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Abstract—About two decades ago, two algorithms, i.e., DDMin
and QuickXPlain, for minimizing collections, were independently
proposed and gained attention in the two research areas of
Software Engineering and Artificial Intelligence, respectively.
Whereas DDMin was developed for reducing a given test case,
QuickXPlain was intended to be used for obtaining minimal
conflicts efficiently. In this paper, we compare the performance of
both algorithms with respect to their capabilities of minimizing
collections. We found out that one algorithm outperforms the
other under given prerequisites and vice versa. These findings
help to select the suitable algorithm for a given task.

Index Terms—test case minimization, conflict minimization,
software testing, application to diagnosis and configuration

I. INTRODUCTION

There are many important tasks in different areas of
Software Engineering (SE) and Artificial Intelligence (AI)
requiring minimizing collections. In SE, localizing faults may
require reducing inputs that lead to crashes or other unexpected
behavior. For example, if a compiler crashes due to a given
input program, fault localization becomes way more easy when
knowing only those parts of the textual input that reveal the
bug. In AI and there, for example, in Model-based Diagnosis
(MBD) [1], [2] we rely on minimal conflicts used to compute
minimal diagnoses. In any case, we have to deal with obtaining
a – at least smaller – sub-collection that still fulfills the same
criteria (or properties) as the original collection.

In SE and AI independently, two algorithms for minimizing
a test case and a conflict were introduced about 20 years ago,
substantially influencing in their respective research fields. In
SE, Zeller and Hildebrandt [3] described the Delta Debugging
algorithm DDMin and its use for simplifying failure-inducing
inputs. In AI, Junker [4] suggested QuickXPlain for minimiz-
ing conflicts. Both algorithms rely on the general divide and
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conquer approach for minimization. Both algorithms aim at
providing a smaller collection but come – at least partially
– with limited guarantees regarding finding a smaller or even
minimal solution. This is due to the fact that the computational
complexity required would be exponential in the size of the
collection.

Interestingly, these algorithms have not been considered in
the respected research field of the other algorithm. Moreover
– to our knowledge – nobody has ever compared these
algorithms with respect to execution time and their capabilities
of minimizing original collections. In this paper, we want to
close this gap and provide an experimental evaluation where
we compare DDMin with QuickXPlain on the same input
collections and properties. The properties have been designed
in a way allowing to make conclusions regarding in which
cases one or the other algorithm behaves superior. Such an
analysis has an impact to both SE as well as AI allowing
to decide which algorithm to use under which circumstances.
More concrete questions we want to answer in this paper
are whether we can use DDMin for minimizing conflicts like
QuickXPlain, or to use QuickXPlain for minimizing a test case
instead of DDMin.

In summary, the content of this paper provides the following
contributions: (i) it comes up with a framework allowing to
compare DDMin and QuickXPlain directly (although they
have been originally designed to fit different purposes), and
(ii) it experimentally compares two different algorithms using
a parametric set of inputs aiming at providing more insights
regarding superiority of an algorithm in a particular application
context.

We organize the remainder of the paper as follows: In
Section II, we introduce the basic foundation of DDMin
and QuickXPlain. Afterwards in Section III, we outline the
underlying implementation and the experimental evaluation



procedure. Furthermore, we discuss the obtained evaluation
results and derive some concluding remarks regarding the
comparison between DDMin and QuickXPlain. Finally, we
give an overview of related research and conclude the paper.

II. BASIC FOUNDATIONS

To be self-contained, we outline the underlying foundations
and the two algorithms DDMin and QuickXPlain. We start
defining the underlying minimization problem to be solved.
For this purpose, we assume that we have: (i) a collection of
elements C = {e1, . . . , en} where each element e ∈ C is from
a domain D, and (ii) a function test that takes a collection of
elements as input and returns either

√
or ×, which is defined

as follows:

test(x) =

{
× if x fulfills the given criteria or properties√

otherwise

Note that we assume test(C) returns × for the original
collection of elements. Furthermore, in the original definition
of Zeller and Hildebrandt [3] test(x), with x ̸= C may also
return ? in case there is an unexpected behavior of x but which
diverges from the behavior of C. However, in DDMin ? and√

are treated equivalently so there is no need to distinguish
these two cases.

