
Designing Microservice-Oriented Application
Frameworks

Yunhyeok Lee
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, U.S.A.

ylee7@umassd.edu

Yi Liu
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, U.S.A.

yliu11@umassd.edu

Abstract—An application framework is a reusable “skele-
ton” application that can be specialized to develop custom
applications. As microservices become more popular in the
software industry, the importance of methodologies for designing
microservices-oriented frameworks is increasing. However, the
existing methodologies for designing application frameworks,
which were developed for the monolithic environment, do not
fit the microservice architecture well. To address this issue, this
study extends Schmid’s systematic generalization approach to en-
able the design of microservice-oriented application frameworks.
The methodology introduces communication spots, which define
the execution orders among services, and communication styles,
which define the communication relationship among services,
to capture the communication characteristics in microservice
environments. The methodology also proposes the strategies
in microservice generalization and the usage of integration
patterns in transforming a microservice-oriented application into
a microservice-oriented framework. The new methodology can
facilitate a developer to systematically design a microservice-
oriented application framework by generalizing from a microser-
vice application. A case study is used to demonstrate how to
apply the proposed methodology to design a microservice fraud-
detection framework.

Keywords—software frameworks, microservice-oriented, de-
sign methodology

I. INTRODUCTION

An application framework is ”a generic application that
allows different applications to be created from a family
of applications.” [18] Application frameworks facilitate the
developers to reuse the framework’s software artifacts to effi-
ciently construct customized applications in particular business
domains. An application framework contains the common
aspects (frozen spots) that all family members have and
variable aspects (hot spots) that vary among the application
in the family [18]. The hot spots allow the framework to be
customized to a specific member of the family.

The design of an application framework can be much more
complicated than the design of a single application because the
framework needs to address both common aspects and variable
aspects in the application domain. Thus, the framework design
requires a systematic approach.

Schmid[18] proposed a methodology of designing applica-
tion frameworks using systematic generalization. The method-

DOI reference number: 10.18293/SEKE2022-163

ology examines the design of an existing application, identifies
the frozen spots and hot spots in the family, and generalizes
the application structure to construct a framework [6]. Built
on the assumption of using the monolithic environment (single
code-base and one-time deployment), the methodology is well
suitable for designing object-oriented monolithic frameworks
in which the components are designed to communicate based
on the class relationships, such as inheritance, polymorphism,
and composition. Microservice architecture [8] distinguishes
itself from monolithic architectures by characteristics, such as
modularity, fine grained services and communication mecha-
nisms. In a microservice-oriented application, each service has
its own process, which serves a single purpose and commu-
nicates with other services through lightweight mechanisms,
such as APIs. As microservices are increasingly used in the
development world, microservice-oriented application frame-
works will be beneficial for the development of microservice-
oriented applications in the particular business domains that
the frameworks are constructed for. However, few study has
been published on the methodology of designing microservice-
oriented application frameworks. Schmid’s approach is appli-
cable for generalizing the hot spots and frozen spots within
a microservice, but it is not sufficient to address the inter-
microservices communications.

This research aims to propose a methodology for design-
ing microservice-oriented application frameworks. The pro-
posed approach is built on Schmid’s systematic generalization
methodology and extends it to fit into the microservices
environment.

The rest of the paper is organized as follows. Section
II briefly introduces the microservice architecture, Schmid’s
application framework design methodology and microservices
integration patterns. Section III presents a methodology for
designing microservice-oriented application frameworks. Sec-
tion IV uses a case study to present how to apply the proposed
methodology in designing a microservice fraud detection
framework. Section V discusses related works similar to our
approach, and Section VI concludes the work.

II. BACKGROUND

This section provides a brief introduction to the microser-
vices architecture and microservices integration patterns as



well as an overview of Schmid’s systematic framework design
from which our study extends.

A. Microservices Architecture

Martin Fowler defined the term ”Microservices” [8] as a
method to build a software application with a set of small
services. Each service has its own process, which serves a
single purpose and communicates with other services through
application programming interfaces (API) [8]. Modularity,
fine-grained services, and simple communication mechanism
are the three key characteristics of microservices.

