
Log Sinks and Big Data Analytics along with User

Experience Monitoring to Tell a Fuller Story

Vidroha Debroy, Senecca Miller, Mark Blake, Alex Hibbard and Cody Beavers

Product and Development

Dottid

Dallas, Texas, USA

{vidroha.debroy, senecca.miller, mark.blake, alex.hibbard, cody.beavers}@dottid.com

Abstract—Understanding and continually improving the user

experience is critical to the success of web applications, especially

those that are business-driven. There exist a multitude of tools to

monitor user activities on a website, which then provide metrics

to help developers and company leadership understand where

their users experience pain-points. However, all tools suffer from

their own limitations and ultimately it is important for companies

to have as much control (as possible) over all data collected by

third-party tools, and be able to make decisions related to its

storage, retention, processing, etc., in an agile manner. At Dottid,

we use a third-party tool to understand and enhance the user

experience on our web application, recently however, we ran into

a problem regarding failed logins that required us to architect a

solution ourselves, since the tool cannot address this issue for us.

The solution leverages log collection and big data analytics and

its architecture has paved the way for us to build more actionable

insights than if we were using the tool as-is. We transparently

share our experiences, and the details of our solution and

rationale, with the goal of benefiting others, and promoting

further industry-academic collaboration, in this space.

Keywords: Software, Logging, Monitoring, Big Data, Analytics

I. INTRODUCTION

Creating a good User Interface (UI) and User Experience
(UX) is very important, especially given that more and more
products and services are now sold over the internet [12]. The
focus on Human-Computer Interaction (HCI) and Interaction
Design (IxD) – fields acknowledging that understanding users
is crucial to successful design for all interactive products” – is
also not new to academia [11]. Indeed, from a user experience
standpoint, a lot of care needs to be taken when designing web
apps1 as opposed to web sites (the former typically offering a
wide range of interactive features and dynamic information and
the latter offering mostly static content).

Dottid [1] is a tech company in the business domain of
Commercial Real Estate (CRE) and we are relatively small-
sized (less than 50 employees) and relatively new (less than 5
years in business). Our core product is a web application that
follows a microservice architecture, and we run in the cloud

1 In the interests of brevity, we used ‘application’ and ‘app’ interchangeably

in this paper, both in the singular and plural sense.

DOI 10.18293/SEKE2022-175

(Google Cloud Platform, i.e., GCP) to leverage benefits such as
economies of scale. While a lot of business in commercial real
estate has historically taken place over in-person meetings and
over physical media such as paper; our company revolutionizes
the model by providing an online platform to organize deals,
expedite transactions and accelerate time to revenue.
Understandably ensuring our users have a good experience
when navigating our application is very important to us and
thus, we leverage real-time user monitoring2 wherever possible.

This is achieved by using the out-of-the-box capabilities
provided by GCP, but we also rely on a third-party tool named
fullstory [7]. By integrating some code into our application, we
stream information on user interactions back to fullstory where
we can view all the data collected in a consolidated way (this
includes security and privacy controls over what data is
collected and who can view it). One of the more exciting
features of fullstory is the record-and-replay functionality (also
known as session replay) which allows us to reproduce events
such as mouse movements, clicks, scrolling, etc., exactly as the
user performed them and better understand the resultant
behavior of our app exactly as the user experienced it.

 It should be noted though that user experience monitoring
is most meaningful in the context of an actual user, i.e., we care
the most about our actual customers. For this reason, we only
send data to fullstory after a valid user has authenticated (i.e.,
successful login) and is inside our web app. This leads to an
interesting question – what about the user experience when
trying to log into our web app? Addressing this was a real issue
that we had to deal with as it was directly affecting some of our
customers. There is more to this then simply letting the user
know if their login was unsuccessful or offering them a way to
reset their password. There are ramifications in terms of how to
track the data, store the history, etc., and more interestingly
how to connect it to activities after the user successfully logs in
and then derive further actionable information. This paper
serves to discuss the solution that we came up with, and
currently employ, at Dottid and discuss our rationale. In doing
so, we hope to help others that might be in a similar situation as
well as provide industry-experience in an academic publication.

