
Refactoring of Object-oriented Package Structure
Based on Complex Network

Youfei Huang, Yuhang Chen, Zhengting Tang, Liangyu Chen, Ningkang Jiang∗,
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University,
Shanghai, China,

nkjiang@sei.ecnu.edu.cn

Abstract—A software system is usually developed with multiple
modules. However, its structure is continuously modified during
software evolution, resulting in poor maintainability and under-
standability. Therefore, software evolution must accompany sys-
tem refactoring. This paper describes an optimization approach
for package structure according to complex network theory. First,
we analyze the relations between classes and build the class
dependency graph. Second, we propose a community detection
algorithm to recombine the classes and optimize system cohesion
and coupling without changing the external functionality. Third,
by comparing the original and optimized package structure,
the two dimensions of splitting the package and moving classes
between packages identify package refactoring opportunities. In
addition, we evaluate the impact of the above approach on
package quality in terms of package reusability and instability.
We design experiments on 10 open-source Java software projects
to verify the effectiveness of our approach.

Index Terms—Refactoring;complex network;community detec-
tion;cohesion;coupling

I. INTRODUCTION

During the software life cycle, new requirements will
emerge inevitably, and software modifications to implement
new requirements may not conform to object-oriented pro-
gramming specifications [1]. In addition, the tight development
cycle may lead to poor design decisions [2]. The differences
between the system and the original design increase in the
long run, and the quality of the system becomes increasingly
poor. It becomes more and more challenging to maintain the
existing software. In order to avoid the fate of software system
corruption, fragmentation and even disintegration, choosing a
proper refactoring operation is a feasible method. Refactoring
can adjust the software architecture without changing the
code’s external behavior, optimize the existing code, and
extend the software system’s life [3].

In the process of software development and maintenance,
the problem of Too Large Packages (TLP) or Too Small
Packages (TSP) may occur in the system. When a package
contains more than 30 classes or exceeds 27, 000 code lines
[4], it can be considered as TLP. The number of classes or
lines of code in a package that the TSP should contain is not
explicitly given in [4]. According to previous research, when
the number of classes in a package is 4 or less [5, 6], it is
usually not worth the effort to maintain them.

DOI reference number: 10.18293/SEKE2022-164

Complex network theory has been applied to many fields,
such as social networks [7, 8], computer networks [9], and
biological networks [10]. One of the notable features of com-
plex networks is their community structure [11, 12]. Software
network built with classes as nodes and dependencies between
classes as edges is the product of characterizing software
systems as complex networks, so it has community structure
property [13]. Based on complex network theory, we propose
a system-level automatic package refactoring approach that
abandons the original package structure of the system and
re-modularizes the system. First, we represent the software
system as a class dependency graph. Second, based on the
definition of TLP and TSP, we propose a community detection
algorithm to detect the community structure corresponding
to the optimized package structure. Third, by comparing
the optimized package structure with the original package
structure, we give refactoring suggestions. Through tests on 10
open source software systems, it is verified that our refactoring
approach is meaningful and positively impacts the cohesion
of the system while reduces the coupling of the system. The
primary contributions of this study are summarized as follows.

• From the perspective of optimizing system structure, a
controllable community detection algorithm that divides
the size of sub-communities is proposed, which can
obtain the best class distribution from the system-level,
and eliminate too large and small packages in the system.

• Several open-source software systems are used to evaluate
our approach. The evaluation metrics based on cohesion
and coupling metrics are compared with previous studies,
and we also assess the changes in system reusability and
stability after refactoring.

The remainder of the paper is organized as follows. Section
II summarizes the related work. Section III presents the
package refactoring algorithm. In Section IV, we design ex-
periments to verify the effectiveness of our approach. Section
V is the conclusion.

