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Abstract—WebAssembly is a fast, safe, and portable low-level 
language suitable for diverse application scenarios. And The 
WebAssembly virtual machines are widely used by Web browsers 
or Blockchain platforms as execution engine. When there is a bug 
in the implementation of the Wasm virtual machine, the execution 
of WebAssembly may lead to errors or vulnerability in the 
application. Due to the grammar checks by WASM VMs, fuzzing 
at the binary level is ineffective to expose the bugs because most 
inputs cannot reach the deep logic within the WASM VM. In this 
work, we propose WasmFuzzer, a bytecode level fuzzing tool for 
WASM VMs. WasmFuzzer proposes to generate initial seeds for 
Fuzzing at the Wasm bytecode level and it also designs a systematic 
set of mutation operators for Wasm bytecode. Furthermore, 
WasmFuzzer proposes an adaptive mutation strategy to search for 
the best mutation operators for different fuzzing targets. Our 
evaluation on 3 real-life Wasm VMs shows that WasmFuzzer can 
significantly outperform AFL in terms of both code coverage and 
unique crash. 
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I.  INTRODUCTION  
In order to improve the performance of Web applications, a 

number of companies and organizations have designed and 
implemented a new low-level language that can be executed 
across platforms, called WebAssembly [1].* 

WebAssembly was born in Web technology, and many 
browsers, including Chrome, have provided compatibility, 
allowing WebAssembly code files to be embedded in Web pages. 
WebAssembly modules will be able to call into and out of the 
JavaScript context and access browser functionality through the 
same Web APIs accessible from JavaScript. WebAssembly has 
some great features. First, it is a refined target language, with a 
significantly shorter code length than both scripting languages 
and many compiled native codes. As a result, it has a small 
footprint for deployment. Secondly, the instruction set of 
WebAssembly is designed to correspond directly to CPU 
instructions as much as possible. In some experiments, it runs 
more than 20 times faster than JavaScript and is more suitable 
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for implementing more complex applications. Furthermore, 
since WebAssembly is a back-end language supported by 
LLVM [2], many source codes that support LLVM toolchains, 
including C [3], C++ [4], Rust [5], can be compiled into 
WebAssembly code, which allows much software originally 
implemented in traditional languages to generate WebAssembly 
code with the same functionality after adaptation, not only 
reducing the difficulty of program migration, but also allowing 
WebAssembly code to reuse existing library code. Because of 
these advantages, WebAssembly is now not only used as a 
technology for Web applications, but also integrated in 
blockchain platforms [6].  

The WebAssembly code is executed within WebAssembly 
virtual machine [7]. The existing Wasm virtual machine 
implementations include WAVM [8], Wasmtime [9], Wasmer 
[10], etc. Virtual machines are the infrastructure that executes 
WebAssembly and should be implemented correctly, efficiently, 
and robustly. However, if there are errors in the implementation 
of the virtual machine, the execution of WebAssembly may lead 
to wrong results, or the program may exit abnormally. Some of 
these bugs can even lead to security vulnerabilities. For example, 
there are 7 CVEs reported for the Wasm VM called WAVM [8] 
in 2018. To avoid these situations, we can adopt fuzzing 
techniques [11] to identify errors in virtual machine 
implementations. 

There are two major challenges faced with Wasm VM 
fuzzing. First, the Wasm VM often performs Wasm code 
validation before execution, which makes it hard to generate 
effective input to reach the deep logic within the VM. Although 
AFL, the mainstream fuzzing test software, can be used to test 
WebAssembly virtual machines written in C/C++, the test cases 
they generate are all binary data without considering Wasm 
bytecode grammar, which is hard to pass through the code 
validations commonly performed by the Wasm VMs. To solve 
this problem, we propose a Wasm bytecode level fuzzing 
framework that can both generate and mutate Wasm modules to 
test Wasm VMs. In particular, our proposed mutation operators 
can systematically mutate a Wasm module at different 
granularity. Second, there are many different implementations of 

 



WASM VM and they have different code structures and bug 
patterns. A fixed mutation strategy is hard to accommodate the 
differences among those Wasm VMs to achieve the best fuzzing 
effectiveness. To solve this problem, we propose an adaptive 
mutation strategy that can dynamically update the probabilities 
of different mutation operators for a testing target. 

