
EVALUATING THE SUSTAINABILITY OF 
COMPUTATIONAL SCIENCE AND ENGINEERING 
SOFTWARE: EMPIRICAL OBSERVATIONS
James Willenbring 
Sandia National Laboratories
North Dakota State University

Gursimran Walia
Augusta University

SEKE 2022

July 7, 2022

Sandia National Laboratories is a multimission laboratory managed and operated 
by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned 

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-NA0003525. 

SAND2021-7711 C 



2 Exascale Computing Project

Introduction

• Software sustainability is key to Computational Science and Engineering (CSE)
– Projects often begin as a research activity

• Research output is the primary objective
• Many, but not all projects, end up having a long, impactful life

– Cutting-edge algorithms and language features -> inherent complexity
– Performance on new supercomputers

• Large codes
• Previous software sustainability studies have not looked at sustainability metrics 

specifically for CSE software
• Goal: Identify, characterize and reduce barriers to CSE software sustainability 



3 Exascale Computing Project

Approach
• Analyze open source CSE software projects

– Open repository
– Substantial history
– Important in CSE community

• Members of the Extreme-Scale Scientific Software Development Kit (xSDK)
• 6/7 receive funding through the DOE's Exascale Computing Project (ECP)

– ECP has a strong interest in software sustainability

– Large and small (not too small)
– Variety of primary development institutions

• Labs
• Universities

• Gather metrics to identify correlation with aspects of sustainability
– Code-based and non-code-based metrics
– Trends in metrics over time



4 Exascale Computing Project

Approach
• Seven projects were studied

– Projects were anonymized

• Project 1: linear and non-linear solvers and preconditioners
• Project 2: collection of solvers and enabling technologies
• Project 3: distributed memory direct LU solver
• Project 4: algebraic multigrid sparse preconditioners and solvers
• Project 5: dense linear, least squares, eigen, and S.V.D. solvers
• Project 6: finite element and adaptive mesh refinement
• Project 7: sparse linear and nonlinear eigenvalue solvers



5 Exascale Computing Project

• Metric set 1 collected from
– GitHub, GitLab, git command line
– SLOCCount

Data Analysis and Results



6 Exascale Computing Project

• Metric set 2 collected from Metrix++
– Yearly snapshots taken

Data Analysis and Results



7 Exascale Computing Project

• SLOC and Contributors
– A low number of contributors or high ratio of SLOC/contrib may be a 

sustainability risk

Discussion of Results



8 Exascale Computing Project

• Average Complexity
– Complex codes are harder to maintain

• Project 3 has significantly higher average complexity

Discussion of Results



9 Exascale Computing Project

• Maintenance Index
– More useful for longer-term 

tracking, moves slowly
– Project 3 has most significant 

change in maintenance index
• Coincides with large increase in 

code base size

Discussion of Results



10 Exascale Computing Project

• Metrix++ Hotspot Feature
– Identifies and counts regions of code exhibiting a metric value above 

a user-specified threshold
– Command to identify regions of code in Project 4 with cyclomatic 

complexity equal to or greater than 500: 

metrix++ limit --db-file=proj4.2019.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500

Discussion of Results



11 Exascale Computing Project

• Advanced Metrix++ Hotspot Features
– May be useful for CI or code reviews
– touched

• Only consider regions of code added or modified between two snapshots
– trend

• Only consider touched regions of code for which the metric value in question 
has gotten worse

– Command to identify touched regions of code in Project 4 with cyclomatic 
complexity equal to or greater than 500 (for trend, replace "touched" with 
"trend"): 

metrix++ limit --db-file=proj4.2019.lines.complex.maint.db --db- file-
prev=../2018-05-24/proj4.2018.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500 --warn-mode=touched

Discussion of Results



12 Exascale Computing Project

• Next steps
– Explore sustainability factors not reflected in source code

• Sustainability of software dependencies
• Sustainability of the CSE software ecosystem

– Expand Metrix++ hotspot analysis
• Use for code reviews

– Continue study of contributor metrics

– Tools for Data Mining and Code Analysis Software Development Kit 
(SDK)

Conclusion and Relevance to Industry



13 Exascale Computing Project

• Metrics provide quantitative data that can be used to support 
decisions

– Single metrics should not be used to make broad conclusions
• For example, code A is more sustainable than code B

– Changes in metrics can inform if a project is becoming more or less 
sustainable
• Evaluate changes in development practices or tools

• An important goal is to identify how to design for sustainability

Conclusion and Relevance to Industry