II. RELATED WORK

A. Package-level Refactoring

Over the last three decades, software engineers have pro-
posed several semi-automatic and full-automatic refactoring
methods to improve software quality. Depending on the kind



of entities selected in refactoring, there are three main types of
refactoring at different granularities: package level, class level,
method and property level. In this paper, we focus on package
level refactoring. Pan et al. [14] represented the package,
class and their dependencies with weighted bipartite software
networks and proposed a guidance community detection algo-
rithm to optimize the package structure of the software system.
Mi et al. [15] divided the dependency relationships between
classes into five types to build a class dependency graph,
and then proposed a cohesion metric at the package level,
according to this metric to move class between packages. Zhou
et al. [16] applied Mi’s approach to build software networks,
proposed a coupling metric of packages and improved the
structure of packages considering changes in cohesion and
coupling values. Bavota et al. [5] combined semantic and
structural metrics to generate a class-by-class matrix, where
the values in the matrix indicate the likelihood of two classes
being in the same package, after which the strongly related
class chains in the matrix are extracted, and the classes in one
class chain are placed in the same package. However, their
approach only focuses on refactoring one package at a time,
and incrementally re-modularizing a software system. Abdeen
et al. [17] and Chhabra et al. [18] used the multi-objective
Non-Dominated Sorting Genetic Algorithm to optimize system
structure by moving classes between packages, while respect-
ing the original package organization as much as possible, to
increase cohesion and reduce coupling and cyclic connectivity.

B. Evaluation Metrics of Package Quality

Since the software is frequently changing, software design-
ers should assess software quality periodically. The evaluation
standard is the authoritative software metrics proposed by
research and engineering. It plays an important role in many
fields in the life-cycle of the software, including predicting
software defects and maintenance costs [19], and if they
are appropriately selected and applied, improvements can be
identified and quantified. Wang et al. [2] used the Quality
Model for Object-Oriented Design (QMOOD) metric pro-
posed by Harrison et al. [20] to evaluate the improvement
in reusability, flexibility, and understandability of the system
after their refactoring. QMOOD is a quality metric at the class
level in object-oriented design, and Singh et al. [21] proposed
the Quality Metric of Package Level in Object-Oriented De-
sign (QMPOOD) with quality attributes including reusability,
flexibility, functionality, understandability, extendibility, and
effectiveness, and later they gave a specific method to calculate
the reusability of software system packages in [22]. Chong
et al. [23] presented a weighted complex network to repre-
sent the structural characteristics of object-oriented software
systems and used 40 object-oriented software systems for
experiments to evaluate the maintainability and reliability of
software systems. Martin et al. [24] proposed software package
metrics based on object-oriented design principles, including
eight metrics: efferent coupling (Ce), afferent coupling (Ca),
instability (I), number of abstract classes (Na), number of
classes (Nc), abstractness (A), the distance from the main

sequence (D) and the normalized distance from the main
sequence (Dn).

III. METHODOLOGY

A. Problem Formulation

We use the code snippet shown in Fig.1 as a motivation
example to formulate our problem. In Fig.1, there are 11
classes, which are divided into 4 packages. Classes do not
exist independently, but some classes are more dependent on
classes in other packages. Therefore, there are “bad smells”
in the code.

Fig. 1. Code snippet used as an example to understand the proposed algorithm.

Based on five class dependencies outlined in [15], which
are inheritance and implementation, aggregation, parameter,
signature, and invocation. We extract the associations between
classes in Fig.1 and then build the Class Dependency Graph
(CDG), shown in Fig.2.

Fig. 2. Class dependency graph



Fig. 3. Optimized package structure.

After refactoring, we get three new packages, shown in
Fig.3. The optimized package structure gains a better mod-
ularity Q, increased from 0.2699 to 0.5450.

For our refactoring approach, this paper mainly studies the
following research questions:

• RQ1: Can our approach alleviate the design problems
and get meaningful refactoring?

• RQ2: Does our approach have more advantages com-
pared with other refactoring approaches?

• RQ3: Besides cohesion and coupling, does our approach
improve other package design metrics?

B. Method Overview

Our refactoring approach is shown in Fig.4. First, we model
the package topology of an object-oriented software system
as a weighted software network, with classes as vertices and
dependencies between classes as the edges of the network.
Second, based on complex network theory, this paper uses a
community detection algorithm to recombine the classes and
find the communities corresponding to the optimized packages.
Third, by comparing the optimized package structure with the
original package structure, we obtain the package refactoring
opportunities.