The contributions of this work are as follows: 

First, we propose a Wasm bytecode level fuzzing framework 
called WasmFuzzer for Wasm VMs, the tool can generate and 
mutate Wasm bytecode modules to reach the deep logic within 
the Wasm VMs.  

Second, we propose an adaptive mutation strategy that can 
dynamically update the probabilities of different mutation 
operators. In this way, we can optimize the mutation operator 
configurations for a testing target. 

Finally, we have systematically performed fuzzing on 3 real-
life Wasm VMs with WasmFuzzer. Our evaluation results show 
that WasmFuzzer is more effective than AFL in terms of both 
code coverage and bug detection. And WasmFuzzer has detected 
235 unique crashes within WAVM, WAMR, and EOS-VM. 

 The following sections are organized as follows. In section 
II, we will present the background knowledge on Wasm. In 
section III, we will discuss the design of WasmFuzzer in detail. 
In section IV, we present our fuzzing experiment with 
WasmFuzzer and AFL on 3 popular Wasm VM implementations 
and discuss the experiment results. Finally, we present related 
works and conclusion in section V and VI. 

II. BACKGROUND 
In this section, we present background information on Wasm 

bytecode. In general, Wasm is a binary instruction format for a 
stack-based virtual machine. It is designed as a portable target 
for compilation of high-level languages like C/C++/Rust, 
enabling deployment on the web for client and server 
applications.  

Wasm provides only four basic number types. These are 
integers and IEEE 754-2019 numbers, each in 32 and 64 bit 
width [1]. The computational model of WebAssembly is based 
on a stack machine. The instructions of Wasm fall into two main 
categories: simple instructions performing basic operations on 
data and control instructions altering control flow. The 
instructions are in turn organized into separate functions. 
A table in Wasm stores an array of untyped function references, 
which a program can call indirectly through a dynamic index 
into a table. WebAssembly adopts a linear memory structure, 
which is a contiguous, mutable array of raw bytes. A program 
can load and store values from/to a linear memory at any byte 
address. Finally, a WebAssembly binary takes the form of 
a module that contains definitions for functions, tables, linear 
memories, and global variables. In addition to definitions, 
modules can define initialization data for their memories or 
tables. 

A. The Workflow of WasmFuzzer 
The workflow of WasmFuzzer is shown in Figure 1. , which 

follows the general workflow of coverage-guided grey-box 

fuzzing. At first, WasmFuzzer will generate a set of Wasm files 
as seed inputs. Then it will enqueue these Wasm files and start 
the Wasm VM under fuzzing. Within the fuzzing loop, it will 
dequeue the first Wasm module and execute it against the Wasm 
VM. After execution, if the execution of the Wasm module leads 
to any new code coverage or new crashes, the module is 
considered a good candidate for mutation. And the WasmFuzzer 
will perform mutation on it to generate new Wasm modules, 
which are then enqueued for further fuzzing. Note that 
WasmFuzzer proposes several different mutation strategies to 
perform mutation. Then WasmFuzzer will further check the 
condition to stop the fuzzing process. If the fuzzing has reached 
the predefined time limit, the fuzzing will halt. Otherwise, it will 
continue the fuzzing loop the dequeue the next Wasm module 
for execution.  

III. THE DESIGN OF WASMFUZZER 

A. The Generation of Wasm Bytecode 
The input to the Wasm VM is the Wasm bytecode. To 

extensively fuzz the WebAssembly VM, WasmFuzzer proposes 
to generate valid Wasm bytecode for execution and mutation. 
Compared with binary input and mutation, the bytecode level 
inputs have a higher chance to reach deeper logic of the Wasm 
VM.  