A microservice-oriented application contains a suite of
independent modules in a system. Each of thoese modules,
also called a microservice, encapsulates its domain logic and
contributes to the overall functionality of its system, unlike
the monolith which puts all the functionalities in a single
process [8]. This modularity improves the flexibility of the
development and the deployment of each service and increases
the overall comprehensibility of the system.

The size of each microservice is comparatively small. Each
service should focus on a single business capability to support
low coupling within the system. The independent fine-grained
services allow for a low cost of system maintenance and
evolution into the future.

The microservices architecture focuses on lightweight com-
munication mechanisms instead of hiding complexities in the
communications. The HTTP request-response with resource
APIs and lightweight messaging are commonly used in mi-
croservices to provide “dumb pipes” [8]. A simple communi-
cation approach enables changes in services without modifying
the central service communication bus and offers the system
better scalability to the overall system [3].

B. Microservice Integration Patterns

Microservices must be properly composed for any given
system to function. There could be a large number of services
in a system. In addition, a service may be reused within differ-
ent scopes, which will increase the complexity of that service’s
composition. Service integration is crucial and challenging in
the field of microservices architecture.

The case study of this research adopts the general service
integration patterns [19], which are based on the interservice
communication mechanisms within microservices. These pat-
terns are Synchronous Messaging, Asynchronous Messaging,
and Hybrid Messaging.

1) Synchronous Messaging Pattern: The communication
between microservices is synchronous if microservice A sends
microservice B a request that requires a response and A is
blocked while waiting for said response [16]. The Synchronous
Messaging pattern is designed to integrate microservices when
they communicate via synchronous messaging.

2) Asynchronous Messaging Pattern: The communication
is asynchronous if microservice A sends a request but is not
blocked while waiting for a response if there is any [16].
The Asynchronous Messaging pattern is designed to integrate
microservices that communicate via asynchronous messaging.

3) Hybrid Messaging Pattern: To realize a business need,
a combination of synchronous and asynchronous messaging
is typically required within a system. The Hybrid Messaging
pattern provides a solution by combining aspects of the Syn-
chronous Messaging pattern and the Asynchronous Messaging
pattern.

C. Systematic Framework Design

Schmid’s methodology of the systematic construction of an
application framework consists of four steps [18]:

1) Creation of a Fixed Application Model: Schmid’s ap-
proach starts by constructing a fixed application model with
an object-oriented design for a specific application within the
family.

2) Hot Spot Analysis and Specification: Once a complete
model exists, the framework designer analyzes the model and
domain to discover and specify potential hot spots.

3) Hot Spot High-Level Design: The features of any hot
spots are accessed through the common interface of the
abstract class. However, the design of the hot spot subsystem
enables different concrete subclasses of the base class to be
used to provide variant behaviors.

4) Generalization Transformation: The approach seeks to
generalize the design around these hot spots by applying
systematic transformations of the design that are driven by
the analysis of the hot spot.

III. METHODOLOGY

The proposed methodology uses Schmid’s approach as a
basis and extends it to fit into the microservice-oriented envi-
ronment. The methodology consists of six steps as described
below.

A. Step 1. Develop a Solid Microservice-Oriented Application

Just like Schmid’s approach, the proposed methodology
starts with the construction of a representative application in
the framework family. However, this application should be
microservice-oriented, unlike the object-oriented, monolithic
application in Schmid’s approach.

B. Step 2. Identify Hot Spots and Frozen Spots

Aspects that vary among application family members are
hot spots [18]. The different implementations to the hot spots
result in different applications within the family. A framework
is customized to a specific application with the specific im-
plementations to the hot spots. The aspects that are common
to all the application family members are called frozen spots
[18]. These frozen spots are the basis of designing the overall
structure of the framework and are fixed and reusable for all
the applications within the family.

When designing a microservice-oriented framework, any hot
spots and frozen spots should be identified for each service.
Commonality and variability analysis approaches [5, 12] are
beneficial for identifying the hot spots and frozen spots.



