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Abstract—Alzheimer’s disease (AD) is a neurodegenerative
disease that severely affects cognition, memory, and behavior
and is incurable. Mild cognitive impairment (MCI) is a clinical
precursor to AD, and early diagnosis of AD is essential for
the prevention and intervention of disease progression. The
hippocampus is one of the first brain regions affected by AD,
and therefore structural magnetic resonance images (sMRI)
are commonly used to measure the shape and volume of the
hippocampus. In this paper, we propose a federal deep forest
model called FeDeFo for calculating hippocampal volume using
sMRI images to achieve AD classification. Firstly, to effectively
protect data privacy, we use a federated learning framework to
collaboratively train a gradient boosting decision tree (GBDT)
model based on the local data of each client. In addition, to
address the data discrepancy between clients, we introduce a deep
forest model to exploit the local data beyond local interactions
further and fuse it with the federally trained GBDT to personalize
the model for each client. The experiments demonstrate that
our proposed approach is able to personalize the model while
protecting the data privacy of each client, providing a new idea
for AD classification.

Keywords—federated deep forest; personalized federated learn-
ing; Alzheimer’s disease diagnosis.

I. INTRODUCTION

Alzheimer’s disease (AD) is a fatal neurodegenerative disor-
der with insidious onset in the presenile period [1]. It affects
memory and cognitive ability in an irreversible manner and
gradually causes the decline of the quality of daily life and
social functions. Although developed AD has no cure, it can
be delayed or even prevented at the earliest stage, known
as mild cognitive impairment (MCI) [2]. Thus, distinguishing
MCI from AD or normal cognition (NC) is an urgent need in
AD diagnosis. So far, neuroimaging is the best non-invasive
technique to look for abnormalities in the human brain [3].

Undoubtedly, deep learning has revolutionized image pro-
cessing. It can solve difficult problems such as image col-
orization, classification, segmentation, and detection [4]. For
example, a deep neural network (DNN) is a stack of multiple
layers, which allows models to become more efficient at learn-
ing complex features and performing more intensive compu-
tational tasks. It outshines classic machine learning paradigms
in machine perception tasks involving unstructured data. How-
ever, DNN has a number of well-known limitations, e.g.,
living off a considerable amount of data, requiring enormous
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computational resources, and lacking theoretical explanations
[5]. For the above reasons, researchers are looking for an
alternative paradigm. Eventually, deep ensemble learning gets
attention, such as GrowNet [6], S-DNN [7], DSN [8], deep
forest [9], because it combines the advantages of both the
DNNs as well as ensemble learning such that the final model
has better generalization performance [10].

However, there is another challenge in the healthcare area,
which is the well-known privacy problem [11]. Traditional
deep learning generally proceeds in two phases: collecting
data from different participants for preprocessing and feeding
the data to a monolithic model for training. As a result,
the risk of privacy leakage is unavoidable. To tackle the
problem, we present a federated learning framework. It enables
distributed clients to collaboratively train a shared model
without sharing their training data. To be specific, model
parameters are computed locally by each client device and
exchanged with a central server, which aggregates the local
models for a global view [12]. It is worth noting that our
framework provides personalization in order to improve the
privacy-accuracy tradeoffs and balance the benefits among
different parties [13].

II. RELATED WORK
A. Federated Learning

The concept of federated learning was first proposed by
Google Al [14], which enables mobile terminals to jointly train
a global machine learning model in a decentralized manner
without sharing individual data. Thereby, federated learning is
an interdisciplinary domain of machine learning and privacy
computing. In terms of training samples, it can be broadly
divided into two categories: horizontal federated learning and
vertical federated learning [12]. The former refers to datasets
owned by different parties that share the same feature space but
differ in samples, whereas the latter refers to datasets owned
by different parties that differ not only in samples but also in
feature space.

In the healthcare domain, horizontal federated learning is
more frequently used as clinical task demands increase [15].
For instance, PRCL coordinates multiple medical institutions
and cloud servers to develop an electronic health records
(EHR) system since the hospitals run a neural network using
their own records, and the cloud server aggregates the update
parameters [16]. Likewise, horizontal federated learning has



been used in breast cancer prediction [17], blood pressure
estimation [18], skin disease detection [19], etc. Recently,
experts successfully built a powerful model for COVID-19
screening by federated training using chest X-ray images from
different hospitals [20]. In this paper, the proposed FeDeFo
framework also adopts horizontal federated learning.

