
NKind: a model checker for liveness property

verification on Lustre programs

Junjie Wei, Qin Li

SEKE 2022, KSIR Virtual Conference Center, Pittsburgh, USA

July 1 - July 10, 2022

Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

1/13



Introduction

• Model checking is getting greater concern in industrial field, like

real-time reactive systems

• Existing tools mostly concentrate on proving safety properties

• We present NKind, the first model checker for Lustre supporting

the verification of liveness properties

2/13



Preliminary

• Lustre

• A synchronous dataflow language widely used in modeling

reactive control systems

• Focus on data and represent them as infinite sequences of values,

i.e. dataflows

• A Lustre program consist of nodes

• Intputs/outputs as interface as well as local dataflow

• Contain flow definitions

• Nodes work synchronously, i.e. at the same speed

3/13



Preliminary

node main() returns (counter2:int);

var

counter1 : int;

let

counter1 = 0 -> 1 + pre counter1;

counter2 = 100 -> (pre counter2 - counter1);

tel;

counter1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

counter2 100 99 97 94 90 85 79 72 64 55 45 34 22 9 -5

4/13



Preliminary

• L2SIA-WFR

• Extended algorithm of liveness-to-safety for handling infinite

state space using abstraction

• Iterates and refines the abstraction by making use of spurious

counterexamples

• Try to prove the absence of a lasso-shape counterexample as an

invariant

5/13



Architecture

• Parser

• Accepts an extension to core

Lustre

• Simplifier

• Automata, Array iterator, etc

• Controller

• Dispatches the proving task

• Parallel engines

• BMC

• k-Induction

• Invariant Generation

• PDR

Figure 1: NKind architecture

6/13



Features

• Safety property

• Attempts to prove that the

given properties are invariants

• Make use of the multiple

engines mentioned before

Figure 2: Specifying property with safety

property

Figure 3: Safety verification result
7/13



Features

• Liveness property

• Support properties which can

have finite-time violations and

will finally holds forever

• Integrate L2SIA-WFR to PDR

process

Figure 4: Specifying property with

liveness property

Figure 5: Liveness verification result

8/13



Features

• Liveness property

• Structure referred to ic3ia

• Monotonically strengthens the

original transition system

• Refine abstraction from

spurious counterexamples

Figure 6: Embedding liveness extension

to PDR process

9/13



Evaluation

• Safety benchmark from Kind (864)

Figure 7: Verification results on safety property benchmark

10/13



Evaluation

• Liveness benchmark from ic3ia
Test name ic3ia NKind

any-down-live 35.77 1.88

parallel-live 51.68 12.61

binary-live 0.09 0.86

piecewise-live 0.11 1.13

count-nested-live 0.37 1.87

stabilize-live 5.16 3.99

count-down-live 1.05 1.00

swap-dec-live 1.53 2.73

count-up-to-sym-live 5.84 1.11

refine_disj_problem Timeout Timeout

Table 1: Representative verification results on liveness property benchmark

11/13



Evaluation

• Liveness benchmark transformed from Kind (225)

Figure 8: Verification results on more complex liveness property benchmark

12/13



Conclusion

• We present NKind, the first model checker for Lustre supporting

the verification of liveness properties

• NKind has a rather competitive performance comparing to

mainstream tools

• More in-depth optimizations for performance is left for future

work

13/13



Thank you!

13/13