C. Step 3. Analyze and Specify Hot Spots

We adopt the Schmid’s approach in analyzing the high-
level hot spots and specifying the details [18]. All identified
hot spots from the domain are collected and evaluated. Each
hot spot is specified by a short description of its purpose,
its common responsibility, the kinds of variability and the
multiplicity.

D. Step 4. Design Hot Spot Subsystems

A hot spot is captured within the scope of a microservice
and implemented by a hot spot subsystem. Schmid’s strategy
of designing hot spot subsystems is adopted for this phase. A
hot spot subsystem consists of an (abstract) interface defining
the common responsibilities, concrete implementations (for
addressing variability) to the interface, and additional classes
and relationships [18]. Design patterns [17] are beneficial
for determining the structures of the hot spot subsystems on
capturing the abstract interface and concrete implementations
and their relations.

E. Step 5. Identify Communication Spots and Communication
Styles

In a monolithic object-oriented application, communications
among the components are typically conducted through the
procedure calls via inheritance, polymorphism, or composi-
tion. Such communication is applicable for the components
within a microservice, but would not work between the mi-
croservices.

We use communication spots and communication styles to
specify how the microservices communicate within a system.
We define a communication spot as the execution order
between two services. For example, microservice A executes
prior to microservice B.

A communication style is defined as the procedure between
the server and client to communicate when there is a request
from the client side and the server side is expected to respond
to the client’s request. We use communication styles to de-
scribe the communications between microserivces or between
clients and microservices.

The communication styles are categorized as synchronous
and asynchronous, where the synchronous method is that a
client side sends a request to a server-side service and waits
for its response, and the synchronous method is that a client-
side keeps sending requests to the server-side service without
waiting for the acknowledgment of the previous response [11].

We use the notation A(C, S) to describe that client-side
C communicates with server-side service S through the
asynchronous style. We use S(C, S) to describe that client-
side C communicates with server-side service S through the
synchronous style.

This stage produces two descriptions: the communication
spot description that consists of a list of the execution order of
each pair of services, and the communication style description
that contains a list of each pair of client-side and server-side
service’s communication style.

F. Step 6. Transform into a Microservice-Oriented Framework

Schmid’s generalization transformation strategy uses the
object-oriented techniques, such as inheritance, polymorphism,
and composition, to generalize the design around the hot
spots for constructing the final framework structure. Such
transformation strategy is applicable within each microservice.
Beyond the structure of each service, a microservice-oriented
framework also needs to reflect the microservice generalization
and service communications.

We propose two options in generalizing the microservices.
The first option, as shown in Fig. 1, captures the abstract
interface and concrete implementations to the interface within
a microservice; while the second option, as shown in Fig. 2,
captures the abstract microservices in the framework only.

Fig. 1. Microservice Generalization - Option 1

Fig. 2. Microservice Generalization - Option 2

The microservices should be integrated properly in the
framework. The identified communication spots and commu-
nication styles determine the final integration transformation.
The three integration patterns (Synchronous Messaging, Asyn-
chronous Messaging, and Hybrid Messaging), described in
Section II.B, can facilitate the integration process.

IV. CASE STUDY

In this section, the design of a fraud detection application
framework is used to illustrate how the proposed approach can
be applied.

A. Overview of a Fraud Detection Application

Inspired by the fraud detection analysis on fraudulent credit
card transactions [15], we have developed a prototype mi-
croservice application that uses machine-learning techniques
to predict fraudulent credit card transactions. The application
consists of four microservices, which are described below:

• Dataset Uploading service is for users to upload a dataset
to the application. The CSV file format is accepted by
default; however, the service converts a non-CSV files
(such as XLSX) to CSV format.

• Preprocessing service normalizes data and selects impor-
tant features for further analysis.



• Fraud Detection service applies the machine learning
algorithms, such as Random Forest [21], Support Vector
Machine [22], and Logistic Regression [4], etc., to detect
fraud cases in the dataset.

• Evaluation service presents the results from Fraud detec-
tion as tables and heatmaps.

