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Challenge for Face Anti-Spoofing

® The existing methods are mostly based on multi-modal information (e.g. infrared light,
structured light, and light field), which cannot be used on mobile devices on a broad

scale.

® The single-frame-based CNN methods discard inter-frame information of the video. The

potential of the multi-frame-based methods remains to be explored.

® Face information supervision is an important part of the face anti-spoofing task. Depth

camera requires specific hardware equipment and is difficult to promote.

® Datasets collected in the laboratory vary greatly from the samples in the real world.
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Input Labels

The Proposed EulerNet

® By applying eulerian video magnification to live
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The Proposed EulerNet
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Input: a sequence (length 4 and frame interval 3) from
the video

Feature-compressed attention modules (FCAM): Using
differential infinite impulse response filtering, FCAM
amplify the subtle changes in faces between different
frames.

Residual Pyramid: Fusing features from different depths.

Face position map: lightweight labeling, balance the
labeling cost and accuracy.
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FCAM

Feature compressed: synthesizes information from each channel.

DIIRF: differential infinite impulse response filter
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Attention: multiplying the feature map obtained by sigmoid back to the original input.

Feature compressed Signal capture
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Residual Pyramid
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Face Location Map

Live Binary Mask

® binary mask: fast ¢ lost information %

® depth map: slow % abundant v difficult to learn %

Depth Map Location Ma

® location map: fast v abundant ¢ easy to learn v
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Dataset Collection
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Ablation Study
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Tag Label FCAM | Residual i pe o 1 gy
Pyramid

Compare 1 | Binary Mask Vv Vv 3.95 | 2.84
Compare 2 | Depth Map X X 3.62 | 2.57
Compare 3 | Face Location Map Vv X 2.85 | 2.26
Compare 4 | Face Location Map X v 3.13 | 2.22
Compare 5 | Depth Map Vi v 2.74 | 2.06
Baseline Face Location Map N Vv 2.48 | 1.88

binary mask(C1)

remove all improvements(C2)
w/o Residual Pyranid(C3)
w/o FCAM(C4)

depth map(C5)

our method

Epochs

« After adding FCAM and Residual Pyramid, ACER decreased by 0.34% and 0.38%, respectively.
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« Location map supervision yields the best ACER, achieving 0.18% lower than the model supervised with
depth map and 0.96% lower than the model supervised with binary mask.

« The proposed method curve shows a smoother decreasing trend during training with less fluctuation.
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Visualization

i
Face
Predicted Map  Score | oo
: Map
L
| —
I <
I o
our method 0.485 | % Depth
: - Map
3
: o
| (T » ':1, . : e
: ! Skl |
| P e . F Y Binary
: = ,‘ - J . Mask
B
! AT = — - ¥
w/o FCAM 0.364 |
|
; Face
\ on Location
: _:3/‘ Map
| Qo
| o
.-
: (i Depth
i 0453 | w Map
w/o Residual .
Pyramid .
B T 5 :
: Binary
| - -
|

€ The model with FCAM pays more attention to the parts where the action occurs, so there are higher activation values at pixels.

€ The prediction map based on the face location map has higher contrast in distinguishing faces and backgrounds.
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Comparison on OULU-NPU

Prot. Method APCER(%) | BPCER(%) | ACER(%)
Disentangled [36] 1.7 0.8 1.3
FAS-SGTD [14] 2.0 0.0 1.0

1 DeepPixBiS [22] 0.8 0.0 0.4
CDCN [37] 0.4 1.7 1.0
EulerNet(Ours) 0.4 3.3 1.9
DeepPixBiS [22] 11.4 0.6 6.0
Disentangled [36] 1.1 3.6 2.4
2 FAS-SGTD [14] 2.5 1.3 1.9
CDCN [37] 1.5 1.4 1.5
EulerNet(Ours) 2.1 1.4 1.7
DeepPixBiS [22] 11.7+19.6 10.6x14.1 11.1£9.4
FAS-SGTD [14] 3.2+2.0 22+1.4 2.7+0.6
3 CDCN [37] 2.4+1.3 2.2+2.0 2.3+14
Disentangled [36] 2.8+2.2 1.7£2.6 2.2+2.2
EulerNet(Ours) 2.6x1.3 1.6+0.8 2.1+0.5
DeepPixBiS [22] 36.7£29.7 13.3x14.1 25.0£12.7
CDCN [37] 4.6+4.6 0.2+8.0 6.9+2.9
4 FAS-SGTD |[14] 6.7£7.5 3.3+4.1 5.0+£2.2
Disentangled [36] 5.4+£2.9 3.3+6.0 4.4+3.0
EulerNet(Ours) 1.8+1.9 4.3+2.4 3.1+0.9

environmental conditions

attack means

input camera variation

® The complexity of protocols 3 and 4 is similar to
the realistic scenario where electronic products

are changing rapidly.

® The best performance obtained by the proposed
method in protocols 3 and 4 demonstrates that
our method can maintain accuracy under

complex conditions.
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Conclusion

® Propose a novel face anti-spoofing method, which effectively recognize the subtle differences between
real face and spoofing in the video.

® The novel network architecture, namely EulerNet, is designed to fuse temporal information and extract
abnormal clues.

® Propose a lightweight labeling method based on face landmarks to reduce the labeling cost and
improve the labeling speed.

® Extensive experimental results on our datasets and public OULU-NPU validate the effectiveness of our

method.
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