2 In a lot of discussions ‘monitoring’ implies performance monitoring of an

app, which is different from understanding how users interact with an app (our
focus). Application Performance Monitoring (APM) [6] is certainly correlated

with User Experience, but we clarify that this is not the focus of our paper.

II. BACKGROUND AND MOTIVATION

A. Web Application Setup

Our web app is microservice-based and is hosted in the
cloud along with dependencies. Our cloud of choice is Google
Cloud Platform (GCP) – however, all architectural choices are
cloud agnostic. Stated differently, we will not need to re-design
our application for a different cloud provider, and this also
means the discussions in this paper are not limited to CGP and
can be generalized irrespective of cloud provider.

B. Integration with fullstory

We follow the standard model for integrating with fullstory
in that our client-side code contains a snippet of JavaScript
code provided by fullstory and once this script code loads it
captures all web-based interactions and mutations. We only
specify what data we want to collect and what to ignore, and
we leverage features such as masking, and apply protections as
to who can access what data. These are features that are built-
into fullstory and offered to all of their clients. All data is stored
on the fullstory side, and we access the data using their web
application which is also where we view session recordings and
leverage the dashboards and analytics that fullstory provides.

C. Understanding the Problem

Much like other web apps we have a standard login screen
that is shown in Figure 1. We note that at this point, i.e., the
login screen, fullstory is not collecting data (rather data is not
being collected for fullstory). Also, for all practical intents and
purposes, anyone on this screen is not a recognized user (we
have not yet identified them as such). Which then leads to the
problem – if someone runs into an issue on this page/screen,
what would they do and how is the data we collect useful?

Figure 1. The standard login screen to our web app

Identifying the actual cause is not the problem and neither
is this the focus of our paper. The real problem is how this
hampers the user experience, and the question is beyond just
identifying the cause of the issue, but rather how to convey it3
and then come up with requisite actions to solve the problem.

The problem is only half-solved if this is a continually
repeated exercise every time it occurs, and this stops us from

3 The conveyance of this information is very important in the interests of

security and avoiding attacks: some companies may want to indicate that a

user does not exist when a bad username is entered, and some companies may
not want to divulge that. Similarly, some companies may want to indicate a

bad password, some companies may want to provide a generic error message.

being an Agile development team, or an Agile company for
that matter. Also, if our customer representative needs to
always contact an administrator on our side to look for further
information, then it means a delay in resolution and also more
frustration for our customer/user, which is definitely something
we want to avoid. Unfortunately, as discussed next, we faced
this same exact situation and fullstory could not be used to
solve this problem, and neither could the out-of-the-box cloud
(GCP) monitoring in a way that was acceptable to us.

We rely on Cloud Identity and related-technologies offered
by GCP to track our authentication information and it is true
that audit logs will confirm when an attempt was made to login
and upon failure, why that failure occurred. But at the same
time, a limitation is that one needs to be an administrator in
order to access the audit logs [14]. So, with the existing setup
we ran into a very-real issue: if a user had trouble logging in,
and they felt that they were inputting the correct credentials,
how would the customer representative provably identify the
issue and the fix? Granting all of our customer representatives
with admin-level access was infeasible; at the same time,
having our customer representatives always contact our
administrators to resolve login issues was too slow (both in
action and in response) and did not make for a good customer
experience. We needed a solution for this.

III. CONSTRUCTING A SOLUTION

A. Logging User Activities

The first part of our solution stems from the intuition that
when leveraging the cloud for authentication, all such (login)
activities are logged, if not for our purposes, then for auditing
and debugging purposes on the cloud provider’s side. If we
were to transfer those logs, then we could have finer-grained
control over the data within. So, the very first thing we did is to
enable that level of logging across the Identity Platform for
each our environments of interest in GCP. On the surface this
may look like just checking a checkbox on an interface (as
shown in Figure 2), but it comes with significant consequences.