Figure 3(a) shows the user interface of the prototype appli-
cation, while 3(b) and (c) illustrate the results by applying the
Random Forest algorithm in a heatmap and a table.

(a)

(b)

(c)

Fig. 3. Prototype Fraud Detection System

In this research, the scope of the fraud detection application
family is constrained to analyze only stationary datasets on
classical computers using CPUs.

B. Design of Fraud Detection Framework

In order to allow the developers to design their own user in-
terfaces (UIs), the fraud detection framework does not include
UI components, but provides interfaces to connect to UIs.

Since a specific microservice application has already been
built, the design of the fraud detection framework begins with
step 2 of the design approach.

1) Identification of Frozen Spots and Hot Spots: By ana-
lyzing the design decisions and the scope of the application
family, we choose the following frozen spots:

• Frozen Spot 1. The data input and analysis order is fixed,
that it, dataset upload, data preprocessing, fraud analysis
and detection, and presentation of results.

• Frozen Spot 2. A dataset is uploaded one at a time and
then converted to CSV format.

• Frozen Spot 3. Machine learning algorithms are used in
the Fraud Detection service.

• Frozen Spot 4. Users should be able to upload a dataset,
choose machine learning algorithms and view the results.

After examining the scope and the prototype application, we
identify the following aspects that vary among applications in
the fraud detection family, thus define them as hot spots:

• Hot Spot 1. Variability in the file formats of datasets
uploaded by users in the Dataset Uploading service. In
addition to the default CSV format, other file formats
should also be supported, such as XLXS, mat, txt, etc.

• Hot Spot 2. Variability in the data normalization tech-
niques in the Preprocessing service.
Data normalization can be done using various methods,
such as decimal scaling, min-max normalization, etc.
Some text-based datasets may need natural language
processing [13] before further analysis.

• Hot Spot 3. Variability in the feature selection techniques
in the Preprocessing service.
Various methods can be applied to select the impor-
tant features such as Recursive Feature Elimination [2],
LASSO [7], etc.

• Hot Spot 4. Variability in the machine learning algorithms
applied to analyze a dataset in Fraud Detection service.
Various machine learning algorithms is applied to analyze
a dataset. These algorithms include supervised learning
(e.g. Random Forest) and semi-supervised learning (e.g.
Convolutional Neural Network [1]).

• Hot Spot 5. Variability in the result presentation in the
Evaluation service.
In addition to the heatmap and table presentation imple-
mented in the prototype, other data visualization tech-
niques can be added, such as AUROC curve [14].

2) Hot Spot High-Level Specification and Design: This
stage of the design involves the detailed specification of each
identified hot spot and the design of the hot spot subsystems.

Due to the page limit of this paper, we only present the
specification of hot spot 4, and its hot spot subsystem design.

Hot Spot 4: Variability in the machine learning algorithms
applied to analyze a dataset in Fraud Detection service.

• Description: To allow a variety of machine learning
algorithms.

• Common responsibility is to perform fraud detection on
a dataset.

• The kinds of variability required are the algorithms in the
categories of unsupervised learning, supervised learning,
and semi-supervised learning.



• The multiplicity is one since one machine learning algo-
rithm is used at a time.

The various machine learning algorithms are considered to
be interchangeable in the fraud detection. The subsystem of
hot spot 4 should allow new algorithms to be added and exist-
ing algorithms to be modified or removed without impacting
the remaining parts of the system. In addition, a convenient
way to access each algorithm should be provided. The Strategy
design pattern defines ”a family of algorithms, encapsulates
each one, and makes them interchangeable; Strategy lets the
algorithm vary independently from clients that use it.” [9]
This pattern is the best fit for organizing and managing the
independent machine learning algorithms.

Fig. 4. Hot Spot Subsystem of Fraud Detection

As illustrated in Fig. 4, the interface AbstractAlgorithm
defines the methods that are common in the machine learning
algorithms which are supported in this application family; A
machine learning algorithm, such as Random Forest, Support
Vector Machine, Logistic Regression, etc., is implemented as a
concrete class to the AbstractAlgorithm interface; The Context
maintains a reference to each machine learning algorithm
object and forwards the requests from its clients to the machine
learning algorithm objects.