Regarding application scenarios, the types of federated
learning mainly include cross-device and cross-silo federated
learning [21]. The former usually requires massive mobile
devices as trainers, each owning a small amount of raw
data, while the latter involves few reliable organizations,
each holding medium to large datasets. In this paper, we
study cross-silo federated learning due to its suitability for
healthcare scenarios [22]. Thereby, our work does not need to
pay attention to the scheduling problem and communication
bottleneck. In addition, we can assume that the central server
is an honest and reliable third party in the training process.

General federated learning approaches face several funda-
mental challenges. One of them is that the global model
can only capture the statistical characteristics of different
parties rather than the unique personal styles. For example,
differences in age-adjusted Alzheimer’s dementia prevalence
exist among regions of the world due to the combination
of low average educational attainment and high vascular risk
profile [23]. Another is the heterogeneous computing resources
and network conditions of different federated learning de-
vices. Fortunately, both challenges can be markedly alleviated
by personalized federated learning [24]. Furthermore, since
medical data are highly sensitive and valuable, personalized
federated learning can even more amplify the model quality.
For example, FedHome put forward an edge cloud federated
learning architecture for home healthcare services, which al-
lows a client to train a personalized model by the global model
and its private data [25]. In this paper, the proposed FeDeFo
framework also adopts personalized federated learning in order
to heighten the patient experience.

B. Ensemble Learning

Ensemble learning is not a machine learning algorithm but
a technical framework that aggregates outputs of multiple
models in order to improve the overall performance and
generalization. In general, there are three primary ensemble
techniques, viz., bagging, boosting, and stacking [10].

Boosting is an influential ensemble methodology referring
to a family of algorithms that convert a cluster of weak learners
into a strong one. Unlike bagging, boosting can reduce bias
by learning in a sequence that iteratively adjusts the weight
of observation as per the last classification [26]. Gradient
boosting decision tree (GBDT) is a classic additive model that
uses a boosting ensemble of decision trees to predict a target
label [27]. More specifically, it uses a forward distribution
algorithm to perform greedy learning. In each iteration of
learning, a classification and regression tree (CART) is used
to fit the residuals of the previous one.

Random forest is an enhanced version of the decision trees,
which uses the bagging strategy to build multiple decision trees

and aggregate them for an accurate result with as little bias
as possible [28]. As an evolution of random forest, gcForest
achieved an innovation breakthrough by constructing a multi-
layer neural network in which a number of random forests,
instead of neurons, are embedded in each layer [9]. Overall,
gcForest becomes more attractive due to the simple algorithm,
fewer initial hyperparameters, and thorough extraction of
feature relations. Furthermore, it can ensure higher prediction
accuracy with a smaller dataset, adapt to different situations
by automatically settling its complexity, and moderate the
overfitting issue through its robustness. At present, gcForest
and its extensions have been increasingly utilized in the real
world. For example, a revised gcForest, namely BCDForest, is
proposed to classify cancer subtypes based on small biological
datasets [29]. Another one can successfully identify ADHD
and control subjects [30].

It is worth noting that any type of classifier is applicable in
gcForest, such as GBDT. Additionally, GBDT re-weights the
original training sample in every boosting step, so it has an
excellent generalization ability suitable for solving regression
problems similar to disease diagnosis. Therefore, we tailor-
make a deep ensemble algorithm by integrating GBDT into
gcForest to diagnose Alzheimer’s dementia.

III. FEDEFO FRAMEWORK
A. Overview

This paper proposes a novel and practical framework called
personalized federated deep forest framework (abbreviated as
FeDeFo), which aims to classify subjects with AD, MCI, and
NC while preserving privacy. In FeDeFo, multiple clients have
their own data that share the same features. Thus, FeDeFo
focuses on scenarios suitable for horizontal federated learning.
In addition, FeDeFo supports personalization, so each client
can have a slightly different local model and hence supply a
better customer experience.

We are given data from N different clients, which are
denoted by {C1,C5,...,Cn}, while the data they provide are
denoted by {D1, Da, ..., Dy}. Conventional methods train a
model M 47,1, by combining all the data D = D UDsU---U
Dy All the data have different distributions. In our problem,
we want to collaborate all the data to train a federated model
Mpgp, where any client C; does not expose its data D; to
each other. If we denote the accuracy as A, then the objective
of our model is to ensure the accuracy of federated learning
is close to that of conventional learning denoted by:

|[Arep — Aarr| < A,

where A is an extremely small non-negative real number.
The FeDeFo framework aims to achieve accurate AD clas-
sification tasks through federated learning and deep forests
without compromising privacy security. There are two par-
ticipants in FeDeFo: the central server and the client. Every
client keeps its patients’ data safe by preventing any other
participants from accessing it. In this paper, we choose the
GBDT model for local training. As shown in Figure 1, in
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Fig. 1. An overview of FeDeFo framework.

each training iteration, the central server broadcasts the model
to every client. Then, each client trains its own GBDT model
using its data and uploads the gradients to the central server.
Finally, the server aggregates the gradients in order to upgrade
the global model. After the federated training stops, every
client weaves the resulting model to the local deep forest
model, i.e., gcForest, aiming to train a personalized model
and further provide a more accurate AD diagnosis system.
To summarize, the FeDeFo framework overcomes information
segregation through higher-order information scattered across
different clients without exchanging their privacy data.