1

2

Figure 2. User activity logging in GCP

First, with respect to the figure, checking that box
(annotated as 1) does not address everything as is described by
the link to ‘audit logging’ (annotated as 2) and some non-trivial
configuration is still needed. Second, the checkbox is
representative in intent but not in where the data goes in terms

of identifying a destination for consuming that information.
Furthermore, since the information exists just in unprocessed
logs – we incur charges not just in terms of storage, but also in
terms of queries run against said logs; especially relevant if we
were looking for a particular user (since it would be a pure text-
based search). Thus, this gives us the data we want but not in a
format we can consume in a cost-effective manner.

B. Converting to the Consumable

The next part of our solution focuses on directing these logs
and then transforming them into queryable data. Since the logs
are officially owned by us, we can pipe these to storage (that
we own) and can establish filters on what is piped in and what
is not (to reduce the data footprint). The first thing we did is to
figure out where to store the data and we went with BigQuery
[2]. BigQuery represents a highly scalable, performant and
flexible data warehouse solution and provides an Application
Programmer Interface (API) for interacting with one’s data
and represents a full-scale data storage and analytics solution.
Sinks [4] control how logs are routed to all their supposed
destinations. We defined a sink with inclusion rules to focus
only on Identity Logs and piped them into a BigQuery dataset.
This represented a truly composite and scalable solution, much
more so because the transformation in this manner allows us to
query the text-based logs in Structured Query Language (SQL)
which is a very common and popular language/standard.

TABLE I. SIMPLIFIED VERSION OF OUR LOG SINK

 Sinks are true cloud resources, with definitions that can be
maintained within source control, which make them especially
attractive. To illustrate this and the earlier feature descriptions,
TABLE I lists a simplified definition of our log sink with
details regarding project/dataset or account names intentionally
obfuscated (using the word ‘masked’) for privacy reasons.

C. Maximizing the Benefits of Data Analytics

Beyond just making the data easy to query - by piping our

logs in real-time to alternative storage, we maintain a simple

rolling-history on the text-based logs themselves which results

in cost-savings since the log-sizes always stay small (we only

retain a minimal history). Furthermore, by creating partitioned

tables we can divide our data into segments that are easier to

manage and query, for example: based on time periods. This in

turn reduces the size of individual queries (in terms of the

number of bytes) which consequently reduces costs. The prior

discussions are best appreciated visually and by using a real

example and so in TABLE II we present the actual query to

find login information on a user via their email address (one of

the authors simulated a failed login by intentionally supplying

a valid username but a bad password). The query is written as

standard SQL and can run verbatim against our production

environment with only one exception: for privacy reasons, as

before, we again obfuscate the name of our actual GCP project

name and dataset name, using the term ‘masked’ instead.

TABLE II. QUERYING FOR LOGIN INFORMATION BY EMAIL

select * from (select COALESCE(

jsonpayload_logging_requestlog.request.email,

jsonpayload_logging_requestlog.metadata.tokeninfo.claims.email,

jsonpayload_logging_requestlog.response.email) as `UserEmail`,

severity,

timestamp,

jsonpayload_logging_requestlog.methodname as `MethodName`,

jsonpayload_logging_requestlog.status.message

from `masked.masked_ds.identitytoolkit_googleapis_com_requests`

WHERE DATE(timestamp) >= "2022-03-24"

order by timestamp desc)

where UserEmail = 'vidroha.debroy@dottid.com'

This query does quite a bit – it coalesces 3 different

sources of email info; looks up severity, timestamp and any

message information along with the name of the GCP Identity

method; and it filters this down to on or after March the 24th,

for just the email searched (vidroha.debroy@dottid.com);

finally ordering any data in descending order of timestamp. In

the interests of brevity, only 2 sample rows of output are

shown in Figure 3, but it can be clearly seen from the 2nd row

that there was a failed login for this user due to an incorrectly

supplied password, while the 1st row shows normal interaction.

