SEKE 2022

Multi-Frames Temporal Abnormal Clues Learning Method for Face Anti-Spoofing

Heng Cong, Rongyu Zhang, Jiarong He, Jin Gao

Challenge for Face Anti-Spoofing

- The existing methods are mostly based on multi-modal information (e.g. infrared light, structured light, and light field), which cannot be used on mobile devices on a broad scale.
- The single-frame-based CNN methods discard inter-frame information of the video. The potential of the multi-frame-based methods remains to be explored.
- Face information supervision is an important part of the face anti-spoofing task. Depth camera requires specific hardware equipment and is difficult to promote.
- Datasets collected in the laboratory vary greatly from the samples in the real world.

The Proposed EulerNet

• By applying **eulerian video magnification** to live and spoofing faces, the import clues for face antispoofing are discovered.

(a) Live

(b) Print

(c) Replay

The Proposed EulerNet

- Input: a sequence (length 4 and frame interval 3) from the video
- Feature-compressed attention modules (FCAM): Using differential infinite impulse response filtering, FCAM amplify the subtle changes in faces between different frames.
- **Residual Pyramid**: Fusing features from different depths.
- Face position map: lightweight labeling, balance the labeling cost and accuracy.

FCAM

— Feature-compressed Attention Module

Feature compressed: synthesizes information from each channel.

DIIRF: differential infinite impulse response filter

$$y[n] = b_0 x[n] + h_1[n-1]$$
(1)

$$h_1[n] = b_1 x[n] + h_2[n-1] - a_1 y[n]$$
(2)

$$h_2[n] = b_2 x[n] - a_2 y[n] \tag{3}$$

•	y[n] is the output at nth timestamp
•	x[n] is the input at nth timestamp
•	h _i is the parameter of state matrix
•	a_i and b_i are the training parameters of the filter layer
i 🔪 👘	

Attention: multiplying the feature map obtained by sigmoid back to the original input.

Residual Pyramid

Advantages

- Weak signal amplification
- Different depths aggregation
- Multi-resolution residual utilization

網易 NETEASE

Face Location Map

● **binary mask**: fast ✓ lost information **≭**

● **depth map**: slow **≭** abundant ✓ difficult to learn **≭**

● location map: fast ✓ abundant ✓ easy to learn ✓

Dataset Collection

Ablation Study

	Struc	cture		ACE	R(%)↓] 7								binary n remove	nask(C1) all improve	ements(C	(2)
Tag	Label	FCAM	Residual Pyramid	Dev	Test	6			<u> </u>					w/o Res w/o FC2	idual Pyran AM(C4)	nid(C3)	
Compare 1	Binary Mask	\checkmark	\checkmark	3.95	2.84	(%)							*	depth m	ap(C5) bod		
Compare 2	Depth Map	×	×	3.62	2.57	5 EK	; -		At the					our men			
Compare 3	Face Location Map	\checkmark	×	2.85	2.26	¥.			× ×		and a						
Compare 4	Face Location Map	×	\checkmark	3.13	2.22	4					The						
Compare 5	Depth Map	\checkmark	\checkmark	2.74	2.06	3										***	+++
Baseline	Face Location Map	\checkmark	\checkmark	2.48	1.88												TT.
						2	2 <u> </u>	10	1	5	20	25	30	35	40	45	
							2	10		-		Epoch	s	50			50

- After adding FCAM and Residual Pyramid, ACER decreased by 0.34% and 0.38%, respectively.
- Location map supervision yields the best ACER, achieving 0.18% lower than the model supervised with depth map and 0.96% lower than the model supervised with binary mask.
- The proposed method curve shows a smoother decreasing trend during training with less fluctuation.

Visualization

- The model with **FCAM** pays more attention to the parts where the action occurs, so there are higher activation values at pixels.
- The prediction map based on the **face location map** has higher contrast in distinguishing faces and backgrounds.

Comparison on OULU-NPU

Prot.	Method	APCER(%)	BPCER(%)	ACER(%)
	Disentangled [36]	1.7	0.8	1.3
	FAS-SGTD [14]	2.0	0.0	1.0
1	DeepPixBiS [22]	0.8	0.0	0.4
	CDCN [37]	0.4	1.7	1.0
	EulerNet(Ours)	0.4	3.3	1.9
	DeepPixBiS [22]	11.4	0.6	6.0
	Disentangled [36]	1.1	3.6	2.4
2	FAS-SGTD [14]	2.5	1.3	1.9
	CDCN [37]	1.5	1.4	1.5
	EulerNet(Ours)	2.1	1.4	1.7
	DeepPixBiS [22]	11.7±19.6	10.6±14.1	11.1±9.4
	FAS-SGTD [14]	3.2 ± 2.0	2.2 ± 1.4	2.7±0.6
3	CDCN [37]	2.4±1.3	2.2 ± 2.0	2.3±1.4
	Disentangled [36]	2.8 ± 2.2	1.7 ± 2.6	2.2 ± 2.2
	EulerNet(Ours)	2.6 ± 1.3	1.6±0.8	2.1 ± 0.5
	DeepPixBiS [22]	36.7±29.7	13.3 ± 14.1	25.0±12.7
	CDCN [37]	4.6±4.6	9.2 ± 8.0	6.9±2.9
4	FAS-SGTD [14]	6.7±7.5	3.3±4.1	5.0 ± 2.2
	Disentangled [36]	5.4±2.9	3.3±6.0	4.4±3.0
	EulerNet(Ours)	1.8±1.9	4.3±2.4	3.1±0.9

- The complexity of protocols 3 and 4 is similar to the realistic scenario where electronic products are changing rapidly.
- The best performance obtained by the proposed method in protocols 3 and 4 demonstrates that our method can maintain accuracy **under complex conditions**.

Conclusion

- Propose a novel face anti-spoofing method, which effectively recognize the subtle differences between real face and spoofing in the video.
- The novel network architecture, namely **EulerNet**, is designed to fuse **temporal** information and extract **abnormal clues**.
- Propose a **lightweight** labeling method based on face landmarks to reduce the labeling cost and improve the labeling speed.
- Extensive experimental results on our datasets and public OULU-NPU validate the **effectiveness** of our method.

Thank you

SEKE 2022 KSIR Virtual Conference Center, Pittsburgh, USA July 1 – July 10, 2022