The problem of minimization of C with respect to a given
test function is to find an ideally smaller C ′ ⊆ C (if it exists)
for which test(C ′) = ×. If we want to have a really minimal
C ′, we may come up with two corresponding definitions:
subset minimal: A collection C ′ ⊆ C is called subset

minimal if and only if there is no C ′′ ⊂ C ′ where
test(C ′′) = × holds. There might be more than one
subset minimal solution. In the context of delta debugging
[3] this type of minimum is referred to as local minimum.

cardinality minimal: Alternatively, a collection C ′ ⊆ C
is cardinality minimal if and only if there exists no
smaller C ′′, i.e., |C ′| > |C ′′| where test(C ′′) holds. In
delta debugging, cardinality minimums are called global
minimums.

Obviously, finding either subset minimal or cardinality
minimal solutions is exponential in the size of the input
collection C because we have to check all subsets of C.
Hence, in practice, we may be more interested in finding a
smaller solution if such a solution exists instead of a minimal
one. It is worth noting in this context that DDMin only
guarantees to return a solution with one element less, if such
a solution exists. However, the evaluation indicates that in
practice DDMin is way more efficient in removing unnec-
essary parts of a collection. Instead, QuickXPlain guarantees
subset minimality but not cardinality minimality. Hence, when
evaluating both algorithms, we are interested in how far away
provided solutions are from the minimal one.

In the following, we describe the algorithms. Note that the
used pseudo-code is adapted from the original one for allowing
to use the collection C as well as the test function as input

directly. However, we did neither improve the algorithms nor
change their originally stated behavior.

We first define helper functions that are used in the algo-
rithms, namely split and complement.
split: split is able to divide a given collection of elements C

into n parts leading to new collections C1...Cn. Functions
split returns collections that are pairwise disjoint (C1 ∩
C2 = ∅), completely represent all elements of the original
collection, i.e., C1 ∪ C2... ∪ Cn = C. Moreover, all the
sub-collection have approximately the same size, i.e., For
all i, and j: |Ci| = |Cj |+ x with x ∈ {0, 1}.

complement: The complement of a sub-collection C1 is a
collection comprising all elements of the original collec-
tion C that are not in C1. I.e., complement is defined as
follows: complement(C1) = {x | x ∈ C ∧ x /∈ C1}.

In Algorithm 1, we depict the pseudo-code of the Delta De-
bugging (DD) algorithm DDMin of Zeller and Hildebrandt [3],
which reduces the input collection using a divide and conquer
strategy. The algorithm uses to some extent ideas from binary
search for trilling down the failure inducing input system-
atically. The overall process implemented by DDMin has
four steps: reduce to subset, reduce to complement, increase
granularity and done. These steps split the input into smaller
parts and combine them if needed to narrow down the faulty
input. Correct parts were cut off to focus on the remaining
faulty ones in order to produce a smaller input that triggers
the faulty behaviour.

QuickXPlain (QXP) as shown in Algorithm 2, was intro-
duced by [4] to solve over-constrained problems by provid-
ing explanations. Those are also calculated by a divide and
conquer approach. The input is a problem instance which
comprises an analysed set/collection (A) and a background
set/collection (B). For our experiments we assume B to be
empty. The function test is then used to determine the necessity
of executing the algorithm. In the trivial case of a correct or
not dividable input, the execution is stopped before entering
the recursion. Next, the recursion is started. The procedure
starts by partitioning the analyzed set into two, in our case
equal-sized, subsets and analyze these subsets recursively until
a minimal solution can be provided.

III. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we present the prerequisites behind the
experimental evaluation in order to assure that results can be
reproduced.

A. Prerequisites

The prerequisites comprise implementation details, the input
collections used for the evaluation, and the execution environ-
ment. The objective behind the experimental evaluation was
to answer the following 2 research questions:
RQ1 ”Does QuickXPlain behave superior compared to

DDMin with respect to the execution time or vice-versa?”
RQ2 ”Do both algorithms DDMin and QuickXPlain deliver

minimal solutions?”



