qs) denotes the whole quantum state qs.
• (bits: bm) denotes the classical bits obtained from

measurements and stored in a bit map bm.
• (prob: p) denotes the probability p at the current

quantum state.
• (actions: al) denotes the action list al, guiding us

on how the circuit works.
• (isEnd: b) denotes termination with Boolean flag b.
Each state in SC is expressed as {obs}, where obs is

a soup of one qstate observable component, one prob
observable component, one bits observable component,
one actions observable component, and one isEnd ob-
servable component.
TC consists of 10 rewrite rules in our formalization. Let

OCs be a Maude variable of observable component soups, Q
and Q’ be Maude variables of whole quantum states, BM be
a Maude variable of bit maps, Prob and Prob’ be Maude
variables of scalars, AL and AL’ be Maude variables of
action lists, B be a Maude variable of Boolean values, and
N, N1, and N2 are Maude variables of natural numbers.

The first five rewrite rules are as follows:
rl [I] : {(qstate: Q) (actions: (I(N) AL))
OCs} => {(qstate: Q) (actions: AL) OCs} .
crl [X] : {(qstate: Q) (actions: (X(N) AL))
OCs} => {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).X(N) .
crl [Z] : {(qstate: Q) (actions: (Z(N) AL))
OCs} => {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).Z(N) .
crl [H] : {(qstate: Q) (actions: (H(N) AL))
OCs} => {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).H(N) .
crl [CX] : {(qstate: Q) (actions: (CX(N1, N2)
AL)) OCs} => {(qstate: Q’) (actions: AL) OCs}
if Q’ := (Q).CX(N1, N2).

The rules I, X, Z, H, and CX simulate how the I,X,Z,H ,
and CX gates act on the whole quantum state in qstate
observable component if its action appears in actions
observable component, respectively.

The next two rewrite rules are as follows:

crl [M0] : {(qstate: Q) (actions: (M(N) AL))
(prob: Prob) (bits: BM) OCs}

=> {(qstate: Q’) (actions: AL) (prob: (Prob
.* Prob’)) (bits: insert(N, 0, BM)) OCs}

if {qstate: Q’, prob: Prob’} := (Q).M(P0, N).
crl [M1] : {(qstate: Q) (actions: (M(N) AL))

(prob: Prob) (bits: BM) OCs}
=> {(qstate: Q’) (actions: AL) (prob: (Prob

.* Prob’)) (bits: insert(N, 1, BM)) OCs}
if {qstate: Q’, prob: Prob’} := (Q).M(P1, N).

The rules M0 and M1 say that we measure the qubit at index
N with the measurement operators M0 and M1, respec-
tively; the classical outcomes are stored accordingly into the
bit map in bits observable component; the probabilities
and the post-measurement states are also updated in prob
and qstate observable components, respectively. These
two rules make a non-deterministic probabilistic transition
when measuring a single qubit.

The next rewrite rule describes how to conditionally
perform the next actions based on classical bits obtained
from measurements if applicable.
rl [cif] : {(qstate: Q) (bits: ((N |-> N1),
BM)) (actions: ((c[N] == N2 ? AL’) AL)) OCs}
=> {(qstate: Q) (bits: ((N |-> N1), BM))
(actions: ((if (N1 == N2) then AL’ else nil

fi) AL)) OCs} .

This rule says that if c[N] == N2 ? AL’ is in the action
list and the classical bit N1 at index N equals the conditional
value N2, then the action list AL’ is prepended to the action
list AL in actions observable component to be executed
next; otherwise, it is ignored.

The last two rules are as follows:
rl [end]: {(actions: nil) (isEnd: false) OCs}
=> {(actions: nil) (isEnd: true) OCs} .
rl [stutter]: {(isEnd: true) OCs}
=> {(isEnd: true) OCs} .

The rule end marks the termination if the action list is nil,
meaning no more action. Meanwhile, the rule stutter
is necessary to make TC total when isEnd observable
component is true.