 
Figure 1.  The Workflow of WasmFuzzer 

According to the characteristics of the instruction, there are 
two main approaches to generating parameters: selecting 
parameters from the module and generating parameters from the 
domain of data type. Selecting a parameter from a module is 
used when the parameter of the instruction depends on the 



internal state of the module. For example, the global.set 
instruction is to set a global variable at the top of the stack, and 
its parameter is the id of the global variable. Therefore, 
WasmFuzzer obtains the ids of all global variables from the 
global array in the module and selects one of them as the 
parameter of the instruction. Generating parameters from the 
domain of data type is used when the parameter is of certain data 
type. In such case, WasmFuzzer randomly returns a value within 
the domain of the data type. 

WasmFuzzer extends the WebAssembly Binary Toolkit 
(WABT) to help generate different kinds of instructions. To be 
specific, it uses the internal functions of the WABT to generate 
different kinds of opcode, which are combined with the 
corresponding parameters to build different instructions. Finally, 
the instructions are further assembled into functions and 
modules as seed inputs.  

B. Mutation Operator for Wasm Bytecode 
Modules are the basic unit of deployment for WebAssembly. 

With an existing module, you can mutate it to generate new 
modules for fuzzing. To support feedback-directed fuzzing, we 
have systematically designed a set of mutation operators for 
Wasm modules.  

1) Mutation operations 
Mutation operations are divided into 2 types: mutation 

operations on instructions and other mutation functions. The 
mutation operations currently supported by WasmFuzzer are 
shown in TABLE I. . 

TABLE I.  LIST OF WASMFUZZER MUTATION OPERATIONS 

Classification Mutation Operator Description 

Mutation 
operations on 
Instructions 

insertInstruction Insert an instruction 

eraseInstruction Delete an instruction 

moveInstruction Move an instruction 

addFunction Add an empty function 

eraseFunction Delete a function 

swapFunction Swap the positions of two 
functions 

Other 
mutation 
operations  

addGlobal Add a global variable 

eraseGlobal Delete a global variable 

swapGlobal Swap the positions of two global 
variables 

addExport Add an export entry 

eraseExport Delete an export entry 

swapExport Swap the positions of two export 
entries 

addType Add a type 

addMemory Add a block of storage space 

setStart Set the start function 

eraseStart Delete start function 

 

The mutation operations on instructions are performed at the 
instruction level or at the function level. They randomly insert, 
delete, or change the instructions or functions to perform the 
mutation. The other mutation operations aim at changing the 
global variables, the export entries, the memory, or the start 
functions. To ensure the mutated WebAssembly code can pass 
through the validation [12] process of Wasm VM, we control the 
probability of different mutation operators such that the newly 
generated Wasm modules have a higher chance to be valid.  

2) Adaptive Random Mutation Strategy 
WasmFuzzer proposes an adaptive random mutation strategy 

to perform mutation. During the mutation step, each mutation 
operator has a probability to be selected. In general, our mutation 
strategy will reward the mutation operators leading to new code 
coverage or crash by dynamically increasing their probabilities. 
In this way, those more “promising” mutation operators have a 
higher chance to be selected.  

To realize this, WasmFuzzer defines an adaptive mutation 
table, which is an array of function pointers of length 256. These 
function pointers may point to different mutation operators. The 
first 16 positions of this array are read-only areas and they 
correspond to the 16 mutation operators. In this way, 
WasmFuzzer ensures each mutation operator at least has a 
chance of 1/256 to be selected for performing mutation, which 
is not affected by the adaptive strategy.  

