Taint Trace Analysis For Java Web Applications

Yaju Li, Chenyi Zhang
Jinan University, Guangzhou, China

Abstract—Taint analysis is concerned about whether a value in
a program can be influenced, or tainted, by user input. Existing
works on taint analysis focus on tracking the propagation of
taint flows between variables in a program, and a security risk
is reported whenever a taint source (user input) flows to a faint
sink (resource that requires protection). However, a reported bug
may have its taint source and taint sink located in different
software components, which complicates the bug tracking and
bug confirmation for developers. In this paper, we propose Taint
Trace Analysis (TTA), which extends P/Taint, a context-sensitive
Java taint analysis project, by making the taint information
flow explicit. Thanks to the underlying Datalog semantics, we
describe a way to extract traces of taint flows across program
contexts and field accesses in the Doop framework. Different from
existing works that produce only source-sink pairs, the output
of TTA can be visualized as a set of traces which illustrate the
inter-procedural taint propagation from taint sources to their
corresponding sinks. As a consequence, TTA provides more useful
information for developers and users after a vulnerability is
reported. Our implementation is also efficient, and as shown
in our experiment, it adds only a small run-time overhead on
top of P/Taint for a range of analyses with different types of
context-sensitivities applied.

Index Terms—Taint analysis, Automatic trace generation, Pro-
gram analysis, Java web application

I. INTRODUCTION

Security vulnerabilities, which are software bugs exploitable
by attackers, have been long standing challenges in software
security and cyber security. As an example, Worm programs,
such as the Microsoft SQL server Slammer [15], the Sun
Telnet worm [26] and the Stuxnet worm [3], exploit software
vulnerabilities in client or server programs and gain access
to hundreds of thousands of new systems (including mobile
phones [24]) within minutes. Of those notorious top security
risks published by OWASP [17], Injection and Cross-Site
Scripting (XSS) are usually triggered by crafted user input
strings that are propagated through web application to reach
their victims without censorship.

Taint analysis is an indispensable weapon in our combat
against security vulnerabilities in system software, network
software, and mobile applications. Existing approaches, in-
cluding static taint analysis [18], [19] and dynamic taint
analysis [16], [6], are implemented in tools such as TAJ [25],

*Corresponding email: chenyi_zhang@jnu.edu.cn.

This work is partially supported by the National Natural Science Foundation
of China under Grant 62077028, Guangdong Natural Science Foundation
under Grant 2019KTSCX010, Guangdong Basic and Applied Basic Research
Foundation under Grant 2021A 1515011873, Science and Technology Planning
Project of Guangzhou under Grant 202102080307, and the Project of Guangxi
Key Laboratory of Trusted Software (No. kx202007).

DOI reference number: 10.18293/SEKE2022-161

Qin Li
East China Normal University, Shanghai, China

FAF [22] and Parfait [5] for tracking taint flows in web
applications written in Java and JavaScript. However, provided
that a complicated flow of taint may potentially pass through
a number of program contexts via method calls and returns,
the existing tools report only the taint sources with their
corresponding taint sinks, which do not fully reveal all useful
details that would guide a developer to identify or locate
security vulnerabilities with ease.

Datalog has been used in program analysis since late
1990s [9]. In Datalog, program information is initially ex-
tracted into a group of base facts, from which advanced
properties can be specified and subsequently computed in the
style of logic programming. Such a reasoning pattern allows
us to explicitly encode a trace of taint flow from the outputs
of the existing points-to analysis and taint analysis facilities
in the Doop framework [2]. Therefore, in this paper, we re-
encode and extend the taint analysis constraints of P/Taint in
order to support explicitly exporting a trace of information
flow, taking advantage of Doop and its underlying Soufflé
Datalog engine [11], and provide more useful information for
developers when it is required to trace a reported vulnerability.
In this paper, we have made the following contributions.

o We propose a method that explicitly exports a collection
of taint traces associated with a given taint source-sink
pair produced from a Java web application. The reported
traces are context-sensitive, i.e., they contain all inter-
procedural information of the complete taint flows.

o We have implemented our algorithm and conducted ex-
periment on Securibench Micro [13]. The experiment re-
sults have confirmed that we only added a small overhead
on top of the existing P/Taint [8] implementation in Doop.