C. Package Refactoring Algorithm

With Java software systems as research objects, we analyze
the bytecode files of the software system and regard classes
and their dependencies as entities. In order to improve the
package structure, the refactoring approach in this paper
regards each class in the system as an independent community,
and the classes in the software system are gradually reag-
gregated to form several packages by using the community
detection algorithm. The number of sub-communities of the
community detection algorithm, that is, the total number of
packages after system optimization, is not specified in advance,
so the number of packages may be different from the original
system.

Community detection, also known as community discovery,
is a technique used to reveal network aggregation behavior.
The nodes in the same community are densely connected,
and the connections between nodes in different communities

are sparse. Newman et al. [25] proposed to calculate the
modularity of unweighted undirected networks. Modularity is
a property of a network and a measure of the quality of a
particular division of a network. However, this paper builds
a weighted software network. Therefore, we appropriately
modify the calculation method of modularity and propose a
weighted modularity Q, which is defined as

Q =
1

2W

∑
ij

(
wij −

hihj

2W

)
δ (ci, cj)

=

n∑
p=1

[
Wp

W
−
(

Hp

2W

)2
]
,

(1)

where W is the sum of all the edge weights, wij is the weight
of the edge between node i and node j, hi is the sum of the
weights of all edges connected to node i, ci and cj are the
communities to which nodes i and j belong, respectively. If i
and j are in the same community, then δ (ci, cj) = 1, otherwise
δ (ci, cj) = 0. And n is the number of communities in the
network, Wp is the sum of the weights of the edges within
community cp, Hp is the sum of the weights of all edges
connected to community cp. Based on (1), when merging
communities, the modularity change of the system can be
calculated by (2), Hin(ci, cj) represents the sum of all the
edge weights in the sub-community formed by the merging of
community ci and cj .

∆Qij =

{
Hin(ci,cj)−HiHj

2W if ci connects with cj
0 otherwise,

(2)

We propose a community detection algorithm, which takes
into account the goal of this package refactoring and avoids
too large or small packages. In order to prevent excessive
software refactoring, when a community and multiple target
communities have the same modularity change after merging,
we prioritize merging the community pair with entities that
are all defined in the same original package to maintain the
original design as much as possible. The refactoring algorithm
is shown in Algorithm 1:
Algorithm 1 Package refactoring algorithm

Input: The adjacency matrix Mn×n of CDG.
Output: Community set C; Weighted modularity Q.

1. Let the weighted modularity Q = 0. The number of initial
communities is the number of classes in the system.
2. We calculate the change of the Q of the system after the
sub-community is merged according to (2), and calculate
the modularity increment matrix ∆Q.
3. we find the maximum element ∆Qij in ∆Q, and merge
the two communities Ci and Cj . And then, we recalcu-
late the modularity increment matrix according to Step 2.
Communities are gradually aggregated until the maximum
element ∆Qij ≤ 0. Then Q reaches the optimum. We obtain
the community set C1, and the weighted modularity value
Q = Q1.
4. According to the definition of TLP, we split the large
communities existing in the C1 as follows: for the large



Fig. 4. The workflow of the refactoring approach.

community, we delete the edges with smaller weight in turn.
In a splitting round, the edge with the smallest weight is
chosen, and the community is split into several connected
components, where each component has no more than 30
nodes. If not, split recursively. Finally, we obtain the com-
munity set C2, and the weighted modularity value Q = Q2.
5. For TSP in C2, we relocate them to other commu-
nities with the following merging method: according to
the reduction value of modularity value Q, we merge the
small sub-community with the target community with the
smallest reduction of Q, at the same time, the number of
nodes in the newly generated community cannot exceed 30,
otherwise we merge with the target community with the
second smallest reduction of Q.