3) Identification of Communication Spots and Communica-
tion Styles: The execution order of a pair of services that com-
municate with one another is identified as a communication
spot. By examining the framework’s scope, we can capture the
following communication spots:

• Communication Spot 1: The Dataset Uploading service
executes prior to the Preprocessing service.

• Communication Spot 2: The Preprocessing service exe-
cutes prior to the Fraud Detection service.

• Communication Spot 3: The Fraud Detection service
executes prior to the Evaluation service.

The Dataset Uploading service communicates with a client
through the synchronous communication method. A client
sends a synchronous request to the Dataset Uploading service.

We analyze the communication styles by inspecting how
each serve-side service responds to a client-side’s request. The
identified communication styles are summarized below:

• S(client, Dataset Uploading): A client sends a syn-
chronous request to the Dataset Uploading service. Only
a single file can be uploaded at a time.

• S(client, Preprocessing): A client sends a synchronous
request to the Preprocessing service. One a single dataset
is preprocessed at a time.

• A(Preprocessing, Fraud Detection): A client-side Prepro-
cessing sends asynchronous requests to server-side Fraud
Detection service. Multiple machine learning algorithms
can be run concurrently.

• S(client, Evaluation): A client sends a synchronous re-
quest to Evaluation service. The result of one dataset is
presented at a time.

4) Transformation to a Microservice-Oriented Framework:
We adopt the first component organization approach (Fig. 1)
to plug in the hot spot subsystems to the framework. For
example, the Fraud Detection strategy (Fig. 4) along with
its concrete implementations (Random Forest, Support Vector
Machine, Logistic Regression, etc. are wrapped in the Fraud
Detection service.

The identified communication styles indicate that the ser-
vices use a mix of synchronous and asynchronous methods,
thus, the Hybrid Messaging pattern is the best to be applied
to integrate the services. With the help of the identified
communication spots for the communication orders of the
services, the high-level integration structure of the Fraud
Detection framework is designed as shown in Fig. 5.

Fig. 5. Applying Hybrid Messaging Pattern to Integrate Services in Fraud
Detection Framework

V. DISCUSSION

Schmid’s approach is object-oriented, generalizing the class
structure of an application when designing application frame-
works. There are also alternative systematic approaches that
are not constrained to the object-oriented paradigm. Functional
generalization is an example [6]. The function generalization
approach generalizes the functional structure of an executable
specification to produce an application framework. Hot spots
are introduced to the design by replacing concrete operations
with general abstract operations. These abstract operations
become parameters of the generalized functions. Our pro-
posed methodology can adopt such an alternative systematic



approach by modifying step 4 and 6 to generalize functions
instead of dealing with classes.

This study uses three integration patterns in the case study.
There are also other alternative integration patterns that can
be used in the transformation step. For example, Microsoft
Azure proposed nine patterns [20] for integrating microser-
vices in applications. Each pattern serves as a solution for a
fine-grained integration problem. To construct a system with
microservices, it is necessary to utilize most of these patterns
simultaneously. Gupta [10] introduced six patterns to provide
multiple integration approaches from varying perspectives.

VI. CONCLUSION

Microservice-oriented application frameworks will be ben-
eficial for the development of microservice-oriented appli-
cations in the particular business domains that the frame-
works are constructed for. The existing design approaches
for application framework design are limited to a monolithic
environment that does not fit into the microservice archi-
tecture. This research proposes a methodology that extends
Schmid’s systematic generalization methodology by introduc-
ing communication spots and transformation strategies that
fit in the microservice architecture. A case study is used
to demonstrate the usage of the proposed methodology in
designing a microservice-oriented fraud detection framework.
Future work will be focused on two directions. One direction
is to enhance the fraud detection framework by introducing
the support for time series, unsupervised learning algorithms,
and the usage of quantum computing. The other direction is to
examine the impact of the different computing environments
(classical vs. quantum) on the framework design thus enhance
the methodology. The enhancement from the first direction
will set a practical basis for the study of the second direction.