The rest of the paper is organized as follows. In Section II,
we illustrate how the proposed method works in a code snip-
pet. Section III formally introduces the Taint Flow Analysis,
with the implementation and experiment works presented in
Section IV. The related works are discussed in Section V, and
Section VI concludes our work.

II. A MOTIVATING EXAMPLE

The following example is simplified and adapted from
Securibench Micro [13], as shown in Fig. 1. Note that in this
example, a variable that points to the HttpServeletRequest
object is set to receive data from client (user) input, and a
reference to the HttpServeletResponse is used to write back
to client. In particular, at line 3 of doGet() method, a user
provided value is read from client and stored in variable name,
which is then passed as a parameter in a call to method foo() at

1 public class Example {
2 protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws IOException {

3 String name = req.getParameter(‘ ‘name’’);

4 foo(name, ‘‘abc’’, req, resp);

5}

6

7 void foo(String strl, String str2,
HttpServletRequest req, HttpServletResponse
resp) throws IOException {

8 Data d = new Data();

9 d.valuel = strl;

10 d.value2 = str2;

11 PrintWriter writer = resp.getWriter () ;

12 writer . println(d.valuel); /% BAD =/

13 writer. println (d. value2); /% OK =/

14 }

15 }

16

17 class Data {
18 String valuel;
19 String value2;

Fig. 1. A motivating example

line 4. P/Taint will report that there is a potential Leak at line
12, where a sink method printIn() is invoked with a tainted
parameter d.valuel. Since the tainted value is directly sent
back to user, this could potentially form an XSS vulnerability,
as the request information may consist of executable malicious
code contained in a crafted link that a victim is fooled to click.

In order to trace a problem reported by a taint analysis
and rule out false positives, a developer usually needs to
manually inspect the source code and track the associated
taint flows throughout the program. Such a procedure can
be tedious and error-prone, as modern day web applications
often consist of numerous software packages with included
code written by third-party developers. Moreover, for object-
oriented programming languages such as Java, a taint flow
typically consists of a serial of inter-procedural method calls
as well as field access of a value via alias references under
different contexts, which further complicates the job of a code
inspector. Taking a closer look at the reported Leak at line
12 in Fig. 1, the value loaded from d.valuel is previously
stored and passed as a parameter at line 4 in a call to method
foo, such that we have a tainted value passing through inter-
procedural value-flow, stored in heap before being loaded
back and forwarded to a sink method. For larger programs,
a taint trace could be more complicated. In this case, Taint
Trace Analysis (TTA) is able to automatically produce a
corresponding taint trace (shown in Fig. 2) and visualize the
flow of values, for a better comprehension and confirmation
of reported security vulnerabilities.

The produced trace in Fig. 2 has six components, each
written in the form of (class : method(signature)/reference).
The first component is HttpServletRequest.getParameter(),
a pre-defined faint source, with its value passed to the second
component, a local variable name (line 3 in the code) of
type string. The second component then passes the flow to

<Example: void doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http. HttpServletResponse)>/
javax.servlet.http.HttpServletRequest.getParameter/0

<Example: void doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http. HttpServletResponse)>/
name

)

<Example: void foo(java.lang.String java.lang.String javax.servlet.ServletRequest.javax.servlet.ServletResponse)>/
(@parameter(

)

<Example: void foo(java.lang.String java.lang.String javax.servlet.ServletRequest.javax.servlet.ServletResponse)>/
strl

!

<Example: void foo(java.lang.String java.lang.String javax.servlet.ServletRequest.javax.servlet.ServletResponse)>/
d.valuel

)

<Example: void foo(java.lang.String java.lang.String javax.servlet.ServletRequest.javax.servlet.ServletResponse)>/
java.io.PrintWriter.println/0

Fig. 2. A taint trace for the vulnerability reported for source code in Fig. 1.

the third component which is the first parameter of method
foo (line 4 in the code), represented by @parameter0 in the
trace. Eventually the flow goes to the last component printin()
which is a pre-defined taint sink (line 12 in the code).