B. GBDT

GBDT is an ensemble model which trains a sequence of
decision trees. Formally, a dataset D with n instances and
d features can be described as D{(z;,y:)} (/D] = n,x; €
R? y; € R). So, the output can be predicted via K -additive
functions as follows:

K

Ui = ka(%‘% fr € F,

k=1
where F = {f(z) = wy} (¢ : R* = T,w € RY) is the
space of regression trees. Here ¢ denotes the structure of each
tree that maps an instance to the corresponding leaf index. T’
is the number of leaves in the tree. Each f; corresponds to
an independent tree structure g and leaf weights w. Moreover,
we use w; to represent the score on the ¢-th leaf. For a given
example, we use the decision rules in the trees (given by q)
to classify it into the leaves and perform the final prediction
by summing up the score in the corresponding leaves (given
by w). To learn the set of functions used in the model, we
minimize the following regularized objective as follows:

L= Zl(ﬁmyi) + ZQ(fk)v
i 3

where [ is a differentiable convex loss function that measures
the difference between the prediction y; and the target y;. We
hereby define Q(fi) = 71+ 3 A[|w||? as a regularization term

to penalize the complexity of the model, in which v and A
are hyperparameters. Hence, GBDT minimizes the following
objective function at the ¢-th iteration as follows:

£ = Z [gi fe(i) + %}hftz(x?)] +Q(f),

i=1

where g; = g(f,_l)l(yi,g)(t’l)) and h; = 83@_1)1(%,3)(“1))
are the first-order and second-order gradient statistics on the
loss function.

C. Federated Training

Structurally speaking, GBDT is a collection of decision
trees constructed in a serial manner. However, it is generally
implemented and trained as an integral whole under a stan-
dalone environment. Thereby, in FeDeFo, GBDTs are revised
to coincide with the decentralized environment. As Figure 2
shows, the process of updating the gradients is modified with
the aim of receiving updates from the external.

For each iteration of federated training, each client starts
with initializing a local GBDT model at first and feeds the
model with private data subsequently. In the GBDT, each
decision tree is constructed by fitting the negative gradient
of the previous one. Hence, the complete GBDT is shaped
as a chain of decision trees. When a client finishes the
local training, it calculates the first-order and second-order
gradient statistics of the loss function. Then, both gradients
are uploaded to the server for aggregation. Eventually, the
central server collects all clients’ feedback and updates the
global GBDT model. Notably, the server will continue to
broadcast the aggregated gradients to every client. Therefore,
in the next iteration, those gradients become the building
blocks of the new local GBDT. The aforementioned procedure
is repeated until the global model has converged and the
federated learning result is satisfactory.

D. Personalized Training

Federated learning breakthroughs the data silos by collab-
orative model training with decentralized datasets. However,
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Fig. 2. Training process of federated GBDT.

its popularity is not growing in practical terms because the
global model usually performs unsatisfactorily on participant-
specific data. On this account, the FeDeFo framework provides
a personalized training method allowing the model to learn
fine-grained information from the ad-hoc client as well as
the coarse-grained features from all participants. Inspired by
gcForest, we hereby design a personalization model using
multi-grained scanning and cascading forests with a view to
achieving high performance on feature representation learning
with high-dimensional data in the context of AD classification.

As Figure 3 illustrates, the personalization model takes the
client’s private data as input. Then, the raw features of input
are extracted and processed by a multi-grained scanner to
generate feature vectors, which are further sent to the cascade
forest to complete the classification task. Notably, the original
cascade forest in gcForest is defined by multi-level integration
of decision trees, which are theoretically replaceable by any
other classifiers that can output class distribution vectors. Here,
we adopt GBDTs instead of decision trees to construct the
personalization model. In detail, each cascade level contains
four GBDTs, each of which outputs a class distribution vector.
Subsequently, the four vectors at the same level and the
output of the multi-grained scanner are concatenated. The
result becomes the input vector of the next level. Finally,
the classification result is the maximum of the average class
vectors outputted from the last level.

