A Simplified Method for Automatic Verification of
Java Programs

1% Zhi Li

School of Computer Science and Engineering School of Computer Science and Engineering
Guangxi Normal University

Guangxi Normal University
Guilin, China
zhili@gxnu.edu.cn

Abstract—Current KeY verification tool for Java programs
provides limited capability for verifying Java programs. In order
to solve this problem, we provide a method for simplifying
complex Java programs into a format that is compatible with the
KeY. A set of simplification rules based on abstract syntax tree
(AST) are proposed. These rules can keep the logic and semantics
of the original Java programs mostly unchanged, while meeting
the requirements of KeY verification tool. The paper concludes
with a bank ATM example to demonstrate the feasibility of our
work.

Index Terms—Program verification, KeY verification tool,
abstract syntax tree (AST), Java program simplification

I. INTRODUCTION

Program verification is an important part of software devel-
opment, which can detect some errors in the program. Current
program verification methods or techniques are only applica-
ble to program fragments or simple programs. Therefore, a
program simplification method is urgently needed to extend
the capability of existing program verifiers so that complex
programs can be dealt with constructively. In this paper, we
provide a simplification method to enable the KeY tooll*to
verify those Java programs with moderate complexities.

The Java simplification work in this paper uses the abstract
syntax tree (AST) to parse, traverse, and re-factor code.
Inspired by the work of [1,2,3], AST is used to parse the
variables, types and functions of the source code and then
traverse and re-factor the object code, thus simplifying the
Java program while keeping most of the logic and semantics
unchanged.

The ultimate goal of simplifying complex Java programs
is to be verifiable in the KeY tool. The KeY is a formal
program tool for Java programs, with both fully automated and
interactive verification. It converts the Java program as input
to Java dynamic logic (JavaDL), and then verifies the JavaDL
step by step applying the corresponding taclet. Finally, the
verification results are presented in the form of a proof tree!*).
As a continuously improved tool, KeY supports and verifies
invariant specifications. The specification and verification of
invariant allows us to conveniently specify and verify strong
data integrity properties for Solidity smart contracts!®).

*corresponding author: yilongyang @buaa.edu.cn
DOI reference number:10.18293/SEKE2022-180

lingxiehy @outlook.com

2™ Ling Xie 3" Yilong Yang*
School of Software
Beihang University
Beijing, China
yilongyang @buaa.edu.cn

Guilin, China

II. METHOD AND IMPLEMENTATION
A. Overview of the methods

To enable the KeY tool to verify complex Java programs,
this paper presents 7 simplified rules.Details are as follows:
1) New AST Rule

Content

New AST Rule CompilationUnit

Take the source program (Content) as a parameter of the
createAST method to generate an AST CompilationUnit.
2) Get Type Rule

ilati it
Get Type Rule CompilationUni

TypeDeclaration

With the AST as the head node, the children node is called
step by step. The type of this rule includes the class name and
the content of all methods, and is the header of all modification
nodes.

3) Modify Data Type Rule

float

wnt

Modify Data Type Rule

Modify the data type after the node location is found, then
the method is called to replace the previous data type with the
new data type.

4) Delete Rule

Object

Delete Rule

The Delete rule includes deleting comments, deleting vari-
ables, deleting statements, etc. The node where the deleted
object is located in the AST is found, and the remove or delete
method is called to delete it.

5) Substitution Rule

getPasswordV alidated()
passwordV alidated

Substitution Rule

Substitution rule here refers to the get and set methods that
replace new variables. The node that calls the get and set
methods in AST is found, and new variables are generated by
creating new methods, and a function is called to replace the



left and right sides of the get and set method expressions, and
the value of the operator is kept unchanged.
6) Add Rule

¢
Object

Add Rule finds the node position of the variable or method
call to be added, and after generating a new expression,
insert it into the corresponding node position to complete the
operation of adding.

7) Simplify For Loop Rule

Add Rule

EnhancedForStatement
ForStatement

Simplify For Loop Rule

This rule refers to replacing the enhanced for loop with a
generic for loop. Find the enhancement for loop and delete it,
create a general for loop, and insert the new for loop into the
node location where the original enhancement loop is located.