Algorithm 1 DDMin [3]

Input: A collection cf where test(cf ) = ×
Output: A potentially smaller sub-collection of cf where test

returns ×.
1: procedure DDMIN(cf )
2: if test(cf ) = × then
3: ddmin2(cf , 2)
4: end if
5: return cf
6: end procedure
7: procedure DDMIN2(cf , n)
8: if |cf | = 1 then
9: return

10: end if

11: ∆1, ...,∆n ← split(cf , n)

12: while i = 1...n do ▷ reduce to subset
13: if test(∆i) = × then
14: ddmin2(∆i, 2)
15: return
16: end if
17: end while

18: ∇1, ...,∇n ← complement(cf ,∆1, ...,∆n)

19: while i = 1...n do ▷ reduce to complement
20: if test(∇i) = × then
21: ddmin2(∇i,max(n− 1, 2))
22: return
23: end if
24: end while

25: if n < |cf | then ▷ increase granularity
26: ddmin2(cf ,min(|cf |, 2 ∗ n))
27: return
28: end if

29: return cf ▷ done
30: end procedure

In order to answer these research questions we implemented
both algorithms, i.e., DDMin and QuickXPlain, using the
programming language Java 17 using libraries for logging data
as a foundation. As stated we implemented the algorithms
without manual optimisations for improving the execution
time. Hence, we relied on the pseudo-code and description
provided by the respective originators of the algorithms.

To implement the test function required, we implemented
a configurable test oracle, which uses JSON files to load
and store input configurations. These configurations store the
given collection of elements e1, . . . , en of cardinality n, where
each element ei is marked as either neutral or failure-inducing
element. The test oracle now implements the function test as

Algorithm 2 QuickXPlain [4], [5]

Input: a pair ⟨A,B⟩ where A is the analyzed set and B is
the background, which we assume to be the empty set in
the context of this paper.

Output: a minimal set wrt. ⟨A,B⟩, if existent; pass, otherwise
1: procedure QXP(⟨A,B⟩)
2: if test(A ∪ B) =

√
then

3: return pass
4: else if |A| = ∅ then
5: return ∅
6: else
7: return QXP’(B, ⟨A,B⟩)
8: end if
9: end procedure

10: procedure QXP´(C, ⟨A,B⟩)
11: if C ̸= ∅ and test(B) = × then
12: return ∅
13: end if
14: if |A| = 1 then
15: return A
16: end if
17: A1,A2 ← split(A, 2)
18: X2 ← QXP’(A1, ⟨A2, B ∪ A1⟩)
19: X1 ← QXP’(X2, ⟨A1,B ∪X2⟩)
20: return X1 ∪X2

21: end procedure

follows: The test oracle fails on a particular not necessarily
strict subset C of the collection e1, . . . , en, if C contains all
failure-inducing elements of in e1, . . . , en. In this case the test
oracle returns × and otherwise

√
.

We use the configurations for coming up with different
test inputs for DDMin and QuickXPlain. For this purpose,
we created the configurations automatically using a program
comprising the size n of the collection, and the number of
failure-inducing elements (fail elements for short) k as inputs.
For the experiments, we generated two types of inputs. The
first type comprises tests where clusters of k fail elements
arrange at the beginning of the collection, after k elements,
after 2·k elements, etc. until reaching the end of the collection.
In this type, which we refer as cluster test input, we only have
one cluster of fail elements in each collection. In the second
type of inputs, which we refer to as random test input, we
generate collections of size n and randomly select k elements
in this collection to be fail elements.

For the experiments, we created 3 sets of cluster test
inputs of size 10,000 with 50, 500, and 1,000 fail elements
respectively. For each of these sets we moved the cluster
from the beginning to the end to obtain all cluster test inputs.
For the random cluster with also relied on collections of size
n = 10, 000 considering 50, 500, and 1,000 randomly selected
fail elements. For the random cluster, we generated 300 of
such different configurations. In total, we executed about 400
different configurations. It is worth noting that we selected



collections of size 10,000 because of obtaining reasonable
execution times ranging from milliseconds to less than 1 hour.

We published the implementation of the algorithms, the
used configurations for the experimental analysis, the batch
programs for running the experiments, as well as all data
obtained is on Github to be used for further research.

B. Results

In order to answer the two research questions, we carried out
the experiments, where we executed each input configuration
ten times. Reported results are averaged to reduce the side
effects of the execution environment on the results. In the
following, we report execution time in milliseconds (ms) or
seconds (s). The Java implementation of the algorithms was
executed using the OpenJDK 17.0.1 Hotspot JVM using a
computer with the following configuration: AMD Ryzen 9
3900x 12-Core 3.8 GHz processor and 64 GB RAM running
Windows 11. Note also that the experimental evaluation is
automated allowing to re-execute it on demand.

To answer RQ1, we measured the execution time required
for minimizing the different input configurations. As already
said we used two different types of configuration, i.e., the
cluster test input and the random test input. In Figure 1, we
display the result of the cluster test input where we combined
a collection of 10,000 elements with 50, 100, and 1,000 fail
elements respectively. All fail elements are in the same cluster,
which we move from the left to the right of the collection for
obtaining different input collections. Note when using a block
of 1,000 fail elements, we obtain input collections, where the
fail element cluster comprises elements 0-999, 1,000-1,999,
etc.