REFERENCES

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Under-
standing of a Convolutional Neural Network”. In: 2017
International Conference on Engineering and Technol-
ogy (ICET) (2017), pp. 1–6.

[2] Brandon D. Butcher and Brian J. Smith. “Feature
Engineering and Selection: A Practical Approach for
Predictive Models”. In: The American Statistician 74
(2020), pp. 308–309.

[3] T. Cerný, M. J. Donahoo, and J. Pechanec. “Dis-
ambiguation and Comparison of SOA, Microservices
and Self-Contained Systems”. In: Proceedings of the
International Conference on Research in Adaptive and
Convergent Systems (2017).

[4] Wenlin Chen et al. “Density-Based Logistic Regres-
sion”. In: Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining (2013).

[5] James O. Coplien, Daniel Hoffman, and David M.
Weiss. “Commonality and Variability in Software En-
gineering”. In: IEEE Softw. 15 (1998), pp. 37–45.

[6] H. Conrad Cunningham, Yi Liu, and Pallavi Tadepalli.
“Framework design using function generalization: a
binary tree traversal case study”. In: ACM-SE 44. 2006.

[7] Valeria Francesca Fonti and Eduard N. Belitser. “Fea-
ture Selection using LASSO”. In: VU Amsterdam Re-
search Paper in Business Analytics 30 (2017), pp. 1–25.

[8] M. Fowler. Microservices: a Definition of This New
Architectural Term. 2014. URL: https : / / martinfowler.
com/articles/microservices.html.

[9] Erich Gamma et al. “Design patterns: elements of
reuseable object-oriented software”. In: 1994.

[10] A. Gupta. Microservice Design Patterns. 2015. URL:
https : / / uberconf . com / blog / arun gupta / 2015 / 04 /
microservice design patterns.

[11] Mingyu Lim. “Directly and Indirectly Synchronous
Communication Mechanisms for Client-Server Sys-
tems Using Event-Based Asynchronous Communication
Framework”. In: IEEE Access 7 (2019), pp. 81969–
81982.

[12] R AL-msie’Deen et al. “Detecting commonality and
variability in use-case diagram variants”. In: ArXiv
abs/2203.00312 (2022).

[13] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chap-
man. “Natural language processing: an introduction”.
In: Journal of the American Medical Informatics Asso-
ciation : JAMIA 18 (2011), pp. 544–51.

[14] S. Narkhede. Understanding AUC - ROC Curve. 2018.
URL: https : / / towardsdatascience . com / understanding -
auc-roc-curve-68b2303cc9c5.

[15] R. Polantizer. Fraud Detection in Python; Predict
Fraudulent Credit Card Transactions. 2021. URL: https:
/ / medium . com / @polanitzer / fraud - detection - in -
python - predict - fraudulent - credit - card - transactions -
73992335dd90.

[16] C. Richardson and F. Smith. Microservices from design
to deployment. NGINX, Inc., 2016.

[17] H. A. Schmid. “Design Patterns for Constructing the
Hot Spots of a Manufacturing Framework”. In: Journal
Object Oriented Programming 9 (1996), pp. 25–37.

[18] H. A. Schmid. “Systematic framework design by gen-
eralization”. In: Communication of ACM 40 (1997),
pp. 48–51.

[19] M. Wang. “Service Integration Design Patterns in Mi-
croservices”. MA thesis. South Dakota State University,
2018.

[20] M. Wasson. Microservices: a Definition of This New
Architectural Term. 2017. URL: https://azure.microsoft.
com/en-us/blog/design-patterns-for-microservices/.

[21] Q. Wu et al. “ForesTexter: an Efficient Random Forest
Algorithm for Imbalanced Text Categorization”. In:
Knowledge-Based Systems 67 (2014), pp. 105–116.

[22] Yue Zhang and Zhimeng Feng. “A SVM Method for
Continuous Blood Pressure Estimation from a PPG
Signal”. In: Proceedings of the 9th International Con-
ference on Machine Learning and Computing (2017).