TABLE II.  ALGORITHM UPDATING ADAPTIVE MUTATION TABLE  

Input table: adaptive mutation table,  
 func: pointer to the current mutation operator 
Output updated adaptive mutation table  
1 #define NEW_PATH_REWARD  3 
2 #define  CRASH_REWARD  6  
3 int increase = 0; 
4 if (new paths found)  
5 increase += NEW_PATH_REWARD;   
6 if (new crash triggered)  
7 increase += CRASH_REWARD;   
8 for (int i = 0; i < increase; ++i) { 
9 int num = randomBetween(16, 255);   
10 table[num] = func; 
11 } 
12 return table; 
 

The positions starting from 16 to the 255 can be both read 
and written, which is used for dynamically changing the 
selection probability of the mutation operators. At first, all 
positions in the table are initialized to various mutation 
operations with equal probability. The algorithm to update the 
adaptive mutation table is shown in Table II. During fuzzing, if 
the Wasm module obtained from a mutation operator called M 
leads to new code coverage or crash, WasmFuzzer will increase 
the selection probability of the mutation operator M (lines 3 to 
7). Then, WasmFuzzer will generate a random number between 
16 and 255 as index into the mutation table, and overwrite the 
position in the table corresponding to the index with the pointer 
of M (line 9 to line 10). In this way, the probability of those more 
effective mutation operators for a fuzzing target will increase 
gradually while those ineffective mutation operators for a target 
will decrease gradually. When testing multiple Wasm VMs, the 



adaptive mutation strategy can automatically change the 
probability of each mutation operation to find the best mutation 
probability for each Wasm VM. 

C. Test Oracle and Bug Report Generation 
When the software under testing crashes or aborts during 

fuzzing, the system will send out signals such as SIGSEGV or 
SIGABT. WasmFuzer will capture these signals to report errors. 
Furthermore, WasmFuzzer also utilizes the AddressSanitizer [13] 
to detect memory-related software bugs such as use-after-free, 
buffer overflow, stack overflow, memory leaks, etc.  

When WasmFuzzer has detected an error, it will generate 
bug reports to facilitate further debugging. The bug reports 
include two sections: the Wasm bytecode triggering a unique 
crash, and the Wasm bytecode triggering a unique hang. By 
"Unique", it means the execution of these Wasm bytecode leads 
to unique code path. Furthermore, we also measure the code 
coverage achieved during fuzzing as another metric.  

IV. EVALUATION 
In this section, we evaluate WasmFuzzer by fuzzing 3 large-

scale Wasm VMs. 

A. Research Question 
Based on the implementation of WasmFuzzer, this chapter 

mainly focuses on its test capability and test efficiency. Various 
performance metrics of WasmFuzzer and AFL were compared, 
including code coverage, number of unique crashes that could 
be found, and type of software problem, through comparative 
experiments under the same conditions. 

B. Experiment Design 
In our experiment, we compare WasmFuzzer with AFL to 

evaluate its fuzzing effectiveness. 

1) Subjects 
We have selected 3 real-life Wasm VM implementations to 

evaluate WasmFuzzer. These 3 Wasm VMs (WAVM, WAMR, 
and EOS VM) are written in C/C++, which is friendly for 
instrumentation and collecting code coverage. WAVM [8] is a 
popular WebAssembly virtual machine designed for non-
browser applications. WebAssembly Micro Runtime [14] 
(WAMR for short) is a small WebAssembly virtual machine 
frequently used in embedded systems.  

EOS-VM [15] is a WebAssembly virtual machine designed 
for blockchain applications. Since the command line interface 
provided by EOS-VM only supports the call of exported 
functions without parameters. To perform fuzzing, we modified 
the interface of EOS-VM to call the exported functions with 
parameters.  

2) Experimental Setup 
Our experiments were performed using a desktop with 

Intel(R) Core (TM) i7-6700 CPU @ 3.40 GHz and 16GB of 
memory. The operating system is Ubuntu 20.04 LTS. The 
version number of the AFL tool for comparison is 2.51b. 