C. Formalization of Quantum Teleportation Protocol

To formalize quantum teleportation protocol, let IC con-
sist of only one initial state as follows:
{(isEnd: false) (prob: 1) (bits: empty)
(qstate: (q[0]: a . |0> + b . |1>)

(q[1]: |0>) (q[2]: |0>))
(actions: H(1) CX(1,2) CX(0,1) H(0) M(0) M(1)

(c[1] == 1 ? X(2)) (c[0] == 1 ? Z(2)))}

where a and b are Maude constants of scalars denoting
arbitrary scalars such that |a|2 + |b|2 = 1. Initially, isEnd
observable component is false, prob observable component
is one, qstate is a symbolic state as the input state of
the protocol, actions observable component contains the
action list describing how the protocol works. For other



protocols, we only need to formalize the initial quantum state
and the action list in the initial state of IC , while we can
definitely reuse SC and TC in KC , making our formalization
as a general framework to formally specify quantum circuits.

VI. SYMBOLIC MODEL CHECKING

Let TELEPORT be the specification of the quantum tele-
portation protocol, init be the initial state for TELEPORT,
qstate and qubitAt be functions to get the whole
quantum state from the initial state and to get a single qubit
at some index, respectively. To model check that KC satisfies
some desired properties, we specify AC and LC . AC has one
atomic proposition isSuccess. LC is specified as follows:
eq {(isEnd: true) (qstate: Q) (prob: Prob)

OCs} |= isSuccess
= Prob > 0 implies
qubitAt(Q, 2) == qubitAt(qstate(init), 0) .

eq {OCs} |= PROP = false [owise] .

The two equations say that isSuccess holds at a state
if the state contains (isEnd: true), (qstate: Q),
and(prob: Prob) such that the condition qubitAt(
Q, 2)== qubitAt(qstate(init), 0) holds when-
ever Prob > 0, meaning that the qubit received by the
receiver at the end is equal to the qubit sent by the sender at
the beginning with a non-zero probability. Let a LTL formula
teleProp be defined as True U isSuccess, where U
is the temporal until operator.

We model check that KC satisfies teleProp from the
initial state init in Maude as follows:
red modelCheck(init, teleProp) .

No counterexample is found in just a few moments; thus,
KC satisfies teleProp. In other words, we successfully
verify the correctness of the quantum teleportation protocol
by using our symbolic model checking approach. Because
our formalization considers the probabilities at each state,
then we are able to check not only qualitative properties but
also quantitative properties with Maude LTL model checker.

VII. RELATED WORK

There are several studies [8], [9] in the early work of
formal specification and verification of quantum protocols.
For example, Gay, et al. provide a way to use classical model
checkers (e.g., PRISM - a probabilistic model checker) to
analyze quantum protocols. They give each quantum state a
unique number and the transition from a unique number to
another unique number models the action of quantum gates
and measurements. Their approach needs to enumerate states
and calculate the state transitions in advance and then encode
them into a PRISM specification. Although they develop a
so-called PRISMGEN tool to automate this, their approach
is impractical in reality and only supports two or three qubits
because of the exponential growth of the number of states.
Our approach does not need to enumerate such states in
advance because a quantum state is directly formalized in

Dirac notation with scalars. Moreover, rewrite rules are used
to formalize the action of quantum gates and measurements,
making our approach feasible to deal with more qubits.

Our symbolic approach to model checking quantum cir-
cuits is inspired by the work [1]. However, their approach
is oriented to theorem proving, not model checking. They
also use Dirac notation with a small set of laws to specify
quantum states, quantum gates, measurements, and reason-
ing about quantum circuits in Coq, an interactive theo-
rem prover. However, they usually require human users to
provide necessary lemmas to complete their proofs, which
are not easy tasks in general. Meanwhile, our approach is
fully automatic and does not need any intervention from
human users. Moreover, our implementation can be used as
a general framework to formally specify and verify quantum
circuits in a symbolic way in Maude.

VIII. CONCLUSION

We have proposed a symbolic approach to model checking
quantum circuits by using a set of laws from quantum me-
chanics and basic matrix operations with Dirac notation. We
have analyzed the quantum teleportation protocol as a case
study to demonstrate the usefulness of our approach. More-
over, our implementation developed in Maude can be used as
a general framework to formally specify and verify quantum
circuits using our symbolic model checking approach. Our
formalization takes the probabilities into account, and then
we can tackle both qualitative and quantitative properties
with the built-in LTL model checker in Maude. As one piece
of our future work, we would like to conduct more case
studies to demonstrate the usefulness of our approach.
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