B. Method implementation

The implementation of simplified methods is based on the
eclipse JDT plug-in, the specific method implementation is
divided into the following steps:

1) Environment preparation: Since you are using the
JDT plug-in, the first step is to install the JDT plug-in in
Eclipse,the second is to configure an environment suitable for
the org.eclipse.jdt.core.dom* class, that is, to download the
corresponding JAR package to use when the configuration
program runs.

2) Parsing the AST: Firstly, use ASTParser parsert =
ASTParser.newParser(AST. JLS3) statement to create a parser.
Secondly, the Java source program to be parsed is generated
as a string-typed parameter of the parser source code in AST.
Finally, use the parser to create and return the AST context
result CompilationUnit as the root node.

3) Modifying the AST:

a.Modify the data type: modify float into int.

b.Delete function implementation:delete variables, com-
ments, statements,etc.

c.Substitution function implementation: Variable substitu-
tion get or set method.

d.Add function implementation: Add a variable or method
call.

e.Simplified for loops: Rewrite the enhanced for loop as a
general for loop.

4) AST convert into Java program: The file output stream
(FileOutputStream) parses the modified string, and finally
converts the string into a Java file and outputs it to the specified
location.

III. EXPERIMENT

This section presents an example of a bank ATM withdrawal
that shows how to simplify the source Java program by using
AST and then verify the correctness with the KeY tool. Figure
at github(https://github.com/1713022804/ATMexample) shows

the simplification process of the bank ATM withdrawal, rep-
resented in AST, in which those on the left of the dashed line
represents the original complex Java program, while the right
side represents the simplified Java program.

Determine the format that Java programs verify in KeY,
and then make specific simplifications according to the 7
rules provided in Section A of II. In this example, we mainly
simplify the seven functions of the source Java program. The
following are two examples showing how our rules are applied:

(DIn the depositFunds function, the Modify Data Type
Rule is used to modify the parameter Float type into the
Int type. The Delete Rule is applied to remove unnecessary
comments and variables for verification of the method. Then
the Substitution Rule is used to the getPasswordValidated()
method, which is replaced by the PasswordValidated variable.

(2)In the inputCard function, the enhanced For Loop is
simplified into the general For Loop by using the Simplify
For Loop Rule, and Add Rule is applied to add variable C of
BankCard data type to the method, then the Delete Rule is used
to Delete comments, variables or statements in the methods.
Finally, The GetCardIDValidated() method is replaced by the
CardIDValidated variable, following the Substitution Rule.

IV. CONCLUSIONS

This paper presents seven rules you can use when simpli-
fying your source Java programs into a format that the KeY
can verify. Based on the AST, the simplified rules are derived,
which are illustrated by using corresponding examples, and
the simplified Java programs are verified based on the Java
program-oriented verification tool KeY. In the future, we will
continue to improve the simplification work based on AST
and try to use empirical methods to evaluate our simplification
rules.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (61862009).

REFERENCES

[1]1 S. Horwitz. Identifying the semantic and textual differences between
two versions of a program. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 234-245, June 1990.

[2] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis
Mutandis: Safe and flexible dynamic software updating. In Proceedings
of the ACM SIGPLAN/SIGACT Conference on Principles of Program-
ming Languages (POPL), pages 183-194, January 2005.

[3] Neamtiu I, Foster J S, Hicks M. Understanding source code evolution
using abstract syntax tree matching[C]//Proceedings of the 2005 inter-
national workshop on Mining software repositories. 2005: 1-5.

[4] Ahrendt W, Beckert B, Bubel R, et al. Deductive Software Verification-
The KeY Book[J]. Lecture notes in computer science, 2016, 10001.

[5] Ahrendt W, Bubel R. Functional verification of smart contracts via strong
data integrity[C]//International Symposium on Leveraging Applications
of Formal Methods. Springer, Cham, 2020: 9-24.