3) Instrumentation Procedure 

To instrument the Wasm VMs for code coverage collection, 
we use Gcc compiler with code coverage profiling options 
enabled. To detect memory-related bugs, we also enabled the 
address sanitizer during compilation.  

4) The experimental process 
For each WebAssembly VM, we performed 8 hours of 

fuzzing using both WasmFuzzer and AFL. Then we use the afl-
cov tool to analyze the code coverage achieved by each tool. We 
also manually analyzed the test cases leading to the crash or hang 
in the VMs to confirm the bug detected. 

C. Results and Analysis 
In this section, we present and compare the results of 

WasmFuzzer and AFL in terms of code coverage and unique 
crashes.  

1) Code coverage  
The code coverage results for the 3 Wasm VMS are shown 

in TABLE III.  For WAVM, the code coverage of WasmFuzzer 
is 25.7% while the code coverage for AFL is 23.6%. For WAMR, 
the code coverage of WasmFuzzer is 25.9% while the code 
coverage for AFL is 22.7%. For EOS-VM, the code coverage of 
WasmFuzzer is 84.7% while the code coverage for AFL is 
59.3%. We can see that WasmFuzzer consistently performs 
better than AFL in terms of code coverage at line level.  

TABLE III.  CODE COVERAGE RESULTS 

Subjects Code Coverage 

/ WasmFuzzer  AFL 

WAVM 25.7% 23.6% 

WAMR 25.9% 22.7% 

EOS-VM 84.7% 59.3% 

 

 

Figure 2.  Code Coverage over Time 

 

As shown in Figure 2, we also present the code coverage with 
respect to fuzzing time for WasmFuzzer and AFL on all 3 Wasm 
VMs. In this way, we want to understand the code coverage 
results of WasmFuzzer during the fuzzing process. We can see 
that for each subject VM, WasmFuzzer consistently performs 
better than AFL in terms of code coverage over time. And the 
advantage is more significant on EOS-VM than the other 2 
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Wasm VMs. Therefore, for different fuzzing time limit, 
WasmFuzzer can outperform AFL in terms of code coverage.  

Based on the results above, we can conclude that 
WasmFuzzer can indeed achieve more code coverage than AFL 
if given the same fuzzing time.  

2) Unique crashes 
The main goal of fuzzing is to find bugs in the system. 

Therefore, we further present and compare the unique crashes 
detected by WasmFuzzer and AFL. The number of unique 
crashes for WasmFuzzer and AFL are shown in TABLE IV.  We 
can see that WasmFuzzer consistently outperforms AFL on all 
three WebAssembly VMs. For WAVM, the difference between 
WasmFuzzer and AFL is small. But on WAMR and EOS-VM, 
the advantage of WasmFuzzer is significant.  

In particular, for EOS-VM, the AFL fails to detect any error 
after 8 hours of fuzzing. We double-checked the code of EOS-
VM, and we find that it performs strict code validation checks 
before executing the Wasm code. Most of the inputs generated 
by AFL are rejected during the code validation phase. As a result, 
AFL cannot detect the bugs hidden in the VM execution program 
logic. In contrast, WasmFuzzer can build and mutate valid 
Wasm modules, which makes it easier to test the execution logic 
of EOS-VM. 

TABLE IV.  NUMBER OF UNIQUE CRASHES 

Subjects Unique Crash 

/ WasmFuzzer AFL 

WAVM 56 55 

WAMR 97 77 

EOS-VM 82 0 

 

  

 

Figure 3.  Unique Crashes over Time 

The number of unique crashes over time for WasmFuzzer 
and AFL on the 3 Wasm VMs are shown in Figure 3. For 
WAMR and EOS-VM, WasmFuzzer consistently detected much 
more crashes than AFL over time. However, for WAVM, 
WasmFuzzer and AFL found almost the same number of unique 
crashes over time. A closer analysis on the crashes shows that 
WasmFuzzer and AFL can indeed detect different unique 
crashes. Therefore, when there are abundant resources during 

fuzzing, it is desirable to adopt both tools to perform fuzzing so 
they can complement each other. However, when the testing 
resource is limited, WasmFuzzer is preferred than AFL. 