Figure 3. Results of the query

Even more exciting - thanks to the power of BigQuery, we

receive a lot of useful meta-data on the query and its execution

that can be used for subsequent optimization; we can save the

query and trigger alerts based off of the results; we can export

the results to different formats, and automatically build

charting using the results as shown in Figure 4.

Figure 4. Meta-data on query execution and other options

gcloud logging sinks describe masked-login-sink

bigqueryOptions:

 usePartitionedTables: true

 usesTimestampColumnPartitioning: true

description: Piping login data from logs into BigQuery.

destination:

bigquery.googleapis.com/projects/masked/datasets/ masked_ds

filter: logName=

"projects/masked/logs/identitytoolkit.googleapis.com/requests"

writerIdentity:

serviceAccount:masked@gcp-sa-logging.iam.gserviceaccount.com

D. Telling a Fuller Story

As discussed earlier, fullstory offers us useful ways to track
user activity once they have logged into our app. At the time of
writing of this paper, we are actively researching approaches to
export data out of fullstory [10] and store it in a cost-effective
way. The approach presented in this paper helps us solve user
issues when they haven’t yet logged into our app (which cannot
be tracked by fullstory). In this manner, it may seem like these
are opposite sides of the same coin (tracking before login and
tracking after login), and in many ways this is true. In fact, for
all practical purposes they represent completely independent
datasets, and the only real piece of information that connects a
user from one dataset to the other is the username4 (which is an
email address in our case and thus, is guaranteeably unique).

But by adopting big data analytics we can now establish
meaningful correlations where it was otherwise very difficult to
do so. Both datasets track timestamps, IP addresses, user agent
strings etc. which can be used to match up related events even
in the absence of referential integrity. For example, if a user
enters a bad username at log in – by looking at the source IP
address, which Operating System/Browser was used, etc., we
can infer (with some degree of confidence) whether these were
from a valid user or some malicious attack. And for valid users
we can examine whether it is manual error or ask ourselves
why users are having trouble logging in (maybe users click in
the wrong spot due to a layout problem) and then identify
improvements to our own user-interface to make it more usable
and friendly. Thus, using big data analytics allows us to learn
more about the end-to-end experiences of our users, thereby,
telling a much fuller story.

IV. RELATED WORK

Usability is a critical aspect in interactive software systems
[16] and has been recognized as an important factor in the
acceptance of software by end users [5]. However, even with
decades of research, there is still a debate about the relationship
between usability and user experience [8]. A/B Testing is a
technique employed in practice to evaluate partial functionality
as well as how users respond to new features. Taking data into
account is a big aspect of such endeavors [13] and they help
software developers understand their users, much as we rely on
fullstory. Our focus is on very specific goals: improving the
experience for users who are unable to login, as well as tying
that to disparate data sets for users who have logged in.

Understanding and processing the data from a usability
testing perspective is also an important concern and research
has been conducted on how to make sense of the data [9].
While similar in intent, our work is contrasted in that our focus
is on how to leverage data collected from real users in our
production environment. The idea of using big data analytics
for user activity analysis is relatively new [15] and it has been
noted that applying processing techniques such as machine
learning to UX research has received little academic attention
[3]. We share the intent to draw attention, further the literature,
and promote industry-academic collaboration in this space.

4 This does not imply that there is any key-based referential integrity in any

tables from the login info dataset to the fullstory dataset based on the

username, it only suggests that this piece of data exists in both datasets.

