
Formal Verification of COCO Database
Framework Using CSP

Peimu Li, Jiaqi Yin, Huibiao Zhu

Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

Email: hbzhu@sei.ecnu.edu.cn

June 15, 2022

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Introduction

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Introduction

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Introduction

Background

Many distributed OLTP databases use a shared-nothing
architecture for scale out and data partitioning to achieve the
scalability of data storage.
Lu et al. proposed epoch-based commit and replication, which is
an improved protocol based on 2PC, and implemented it in
distributed database COCO.
The COCO database also supports two variants of optimistic
concurrency control: physical time and logical time OCC.

Motivation
The design of a distributed database architecture often needs to
satisfy many functional properties.
For the reason that the test workload and benchmarks are
artificially set, and the test results are directly affected by the
hardware performance, the test results still can be improved.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Introduction

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Overview of COCO Database

Overview of Epoch-based Commit Protocol and Replication

The protocol commits transactions within the epoch
synchronously at the end of the epoch.
Epoch-based commit contains a prepare phase and a commit
phase.
COCO performs the replication on backup databases
asynchronously.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Overview of COCO Database

Pseudo Code of Physical Time OCC

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Overview of COCO Database

Pseudo Code of Logical Time OCC

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Introduction

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Modeling COCO Database

COCO architecture includes epoch-based commit protocol,
replication protocol and two variants of optimistic concurrency
control.

Overview the Model

Epoch commit() =df Coordinator()||(|||i : {1...N}@Participant(i))

Replication(records) =df

Primary replication(records)||(|||i : {1...N}@Replica(i)))

PT OCC() =df

(|||i : {1...N}@Transaction PT (i , read seti ,write seti))
||Primary()||(|||i : {1...N}@Replica(i))

LT OCC() =df

(|||i : {1...N}@Transaction LT (i , read seti ,write seti))
||Primary()||(|||i : {1...N}@Replica(i))

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Overview of COCO Database

Overview of Epoch-based Commit Protocol and Replication

The protocol commits transactions within the epoch
synchronously at the end of the epoch.
Epoch-based commit contains a prepare phase and a commit
phase.
COCO performs the replication on backup databases
asynchronously.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Overview of COCO Database

Overview of PT-OCC and LT-OCC

These algorithms can be divided into three phases: locking,
validating and commit.
In locking phase, transactions lock all data records they need to
operate. If transaction can’t lock all records it needs, it simply
aborts.
In validating phase, transactions validate records they locked
with their read sets. If versions of these records are inconsistent,
transaction simply aborts.
In commit phase, transactions commit their write sets.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Motivation

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

In COCO, we should avoid the situation that two or more clients
are waiting the resources which have been occupied by other
clients infinitely.
In the tool PAT, there is a primitive to describe this situation.

Property 1: Deadlock Freedom

#assert System() deadlockfree;

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

This property asserts during the execution of a transaction, data
can only be converted from one consistency state to another
consistency state.

Property 2: Consistency

#define Consistency (∧i : {1...N}recordi == last rec
ord) ∨ (∧i : {1...N}recordi == cur record)
#assert Epoch commitl() | = Consistency

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

It means every request in a distributed system can be responded
to.

Property 3: Availability

#define Availability (hasNo == True ∧ finished == True)
#assert Epoch commit() | = Availability

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

It means that when a node or network partition in a distributed
system fails, the entire system can still provide external services
that satisfy consistency and availability.

Property 4: Partition Tolerance

#define PartitionTolerance finished == True
#assert Epoch commit() | = PartitionTolerance

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

This property means that when some requests failure or
unpredictable failures occur in the system, the system can still
guarantee the normal execution of most transactions.

Property 5: Basically Availability

#define BasicallyAvailability (existCrash == True)∧
(available == True)
#assert PT OCC() | = BasicallyAvailability
#assert LT OCC() | = BasicallyAvailability

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

It refers to the fact that all data copies in the system can finally
reach a consistent state after a period of synchronization without
the guarantee of strong consistency of system data.

Property 6: Eventually Consistency

#define EventuallyConsistency EG((∧i : {1...N}recor
di == last record) ∨ (∧i : {1...N}recordi == cur record))
#assert PT OCC() | = BasicallyAvailability
#assert LT OCC() | = BasicallyAvailability

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

This property refers to allowing the data in the system to have an
intermediate state, and this state does not affect the overall
availability of the system.

Property 7: Soft State

#define SoftState (∨i : {1...N}recordi ! = last rec
ord) ∧ (∨i : {1...N}recordi ! = cur record)
#assert PT OCC() | = SoftState
#assert LT OCC() | = SoftState

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Verification

Evaluation Result
We use the model checker PAT to verify the main frameworks of
COCO distributed database such as epoch-based commit and
replication, PT-OCC and LT-OCC. The verification results are shown
below.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Outline

Motivation

Overview of COCO Database

Modeling COCO Database

Verification

Conclusion

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Conclusion

Conclusion
The CAP and BASE theories put forward the properties that the
distributed system architecture needs to satisfy, and we verified the
properties of COCO in an epoch cycle.
It has been verified that (1) epoch-based commit and replication
satisfy consistency and availability but not partition tolerance, and
(2) PT-OCC and LT-OCC satisfy basic availability, soft state, and
eventually consistency.
This shows that COCO can guarantee high availability during an
epoch cycle, and can also guarantee consistency at the end of the
epoch.

Future Work
In the future, we will verify the isolation of COCO and sequential
consistency of concurrency control.

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

Thank you

Peimu Li, Jiaqi Yin, Huibiao Zhu Formal Verification of COCO Database Framework Using CSP