Based on the results above, we can conclude that 
WasmFuzzer can perform as good as or better than AFL in terms 
of unique crashes. 

V. RELATED WORK 
Park et al. designed a new test case mutation technique called 

aspect-preserving, and implemented a JavaScript fuzzing tool 
called DIE [16]. They believe that there are certain patterns in 
test cases that can trigger vulnerabilities. For the JavaScript 
language, the combination of some code structures and variable 
types is more likely to trigger vulnerabilities in the JavaScript 
execution engine. Therefore, DIE tends to retain these 
combinations when performing mutation. 

Fuzzing tools can also be combined with neural network 
models to generate inputs that can trigger vulnerabilities more 
easily. Lee et al. developed a fuzzing tool based on neural 
network language model for JavaScript engines named Montage 
[17]. They train the model with the abstract syntax subtree 
converted from the JavaScript abstract syntax tree. In this way, 
the model can generate valid JavaScript code. With this 
approach, their tool has detected previously undiscovered 
software bugs in the JavaScript execution engine under fuzzing. 

Zhong et al. designed and implemented a fuzzing tool called 
Squirrel for relational databases [18], whose input data is 
structured query language. Since the structured query language 
needs to meet certain grammatical rules, the proportion of input 
that can be executed by the database when directly mutating 
binary data is small. Therefore, they designed an intermediate 
representation capable of generating structured query language 
code and performed type-based mutation on the intermediate 
representation. In this way, the proportion of input that can be 
executed by the database is significantly increased. 

Fuzzing tools are also effective to find functional 
implementation bugs in the software implementation. For 
example, Chen et al. implemented a fuzzing tool for 
differentially testing Java virtual machines [19]. The main idea 
is to use the same input to execute multiple Java virtual machines 
and compare the running results among them. If there is any 
difference in their results, one of these Java virtual machines 
must contain a bug. Engineers can further perform analysis and 
debugging based on the fuzzing results to find the position of the 
software error.  

Ventuzelo proposes to use mainstream fuzzing tools to test 
WebAssembly virtual machines, and they integrated a fuzzing 
tool called WARF [20]. WARF can fuzz WebAssembly virtual 
machines and test them with binary data. WARF has found 
several bugs in the WebAssembly virtual machine 
implementation. WARF is implemented in Rust language and 
integrates three mainstream fuzzing tools, AFL++ [21], 
Honggfuzz [22] and libFuzzer [23]. 
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VI. CONCLUSION 
WebAssembly is a fast, safe, and portable low-level 

language suitable for diverse application scenarios. And The 
WebAssembly virtual machines are widely supported by Web 
browsers for building Web applications. When there is a bug in 
the implementation of the Wasm virtual machine, the execution 
of WebAssembly may lead to errors in its supporting application. 
Due to the code validation performed by WASM VMs, fuzzing 
at the binary level is ineffective to expose the bugs because most 
inputs cannot reach the deep logic within the WASM VM. In 
this work, we propose WasmFuzzer, a bytecode level fuzzing 
tool for WASM VMs. WasmFuzzer proposes to generate initial 
seeds for Fuzzing at the Wasm bytecode level and it also 
proposes a systematic set of mutation operators for Wasm 
bytecode. Furthermore, WasmFuzzer proposes an adaptive 
mutation strategy to search for the best mutation operators for 
different fuzzing targets. Our evaluation on 3 real-life Wasm 
VMs shows that WasmFuzzer can significantly outperform AFL 
in terms of both code coverage and unique crash. 