V. CONCLUSION

We discuss our approach at Dottid to address a problem
that real users were running into related to failed logins. While
we utilize a third-party user-monitoring tool, it proved to be
ineffective in terms of solving the problem at hand. Since we
run in the cloud (GCP), we leveraged cloud-oriented solutions
such as logging (log sinks) and big data analytics (BigQuery) to
bridge the gap between what used to be two independent (yet
related) sides of the story – users who had logged in and users
who might experience trouble logging in. We transparently
share details of our approach to help others in similar situations
and promote industry-academic collaboration. Future work
includes applying machine learning and related techniques, to
analyze the volume of data we collect, for actionable insights.

REFERENCES

[1] About – Dottid. https://dottid.com/about-dottid, last accessed March 14th
2022.

[2] BigQuery – GCP. https://cloud.google.com/bigquery, last accessed
March 15th 2022.

[3] M. Chromik, F. Lachner and A. Butz, “ML for UX? – an inventory and
predictions on the ser of machine learning techniques for UX research”,
in Proc. of the 11th Nordic Conference on Human-Computer
Interaction: Shaping Experiences, Shaping Society (NORDCHI),
Tallinn, Estonia, October 2020.

[4] Configure and Manage Sinks – GCP.
https://cloud.google.com/logging/docs/export/configure_export_v2, last
accessed March 18th 2022.

[5] L.M. Cysneiros and A. Kushniruk, “Bringing usability to the early stages
of software development”, in Proc. of the 11th IEEE Intl. Requirements
Engineering Conference, Monterey Bay CA, USA, September 2003.

[6] V. Debroy, A. Mansoori, J. Haleblian and M. Wilkens, “Challenges faced

with application performance monitoring (APM) when migrating to the

cloud”, in Proc. of the IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), pp. 153-154, Portugal, October 2020.

[7] Digital Experience Intelligence – fullstory. https://www.fullstory.com/digital-

experience-intelligence-platform/, last accessed March 15th 2022.

[8] T. Haaksma, M de Jong, and J. Karreman, “Users’ Personal Conceptions
of Usability and User Experience of Electronic and Software Products”,
IEEE Software, pp. 116-132 vol. 61, issue 2, June 2018.

[9] W. Haiyan and Y. Baozhu, “A data-processing mechanism for scenario-
based usability testing”, in Proc. of the 2nd IEEE Intl. Conference on
Computing, Control and Industrial Engineering, China, August 2011.

[10] Fullstory – segment exports. https://developer.fullstory.com/create-
segment-export, last accessed March 28th 2022.

[11] A. Granic, “Technology in use: the importance of good interface
design”, in Proc. of the Intl. Conference on Infocom Technologies and
Unmanned Systems (ICTUS), pp 43-49, Dubai, UAE, December 2017.

[12] R. Gunawan, G. Anthony and M. Vendly, “The effect of design user
interface (UI) e-commerce on user experience (UX)”, in Proc. of the 6th
Intl. Conference on New Media Studies (CONMEDIA), pp. 95-98,
Tangerang, Indonesia, October, 2021.

[13] R. King, E. Churchill and C. Tan, “Designing with data”, O’Reilly
Media Inc, April 2017.

[14] Login audit – Help. https://support.google.com/a/answer/4580120, last
accessed March 15th 2022.

[15] M. Parwez, D. Rawat and M. Garuba, “Big data analytics for user-
activity analysis and user-anamoly detection in mobile wireless
networks”, in IEEE Transactons on Industrial Informations, 13(4):
2058-2065, January 2017.

[16] R. Ren, J.W. Castro, S. Acuna and J. Lara, “Usability of chatbots: a
systematic mapping study”, in Proc. of the 31st Intl. Conference on
Software Engineering and Knowledge Engineering (SEKE), Lisbon,
Portugal, July 2019.

https://dottid.com/about-dottid
https://cloud.google.com/bigquery
https://cloud.google.com/logging/docs/export/configure_export_v2
https://www.fullstory.com/digital-experience-intelligence-platform/
https://www.fullstory.com/digital-experience-intelligence-platform/
https://developer.fullstory.com/create-segment-export
https://developer.fullstory.com/create-segment-export
https://support.google.com/a/answer/4580120