III. CONTEXT SENSITIVE TAINT TRACE ANALYSIS

We describe our algorithm on a simplified version of Java,
with its syntax shown in Fig. 3.! A unique entry method such
as main() is always assumed to appear in one of the classes
in a well formed program. For each method, we assume that
all local variables are defined at the beginning of the method,
and there is always a dedicated local variable to be returned
at the end. For an object allocation statement x = new® A,
we assume that o uniquely identifies the allocation site. Given
a program from the language, we define VAR for the set of
variables, OBJ for the set of (abstract heap) objects, C for the
set of classes, FLD for the set of fields, METHOD for the set
of method, SIG for the set of method signatures, and INST the
set of instructions for uniquely identifying call-sites.

We build our work on top of P/Taint [8] which is part of
the program analysis framework Doop [2]. In order to generate
facts for Datalog based reasoning, Doop makes use of the front
end of Soot, a compiler framework for Java, for extraction of
the program structural relations and basic flow relations, as
shown in Table I. The extracted patterns are assumed to be
self-explained on the right hand side of each relation of the
table. For example, ALLOC(z,0) means there exists a state-
ment z = new® A, which allocates object o to local variable
x. Note that at the same time, HEAPTYPE(o, A) is also added
to the relation indicating that the class type of object o is A.
Similarly, the existence of a relation ASSN(m, x,y) indicates
that there is a statement x = gy in method m.

A. Taint Analysis with Points-to Analysis

First, we briefly review the P/Taint [8] project on which our
work is based. At its foundation, Andersen-styled subset-based

IThe actual implementation that handles the full Java language is more
involved, and most of the implementation details are elided in this paper.

TABLE I
THE BASIC FLOW RELATIONS GENERATED FROM A PROGRAM.

ALLOC (v : VAR, o : OBJ)

ASSN (m : METHOD, to : VAR, from : VAR)
LOAD (to : VAR, base : VAR, f : FLD)
STORE (base : VAR, f : FLD, from : VAR)
VCALL (base : VAR, m : SIG, inst : INST)
FORMALARG (meth : METHOD, i : N, v : VAR)
ACTUALARG (inst : INST, i : N, v : VAR)
FORMALRET (meth : METHOD, v : VAR)
ACTUALRET (¢nst : INST, v : VAR)
THISVAR (meth : METHOD, this : VAR)
HEAPTYPE (0 : OBJ, A:C)

LookUP (A : C, m : SIG, meth : METHOD)

C z= class A() [extends B] {F; M}

F — Af

D = Az

M = m(T) {D;s;return y}

s = z=new® A|z=el|x.f=y|s;s
= null|z|a.f|zm(y)

prog = C

Fig. 3. Abstract syntax for the core language.

TABLE 11
THE BASIC POINTS-TO RELATIONS

VARPT (v : VAR, o : OBJ)
FLDPT (o7 : OBJ, f : FLD, o2 : OBJ)

/I v points to object o
/l 01.f points to o2

VARPT (v, o)
VARPT (v1, 0)
VARPT (v, 01)

ALLOC (v, 0).

ASSN (_, v1, v2), VARPT (va, o).
LOAD (v, base, f), VARPT (base, 02),
FLDPT (o2, f, 01).

STORE (v1, f, v2), VARPT (v1,01),
VARPT (v2, 02).

FLDPT (o1, f, 02)

points-to analysis [1] is applied for generating the points-
to relations. For object-oriented languages such as Java, two
relations are generated, VARPT, which assigns a set of objects
to a variable (or reference), and FLDPT, which represents
the relationship between (abstract) heap objects via fields. As
shown in Table II, each relation given in the left hand side
column is defined by conditions specified in the same row of
the right hand side column. Taking VARPT, initially, v points
to o if object o is allocated to v. The second rule extends
the relation by adding VARPT (vy, o) if there is an assignment
v1 = vy and vy points to o (i.e., VARPT(vs, 0) is already in the
relation). Likewise, the last rule adds FLDPT (o1, f,02) if 01
is pointed by variable v1, 05 is pointed by v, and vy.f = v
is a (store) statement in the program.