IV. EXPERIMENT
A. Dataset

The data used in this paper are extracted from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31]
database. As demonstrated in Table I, a total of 400 subjects
are involved, including 93 AD patients, 201 MCI patients,
and another 106 normals as the control group. Because the
hippocampal atrophy can evidently suggest the AD diagnosis
[32], we select their sMRI with magnetization-prepared rapid
gradient-echo (MP-RAGE). Such an image can offer a clear
vision of the hippocampus, which is advantageous for volume
estimation.

TABLE I
SUBJECT COMPOSITION

Type Amount Age Sex (Male/Female)
AD 93 75.15+8.14 50/ 43
MCI 201 73.61+6.92 133 / 68
NC 106 76.16+£7.14 54 /52

B. Experimental Process

The hippocampal volume is crucial to diagnose AD and
MCI. In this paper, we classify the patients with AD, MCI,
and NC by assessing the relative hippocampal volume, which
is calculated by the whole brain volume dividing the absolute
hippocampal volume. The relative volume can eliminate the
difference in brain volume between different populations.

The brain images are initially preprocessed by the FSL tool
[33], including intensity inhomogeneity correction, skull re-
moval, intensity normalization, and image cutting. The unified
image size is 196 x 271 x 181. After that, we can use the
3DUnet-CBAM model [34] to extract the hippocampal part.
Finally, we use IBASPM [35] to label the voxel of images in
a neuroanatomical manner and further calculate the volumes
automatically. The activities in data processing are briefly
expressed in Figure 4.

Subsequently, we input the relative hippocampal volume to
the GBDT models deployed on both central server and client
devices. During the learning process, 70 percent of the data are
used for training, whereas the rest are for model evaluation.
Once the federated GBDT is mature, it will be adopted as a
classifier and loaded into the deep forest for personalization.
Finally, every client can use its own model to diagnose AD
and MCL

C. Experimental Results

We also perform experiments on AD classification using
deep learning methods (e.g., LeNet and VGGNet), and ma-
chine learning method (e.g., SVM). In comparison with those
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Fig. 3. Personalized model training.

experimental results, we prove the outperformance of our
FeDeFo framework. Moreover, to demonstrate the effective-
ness of the personalization mechanism in FeDeFo, we conduct
an extra experiment using federated GBDT only, i.e., an
equivalent of FeDeFo without personalized training.

To thoroughly investigate the classification performance, we
use three metrics for evaluation: accuracy (ACC), sensitivity
(SEN), and specificity (SPE). In clinical practice, accuracy
measures how correctly a diagnostic test identifies and ex-
cludes a given condition, yet sensitivity evaluates how good
the test is at detecting a positive disease, whereas specificity
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Fig. 4. Data processing.

estimates how likely patients without the disease can be
correctly ruled out. If we denote T'P as true-positive samples,
F'P as false-positive samples, T'N as true-negative samples,
and F'N as false-negative samples, the equations of the metrics
can be defined by:

B B TP+ TN
CraY = TP Y FP+TN + FN
somsiivine — TP
enst lVlty = 7TP+ FN
. TN
Specificity = T5 TN

As shown in Table II, FeDeFo outshines LeNet and VGGNet
on every metric. The sensitivity and specificity of classifying
MCI and NC are slightly lower than SVM, probably because
the sample size is too small. Meanwhile, it improves the
average results by 6.1% compared to the federated GBDT.
In summary, our FeDeFo framework achieves exceptional
performance in classifying subjects with AD, MCI, or NC
while preserving patients’ privacy.

TABLE II
COMPARISON OF CLASSIFICATION RESULTS

AD vs. NC (%) | MCI vs. NC (%)

ACC SEN SPE ‘ ACC SEN SPE
LeNet 83.8 732 924 | 688 793 634
VGGNet 847 773 908 | 709 819 652
SVM 833 714 92 72 841 713
Fed. GBDT 864 765 893 | 653 734 61.6
FeDeFo 91.6 857 931 | 724 835 687

V. CONCLUSION

The FeDeFo framework provides a rational combination of
deep learning, ensemble learning, federated learning, and per-
sonalization. Together, they suggest a promising solution for
privacy-preserving Al services. In this paper, we use FeDeFo
to produce a family of AD diagnosis systems. The slight



difference between them makes each system more suitable
for its own scenario. Theoretically, the FeDeFo framework
is extensible to other medical fields or even more. In the
future, we will test our FeDeFo framework on distinct datasets
using different training models and personalization techniques
in more domains.
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