IV. EXPERIMENTS

A. Data Sets

The experiments are conducted on a computer with i5-
3230M CPU, 8G DDR3 Memory, Windows 10. We select 10
open-source Java software systems to verify the effectiveness
of the refactoring approach. Our choice of software systems
is not random, as they are projects in different application
fields. In the future, we will use more systems to verify
the effectiveness of our approach. To remove the unrelated
files, we filter the experimental data from the following three
aspects:

• Only the classes in top-level packages are considered for
experiments.

• Utility modules do not participate in the refactoring
process.

TABLE I
DETAILED INFORMATION ABOUT 10 JAVA SOFTWARE SYSTEMS

System System PN CN EN
S0 Cglib-nodep 3.2.6 9 198 961
S1 Codec 1.15 7 139 278
S2 Emma 2.0.5312 10 140 506
S3 Empire-db 2.5.0 21 178 1097
S4 GistoolkitSource 2.8.1 64 504 2228
S5 ITtracker 3.1.5 38 422 1803
S6 Rng 1.3 19 346 729
S7 Roller 5.1.1 61 541 2707
S8 Tomcat 9.0.1 42 619 1589
S9 XMLgraphics-commons-2.6 35 363 801

• Third-party libraries are excluded since they are not parts
of software systems.

Table I summarizes the information of 10 systems after pre-
processing, including name and version number, number of
package(PN), number of class(CN), number of edges in the
software network (EN).

B. Changes of the package structure

We follow the steps in Fig.4 to perform the refactoring
operation. Table II shows the change of package structure
before and after refactoring. Note that PN represents the
number of packages, TLP and TSP represent the threshold of
too large and small package, respectively, It is observed that
our approach can solve the problem of too small packages and
too large packages in the software system.

C. Evaluations of Cohesion and Coupling Metrics

In our experiments, we use COHM metric [15] to measure
the cohesion of packages and COUM metric [16] to evaluate



TABLE II
DETAILED INFORMATION ABOUT PACKAGE STRUCTURE

System Before refactoring After refactoring
PN TLP TSP PN TLP TSP

S0 9 1 2 8 0 0
S1 7 1 1 7 0 0
S2 10 1 4 5 0 0
S3 21 1 9 13 0 0
S4 64 2 27 36 0 0
S5 38 2 10 25 0 0
S6 19 5 5 19 0 0
S7 61 3 20 32 0 0
S8 42 6 9 35 0 0
S9 35 1 8 28 0 0

the coupling between packages. A higher value of COHM
indicates a better cohesion of the package. And the lower value
of COUM indicates the better coupling of the package. We
apply these two metrics to the software systems to measure
the improvement by refactoring. Table III records the detailed
change of COHM and COUM. We can see the cohesion are
increased and the couping are decreased on all systems, which
means the structures of all systems are optimized and the
refactorings are useful. Thus, we answer the question RQ1.

TABLE III
CHANGES IN COHESION AND COUPLING METRIC VALUES

System COHM COUM
Before/After/Diff. Before/After/Diff.

S0 0.273/0.365/+0.092 0.163/0.109/-0.054
S1 0.409/0.636/+0.227 0.192/0.072/-0.120
S2 0.360/0.516/+0.156 0.236/0.161/-0.075
S3 0.130/0.226/+0.096 0.404/0.370/-0.034
S4 0.148/0.449/+0.301 0.516/0.222/-0.294
S5 0.099/0.284/+0.185 0.685/0.445/-0.240
S6 0.328/0.504/+0.176 0.412/0.203/-0.209
S7 0.174/0.301/+0.127 0.495/0.227/-0.268
S8 0.415/0.579/+0.164 0.273/0.191/-0.082
S9 0.372/0.634/+0.262 0.294/0.114/-0.180

D. Comparison with Previous Research

We have re-implemented Zhou’s [16] work and Abdeen’s
[17] work on package refactoring. Zhou’s approach opti-
mizes the package structure by considering both cohesion
and coupling measures, moving the class between packages,
and finally selecting the package with better cohesion and
coupling as the target package for refactoring the current
class. Abdeen’s approach is a more conservative optimization
of the package structure, using the Non-Dominated Sorting
Genetic Algorithm to refactor the package. We compare our
refactoring approach with theirs, and Table IV presents the
specific changes of cohesion and coupling after refactoring
with using three different approaches. The optimal values are
presented in bold. It is clear that the cohesion and coupling
obtained by our method outperform consistently the other two
methods. Therefore, we answer the question RQ2.