Taint analysis is integrated with points-to analysis in P/-
Taint [8], based on the fact that taint flow can be treated in the
way similar to value flow through which an object is passed to
a variable. We walk through the following reasoning patterns
for taint analysis as shown in Table III. The first rule defines
that if method m is a taint source and instruction ¢ calls m

/I v =new® A
/! to = from in method m

/I to = base. f
/l base.f = from
/I ... = base.m(...) in instruction inst

/l v is the i-th formal arg of meth

/l v is the i-th actual arg at callsite inst
// return v is a statement in meth

/I v = base.m(...) in instruction inst

/I “this” as a special variable in meth

// object o is of class A

// through signature m, one can find the
/I corresponding method meth in class A

TABLE III
A FEW SAMPLE TAINT FLOW RULES

// taint value v flows to x
// taint value v flows to
// sink location inst

TFLOW (x : VAR, v : TAINTVALUE)
LEAK (v : TAINTVALUE, inst : INST)

TFLOW (to, value) SOURCE (m, type), CALLGRAPH (i, m),
ACTUALRET (4, to), TAINT(z, type) = value.
ASSN (_, v1, v2), TFLOW (v2, value).
CALLGRAPH (¢, m), SINK (m, n),

ACTUALARG (i, n, v), TFLOW (v, value).

TFLOW (v1, value)
LEAK (value, 1)

with a value returned to variable to, then there is a taint flow to
variable to, where TAINT is a constructor that introduces taint
values in a new domain TAINTVALUE.? This definition plays
the same role as the first rule (with ALLOC(v, 0)) in Table II,
since both rules are the base cases for their corresponding
recursive relations, VARPT and TFLOW, respectively. The
second rule in Table III resembles the second rule in Table II,
by extending relations with assignments. Finally, the last rule
in Table III defines the LEAK relation reporting that a taint
value has reached a sink method, where SINK(m,n) states
that the n-th parameter of method m is a pre-defined sink
location, and 7 is a call-site instruction that calls m with its
n-th parameter v reachable from a taint source.

Doop also supports a range of context-sensitivity options
to strengthen its points-to and taint flow computation, such
as call-site-sensitivity [20], object-sensitivity [14], [12], and
type-sensitivity [21]. The enhanced VARPT relation has four
components.

VARPT(¢; : CTX, v : VAR, ¢ : HCTX, o: OBJ)

where c; is the context for variable v and cy is the context
for object o. The variable context domain CTX and the
heap context domain HCTX may be defined as distinct sets.
Similarly, we have the following definition for the field points-
to relation.

FLDPT (c; : HCTX, 01 : OBJ, f : FLD, c2 : HCTX, 09 : OBJ)

’Here the CALLGRAPH(4, m) relation is taken as the context insensitive
version of the CALLGRAPH relation in Table IV. Intuitively, we retrieve the
class type of the object pointed-to by the receiver variable at the call-site ,
from which we match the signature of method m.

TABLE IV
SAMPLE RULES FOR k-OBJECT-SENSITIVE CONTEXT EXTENSION

TABLE V
RELATIONS FOR ONE-STEP VALUE FLOW

REACHABLE (c : CTX, m : METHOD)

// method m is reachable with context ¢
CALLGRAPH (c1 : CTX, 7 : INST, co, m : METHOD)
// method m is called at call-site %

// variable from in context co flows to variable to in context ¢y

VFLOW (c1: CTX, to : VAR, ca: CTX, from : VAR)

// variable v1 in context c¢1 and v2 in context cg are in the “may alias” relation
ALIAS (c1: CTX, v1 : VAR, c2: CTX, v2 : VAR)

REACHABLE ([|, main). ALIAS (c1, v1, C2, V2) VARPT (c1, v1, c3, 0),

VARPT (c2, v2, c3, 0).

REACHABLE (c1, mg), CONTAIN(my, 4),

REACHABLE (c2, m), VCALL (z, m/, 1), NEWCTX (c1, 0) = c2, VFLOW (c, to, ¢, from) REACHABLE (¢, m), ASSN (m, to, from).

