
Research on Identification and

Refactoring Approach of Event-driven

Architecture Based on Ontology

2022-07-01

Li WANG, Xiang-long KONG, Xiao-fei WANG, Bi-xin LI

Contents

01 Introduction

02 Related Work

03 Approach

04 Experiments and Results Analysis

05 Conclusion

Introduction

01P A R T O N E

4

Introduction

In the process of software evolution,

the deviation and corrosion often

occur to architecture, which leads to

larger deviation between actual

software architecture and design

architecture.

Identification and

Refactoring

Approach of Event-

driven Architecture

Based on Ontology

Problems Solutions

There’re many factors may make the

software architecture deviate from the

original design, such as the change of

requirements, the improvement of

functions, et al.

Related Work

02P A R T T W O

Related Work

6

Architecture can be represented by logic and architecture

style can be described by configuration

Use logical predicates to model anti-patterns, and build

an engine based on these logical predicates to detect

anti-patterns in the target system

a method of knowledge retrieval to identify instances of

architecture patterns in software systems

an automatic analysis architecture model based on

knowledge representation and information extraction,

and then reconstructed the system according to the

analysis results

Related work

……

Approach

03PA RT T H R E E

Identifying Event-driven Architecture Based on Ontology

8

STEP 1

Construction instance

layer ontology

STEP 2

Construction concept

layer ontology

STEP 3

Reasoning and inquiry

STEP1：Construction instance layer ontology

9

We extract the dependency

information by traversing the ADT to

build a dependency graph.

the node represents the program

entities, and the directed edge

represents the dependency between

program entities.

We convert the nodes and directed

edges into RDF triples set.

Construction instance

layer ontology

A

C

B

D E

inheritance

composition

invocation

(A, Inheritance, B)

(C, composition, A)

(D, invocation, E)

STEP2： Construction concept layer ontology

10

Event-driven pattern framework reuses behaviorBehavior characteristics of event-driven architecture

STEP3： Reasoning and inquiry

11

Procedure AcqEventDrivenInstance(){

OntModel ontModel =ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM);

ontModel.read("file:/ architecture_pattern/java/EventDriven.owl");

ontModel.read("file:/ architecture_pattern/java/Instance.rdf");

ontModel.rulereason(EventDriven.rules)

String queryString = "PREFIX EV: http://www.semanticweb.org/wang/EventDriven.owl# SELECT ?Listener

WHERE {? listener rdf:type EV: Listener }";

Query query = QueryFactory.create(queryString);

QueryExecution queryExecution = QueryExecutionFactory.create(query, ontModel);

ResultSet resultSet = queryExecution.execSelect();

ResultSetFormatter.out(System.out, resultSet, query);

queryExecution.close()

}

Refactor event-driven architecture

12

STEP 1

Locate the

refactoring point

STEP 2

Implement the scheme

for the refactoring points

Refactor event-driven architecture

13

RS 1: The refactoring scheme for the single responsibility of the listener.

Refactor event-driven architecture

14

RS 2: The refactoring scheme for the distributed processing.

Experiments and Results Analysis

04P A R T F O U R

Experiments and Results Analysis

16

1

2

3

RQ3: How about the efficiency of the software

architecture refactoring technique?

RQ2: How about the accuracy of the software

architecture refactoring technique?

RQ1: How about the accuracy of the software

architecture identification technique?

Experimental Steps

Collect 50 Java projects from GitHub and SourceForge with the key words.

Identify their architecture pattern manually to confirm wither they are event-driven

architecture project.

We obtain their ground-truth architecture manually to build the comparative experiments.

We refactor their architecture base on ontology, and we collect all the results to analyze

the accuracy and effectiveness.

We obtain the refactoring points and process the refactoring .

17

Conclusion

05P A R T F I V E

Conclusion

19

It’s highly effective for
typical event-driven
architecture projects with
high document quality.

The recognition result of

our approach has a high

coincidence degree with

the ground-truth

architecture.

The refactoring schemes

had a significant effect on

reducing violations and

improving the quality of the

software.

Novel Contributions

Thanks for your listening!

A&