TABLE IV
COMPARISON OF THREE REFACTORING APPROACHES

System COHMaf COUMaf
Our/Zhou/Abdeen Our/Zhou/Abdeen

S0 0.365/0.331/0.333 0.109/0.159/0.135
S1 0.636/0.562/0.543 0.072/0.080/0.089
S2 0.516/0.406/0.439 0.161/0.174/0.176
S3 0.226/0.181/0.204 0.370/0.371/0.370
S4 0.449/0.249/0.289 0.222/0.276/0.337
S5 0.284/0.140/0.196 0.445/0.492/0.523
S6 0.504/0.372/0.364 0.203/0.301/0.305
S7 0.301/0.223/0.245 0.227/0.344/0.366
S8 0.579/0.449/0.493 0.191/0.222/0.229
S9 0.634/0.437/0.417 0.114/0.216/0.199

E. Evaluations of Reusability and Instability Metrics

In this section, we investigate whether our refactoring
approach optimizes the design quality of the package, besides
cohesion and coupling metric. We focus on reusability and
instability. Reusability [22] reflects the ability of a design to
be reused in multiple contexts. The higher its value, the higher
the reusability of the package. Martin proposed instability in
[24] to describe the system stability, the lower its value, the
more stable of the package.

Table V records the changes in reusability and instability
after refactoring. One can observe that the reusability val-
ues are increased while the instability values are decreased.
This means the design of all software systems is improved
after refactoring. We also visualize the change of reusability
and instability in Fig.5 and Fig.6, respectively, for a better
understanding the change. Therefore, our approach not only
improves the cohesion and coupling metrics, but also improves
the design quality of system packages in terms of reusability
and instability. So we answer the question RQ3.

TABLE V
CHANGES IN REUSABILITY AND INSTABILITY METRIC VALUES

System Reusability Instability

Before/After/Diff Before/After/Diff

S0 16.071/18.115/+2.044 0.710/0.549/-0.161
S1 17.182/17.290/+0.108 0.671/0.557/-0.114
S2 9.490/12.189/+2.699 0.519/0.489/-0.030
S3 7.312/14.230/+6.918 0.625/0.576/-0.049
S4 6.952/17.468/+10.516 0.515/0.510/-0.005
S5 9.920/15.941/+6.021 0.693/0.497/-0.196
S6 13.604/13.733/+0.129 0.676/0.594/-0.082
S7 8.072/15.601/+7.529 0.599/0.533/-0.066
S8 11.444/13.826/+2.382 0.530/0.484/-0.046
S9 8.927/11.269/+2.342 0.515/0.386/-0.129

F. Threats to Validity

The internal validity threat to our study is that the weights
of five dependencies between classes are equal in building
class dependency network, whereas the priorities of the five
dependencies should be different according to other classical
theories of software. But to the best of our knowledge,
no research has given the specific weight assignments that
these five dependencies apply to various systems or even a



Fig. 5. Reusability change on 10 systems after refactoring.

Fig. 6. Instability change on 10 systems after refactoring.

rough range. Considering the importance of five dependencies
between classes as the same to build a software weighted
network, the effectiveness has been proved in [14], so this
part of the threat can be mitigated to a certain extent.

The external validity threat to our study is the limitation of
software systems chosen in the experiments. In this paper, we
mainly use Java software systems, but there are object-oriented
software systems developed in other programming languages
such as C++, Python, etc. Therefore, applying our research to
projects developed in other programming languages may lack
the ability to give accurate refactoring recommendations.

V. CONCLUSION

In this study, we propose a refactoring approach for package
structure based on complex network theory. It uses a com-
munity detection algorithm to find opportunities for package
refactoring, which achieves the optimal class distribution and
get no too large or small packages. The paper analyzes
five kinds of dependencies between object-oriented software
system classes, which are used to build class dependency
network, and then perform refactoring operations according
to the software design principle of “high cohesion and low
coupling”. Experimental results demonstrate that our approach
can solve the problem of system cohesion and coupling while
maintain the external functionality, and improve software
stability and reusability.