The results for the cluster test input allow us to derive
the following differences in the behavior of DDMin and
QuickXPlain. First, DDMin comes with an almost constant
execution time behavior with the exception of a cluster of
fail elements in the middle. In this case, depending on the
number of fail elements, the behavior of DDMin may even be
worst when compared to QuickXPlain. This behavior might be
due to the fact that DDMin requires to increase cardinality as
well as to compute complements in order to find the cluster.
QuickXPlain, however, has a more or less linear execution
time behavior with respect to the position of the fail element
cluster. Fail elements at the beginning (i.e., at the left side of
the collection) lead to an execution time similarly to DDMin,
whereas DDMin is superior when the fail element cluster is
located on the right side of the collection.

In Figure 2, we summarize the results of the random test
input configurations containing 10,000 elements and 50, 100
and 1,000 random distributed fail elements within. We see
that QuickXPlain performs exceptionally well in this case
compared to DDMin. In all cases, QuickXPlain outperforms
DDMin.

Research question RQ1 can now be answered as follows.
QuickXPlain does not necessarily outperform DDMin when
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Fig. 1: Execution time results obtained using the cluster test inputs
comprising 10,000 elements in combination with 50, 100 and 1000
fail elements respectively.
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Fig. 2: Execution time results obtained using the random test inputs
comprising 10,000 elements, and randomly selected 50, 100, and
1,000 fail elements. The depicted execution time is the average
execution time in milliseconds.

considering execution time. In case of a single cluster of
fail elements within a given collection DDMin seems to be
superior, but execution time depends on the position of the
cluster in the collection as well as on the number of the fail
elements. If the number is larger, DDMin seems to be a better
choice. However, in case of many clusters (like in the case
of the random test input), QuickXPlain is faster than DDMin.
Hence, depending on the given input arguments either QuickX-
Plain or DDMin should be chosen. For test case minimization
(especially when considering inputs of a compiler), where
there is most likely one cluster of interest, DDMin seems
to be more appropriate. For conflict minimization, where
there are many different randomly distributed small clusters,
QuickXPlain seems to to be the algorithm of choice. However,
further experimental evaluations are required considering real-
world test inputs instead of synthetically generated example
inputs as we used in our experimental evaluation.

To answer research question RQ2, we further compared
the output, i.e., the minimized collection, of DDMin and
QuickXPlain obtained for all the different test inputs with
the optimal solution, i.e., the fail elements in the respective
collection. For all test inputs, both algorithms returned the
optimal solution as outcome. Hence, for the given test inputs,
we can answer RQ2 with yes. However, this result seems
not to be conclusive and further experiments are required,
considering real-world test inputs as well as more sophisticated
synthetic examples.

C. Threads to Validity

Like for all experimental evaluations, there are different
threats to internal and external validity, which we discuss.
Regarding internal validity, we have to mention the compu-
tational environment comprising hardware and software used.
This includes the operating systems as well as the as the pro-
gramming language used. In particular, when relying on Java

and its virtual machine, we know mechanisms like garbage
collection and just in time optimization that we are not able
to control, but influencing measured execution time. We try to
mitigate those effects by repeating the tests and averaging the
obtained time results. Moreover, it is worth mentioning that
we implemented both algorithms in the same language making
use of the same libraries not using any optimizations. Hence,
we do not expect any bias in the measured execution time that
originates from an implementation.

Regarding external validity, we have to mention that the
evaluation is based on solely two different test input categories
namely the cluster and the random test input. For the random
case, the outcome was always identifying QuickXPlain as the
fastest algorithm. For the cluster, DDMin can be said to be
superior in most of the cases. Although, these results allow to
state superiority on average in some more specific cases, such
results may not be generally valid in all contexts including
considering real-world example inputs. However, at least for
those examples close to the synthetic one, we would expect a
similar outcome.

IV. RELATED RESEARCH

The overall goal of this paper is to compare two algorithms
that support the minimization of conflicts. Basic related min-
imality properties are subset minimality and minimal cardi-
nality where the latter is more restrictive, i.e., also takes into
account the criteria of subset minimality. Which criteria should
be applied depends on the corresponding application context.
Subset minimality is useful, for example, if a preference rela-
tionship can be defined over the given set of conflict candidates
(e.g., given component failure probabilities or user preferences
with regard to a set of product properties) [6], whereas minimal
cardinality is useful in the case of non-available preference
relationships (e.g., when searching failure-inducing inputs in
the context of software testing) [3]. Especially in real-time
scenarios, minimality criteria have to be relaxed to find a trade-
off between conflict identification costs (time efforts) and costs
for conflict resolution [7].