For future work, we plan to explore new seed generation 
scheme and fuzzing input scheduling scheme to improve the 
effectiveness of the fuzzing tool. We will also perform fuzzing 
on other popular Wasm VMs to further evaluate the 
effectiveness of WasmFuzzer.  

ACKNOWLEDGMENTS 
This research is supported in part by the National Key R&D 

Program of China under Grant 2019YFB2102400, NSFC 
(project no. 61772056), the Beijing Advanced Innovation Center 
for Future Blockchain and Privacy Computing, Innovative 
Technology Fund of HKSAR (project no. 9440226) and CityU 
MF_EXT (project no. 9678180). Zhenyu Zhang is the 
corresponding author. 

REFERENCES 
[1] WebAssembly. https://webassembly.org/. Last access, 2022. 
[2] The LLVM Compiler Infrastructure. https://llvm.org/. Last access, 2022. 
[3] Ritchie D. M.. The Development of the C Language. ACM Sigplan 

Notices 28.3, 201-208, 1993. 
[4] Stroustrup B.. The C++ programming language. Pearson Education India, 

India, 2000. 

[5] Matsakis N. D.., Klock F. S.. The rust language. ACM SIGAda Ada Letters 
34.3, 103-104, 2014. 

[6] Wang S., Yuan Y., Wang X., et al. An overview of smart contract: 
architecture, applications, and future trends. 2018 IEEE Intelligent 
Vehicles Symposium (IV), 2018. 

[7] Sauntry D. M., Gilbert M.. Generating a compiled language program for 
an interpretive runtime environment. US, US6327702 B1. 2001. 

[8] WAVM. https://wavm.github.io/. Last access, 2022. 
[9] Wasmtime. https://wasmtime.dev/. Last access, 2022. 
[10] Wasmer. https://wasmer.io/. Last access, 2022. 
[11] Ammann P., Offutt J.. Introduction to software testing. UK: Cambridge 

University Press, 2016. 
[12] Validation — WebAssembly 1.1 (Draft 2021-11-18). 

https://webassembly.github.io/spec/core/valid/index.html. Last access, 
2021. 

[13] AddressSanitizer. 
https://github.com/google/sanitizers/wiki/AddressSanitizer. Last access, 
2019. 

[14] WebAssembly Micro Runtime. 
https://github.com/bytecodealliance/wasm-micro-runtime. Last access, 
2021. 

[15] EOS VM - A Low-Latency, High Performance and Extensible 
WebAssembly Engine. https://github.com/EOSIO/eos-vm. Last access, 
2019. 

[16] Park S., Xu W., Yun I., et al. Fuzzing JavaScript Engines with Aspect-
preserving Mutation. 2020 IEEE Symposium on Security and Privacy (SP), 
1629-1642, 2020. 

[17] Lee S., Han H. S., Cha S. K., et al. Montage: A Neural Network Language 
Model-Guided JavaScript Fuzzer. 20th USENIX Security Symposium 
(USENIX Security 2020). 2020. 

[18] Zhong R., Chen Y., Hu H., et al. SQUIRREL: Testing Database 
Management Systems with Language Validity and Coverage Feedback. 
https://arxiv.org/abs/2006.02398, 2020. 

[19] Chen Y., Su T., Sun C., et al. Coverage-directed differential testing of 
JVM implementations. In Proceedings of the 37th ACM SIGPLAN 
Conference on Programming Language Design and Implementation. 
2016: 85-99. 

[20] WARF - WebAssembly Runtimes Fuzzing project. 
https://github.com/pventuzelo/wasm_runtimes_fuzzing. Last access, 
2022. 

[21] The AFL++ fuzzing framework | AFLplusplus. https://aflplus.plus/. Last 
access, 2021. 

[22] Honggfuzz | honggfuzz. https://honggfuzz.dev/. Last access, 2021. 
[23] libFuzzer – a library for coverage-guided fuzz testing. 

https://llvm.org/docs/LibFuzzer.html. Last access, 2022. 
 

 