REFERENCES
[1] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE

Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.
[2] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, “Automatic software

refactoring via weighted clustering in method-level networks,” IEEE
Transactions on Software Engineering, vol. 44, no. 3, pp. 202–236, 2017.

[3] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[4] M. Lippert and S. Roock, Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons,
2006.

[5] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using structural
and semantic measures to improve software modularization,” Empirical
Software Engineering, vol. 18, no. 5, pp. 901–932, 2013.

[6] R. A. Bittencourt and D. D. S. Guerrero, “Comparison of graph clus-
tering algorithms for recovering software architecture module views,”
in 2009 13th European Conference on Software Maintenance and
Reengineering. IEEE, 2009, pp. 251–254.

[7] J. M. Hofman, A. Sharma, and D. J. Watts, “Prediction and explanation
in social systems,” Science, vol. 355, no. 6324, pp. 486–488, 2017.

[8] H. Ebel, L.-I. Mielsch, and S. Bornholdt, “Scale-free topology of e-mail
networks,” Physical review E, vol. 66, no. 3, p. 035103, 2002.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[10] S. N. Dorogovtsev, S. N. Dorogovtsev, and J. F. Mendes, Evolution of
networks: From biological nets to the Internet and WWW. Oxford
university press, 2003.

[11] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[12] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[13] L. M. Hakik and R. El Harti, “Measuring coupling and cohesion to
evaluate the quality of a remodularized software architecture result of
an approach based on formal concept analysis,” International Journal
of Computer Science and Network Security, vol. 14, no. 1, pp. 11–16,
2014.

[14] W. Pan, B. Li, B. Jiang, and K. Liu, “Recode: software package
refactoring via community detection in bipartite software networks,”
Advances in Complex Systems, vol. 17, no. 07n08, p. 1450006, 2014.

[15] Y. Mi, Y. Zhou, and L. Chen, “A new metric for package cohesion
measurement based on complex network,” in 2019 8th International
Conference on Complex Networks and Their Applications. Springer,
2019, pp. 238–249.

[16] Y. Zhou, Y. Mi, Y. Zhu, and L. Chen, “Measurement and refactoring for
package structure based on complex network,” Applied Network Science,
vol. 5, no. 1, pp. 1–20, 2020.

[17] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse,
“Towards automatically improving package structure while respecting
original design decisions,” in 2013 20th Working Conference on Reverse
Engineering. IEEE, 2013, pp. 212–221.

[18] Amarjeet and J. K. Chhabra, “Improving package structure of object-
oriented software using multi-objective optimization and weighted class
connections,” Journal of King Saud University-Computer and Informa-
tion Sciences, vol. 29, no. 3, pp. 349–364, 2017.

[19] M. A. A. Mamun, C. Berger, and J. Hansson, “Effects of measurements
on correlations of software code metrics,” Empirical Software Engineer-
ing, vol. 24, no. 4, pp. 2764–2818, 2019.

[20] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the mood
set of object-oriented software metrics,” IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491–496, 1998.

[21] V. Singh and V. Bhattacherjee, “Evaluation and application of package
level metrics in assessing software quality,” International Journal of
Computer Applications, vol. 58, no. 21, pp. 38–46, 2012.

[22] V. Singh and V. Bhattacherjee, “Assessing package reusability in object-
oriented design,” International Journal of Software Engineering and Its
Applications, vol. 8, no. 4, pp. 75–84, 2014.

[23] C. Y. Chong and S. P. Lee, “Analyzing maintainability and reliability of
object-oriented software using weighted complex network,” Journal of
Systems and Software, vol. 110, no. 1, pp. 28–53, 2015.

[24] R. C. Martin, J. Newkirk, and R. S. Koss, Agile software development:
principles, patterns, and practices. Upper Saddle River, NJ: Prentice
Hall, 2003.

[25] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.