The algorithms discussed in this paper can be regarded
as specific instances of so-called explanation algorithms [8].
DDMin [3] as well as QuickXPlain [4] support the determi-
nation of minimal conflict sets (fulfilling the criteria of subset
minimality) which are also denoted as minimal unsatisfiable
subsets (MUS) [9] or minimal unsatisfiable cores (MUC)
[10]. Minimal conflict sets are well-suited for supporting
the identification of minimizing collections in the context of
test case minimization but as well in explorative interactive
settings such as knowledge-based configuration [11] where
users should be better supported in understanding relationships
between different product properties.

In other scenarios, we are more interested in explanations
that help to restore consistency, for example, [12], [6] focus
on consistency restoration of inconsistent knowledge bases. In
such scenarios, conflict sets are used as input for a hitting set
algorithm [1] that helps to determine minimal diagnoses which
are also denoted as minimal correction subset (MCS) [9]. In



contrast to hitting set based conflict resolution (diagnosis),
direct diagnosis helps to determine hitting sets without the
need of predetermining minimal conflicts sets. An example
algorithm is FastDiag [13] which follows a divide-and-conquer
based approach for identifying minimal hitting sets.

There is also a natural relationship between minimal conflict
sets and minimal diagnoses in terms of a duality property
[14]: for a given set CS of minimal conflicts we are able
to determine a corresponding set DS of minimal diagnoses
using a HSDAG based approach [1]. Vice-versa, we are able
to derive exactly CS if we construct a HSDAG for DS.

Finally, the complement of a minimal hitting set, i.e., a
minimal correction subset (MCS), is a so-called maximal sat-
isfiable subset (MSS) [9]. Whereas MCSs ∆ are characterized
by the property that no subset of ∆ fulfills the property that
all conflicts can be resolved, MSSs Γ are characterized by the
property that no extension of Γ remains satisfiable.

Summarizing, the two algorithms analyzed in this paper
help to determine minimal conflicts sets which can then
be exploited to determine corresponding minimal correction
subsets as well as maximal satisfiable subsets.

In the context of software engineering and in particu-
lar testing, the minimization of collections is an important
task. Besides minimizing a particular test case using Delta
Debugging, the optimization of test suites (see, e.g., [15])
is of interest. There have been several algorithms proposed
including Greedy algorithms [16] adopting solutions for the
well-known set covering problem. In any of these cases, there
is more information available than only a collection and a
test function. For test suite minimization, we usually know
the influence of each test to the execution of a program, i.e.,
the statements that are executed. In the case of minimizing one
test case, such knowledge is usually not available. Therefore,
we focused solely on Delta Debugging for comparing it with
QuickXPlain.

V. CONCLUSIONS

In this paper, we presented the outcome of an experimental
evaluation of two algorithms for minimizing collections, i.e.,
QuickXPlain and DDMin, which originated from the different
research areas of Artificial Intelligence and Software Engi-
neering. In order to allow algorithm comparison, we provided
a framework that takes a collection and a test function as
input, and calls the algorithms for computing a sub-collection
that still returns the same test function result. The underlying
objective behind the research was to clarify whether one of
the algorithms is superior with respect to execution time or
the obtained minimization output.

To answer this question, we came up with different test
examples generated automatically based on certain parameters.
Based on our experiments, we were able to come up with
the following results: (i) in cases where minimization has to
deal with one cluster, i.e., a set of elements in the collection,
which are in close proximity, DDMin provides an almost
constant execution time behavior outperforming QuickXPlain.
(ii) in case of random distribution of elements to be selected

in a collection, QuickXPlain is superior with respect to its
execution time. (iii) both algorithms always returned the
smallest possible sub-collection. Hence, it seems that both
algorithms were well designed for their particular area of
use, i.e., minimizing a test case (DDMin), and minimizing
conflicts (QuickXPlain). However, it is required to carry out
further experiments considering real-world examples from the
application domains of test case and conflict minimization,
as well as more different generated examples for identifying
additional parameters influencing the execution time behavior
as well as the capabilities of finding a minimal solution.
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