CALLGRAPH (c1, i, c2, m) VARPT (c1, x, c3, 0),

HEAPTYPE (o0, A), LOOKUP (A, m’, m).

REACHABLE (c1, my1), LOAD (m1, 1, v1, J),
REACHABLE (c2, m2), STORE (mz, va, f, x2),
ALIAS (c1, v1, 2, v2).

VFLOW (c1, x1, c2, T2)

VFLOW (c1, 1, c2, 2) CALLGRAPH (c2, i, c1, m),

FORMALARG (m, n, 1), ACTUALARG (i, n, x2).

In Doop, new contexts are always introduced at a call-site,
where variables and objects defined within the callee method

VFLOW (c1, x1, c2, T2) CALLGRAPH (cy, i, c2, m),

FORMALRET (m, x2), ACTUALRET (3, x1).

VFLOW (c1, x1, c2, T2) VCALL (z2, _, i), CALLGRAPH (c2, i, c1, m),

acquire a new context by combining the caller context and
the information associated with the caller instruction. As an
example, for k-call-site sensitivity, a new context is created by
appending the current call-site to the caller context (which is
a list of call-sites), and deleting the oldest component (usually
the first call-site in the current list) if the newly-formed context
exceeds the predefined limit k. New contexts in a k-object-
sensitive analysis are constructed in a similar way, with details
given as follows.

We present an example of constructing new contexts at
a call-site for a k-object-sensitivity analysis in Table IV,
where two relations REACHABLE and CALLGRAPH are re-
cursively defined. REACHABLE(c, m) denotes that method m
is reachable with context ¢, and main, the entry method, is
always reachable with the (pre-defined) empty context “[|”.
CALLGRAPH is used to extend a caller context to a callee
context at a call-site. As the rule explains, given a call
instruction ¢ of the form “... = xz.m/()”, if the context of
the enclosing method (say mg) of call-site ¢ is c¢;, and the
matched method for the call-site is m (via LOOKUP), then m
is reachable in context co. At the same time, we establish a
CALLGRAPH relation from 7 in context ¢; to m in context
co. Note that the semantics of context constructor NEWCTX
depends on which context-sensitivity is applied. Since we
assume k-object-sensitivity (i.e., a context is a list of heap
objects), if the length of ¢y is less than k, then ¢ = ¢y 0 o,
where “o” appends o to c1; otherwise, ¢ is the list of removing
the first object from c; o o.

B. Generating the One-Step Flow Relation

P/Taint only reports source-sink pairs in the form of
LEAK(c1, value, co, invo). With this much information, it is
often difficult for developers to find out how the taint source
“value” in context c; is propagated to the sink location “tnvo”
in context co, as the actual value flow may have passed through
a number of inter-procedural calls and returns, as well as
loading a value previously stored in the heap. In this section,
we define new relations that help to make the flow of taint
explicit. We extend the P/Taint system with the logic shown
in Table V. To simplify the presentation, we assume k-object-
sensitivity is applied, and the NEWCTX(o,c) constructor in
Table V produces a new context by appending object o to

THISVAR (m, x1).

context ¢ and then removing the first component of c if the
length of ¢ is already & (so that after appending o, the new
context does not have length exceeding k).

We define two new relations in this extension.
ALIAS(¢1,v1,C2,v2) can be straightforwardly derived
from the available context-sensitive points-to analysis, in the
sense that if two variables (probably in different contexts)
may-points-to the same object, then they are in ALIAS
relation. The construction of VFLOW relation is a bit more
involved, as explained in the following three cases.

1) Variable from flows to to in context c, if the enclosing
method m of “to = from” is reachable in context c;

2) Given (c1,v1) and (c2,v2) in alias relation with both
enclosing methods m; and ms reachable in context c;
and co, respectively, and if there is a LOAD of v via
field f to variable x; and a STORE into vy via f from
T9, then this “load/store” can be paired to serve as a
bridge which directs a value flow from x5 to x1;

3) The last three rules describe the inter-procedural value
flow passing through a parameter, the return value, and
this reference, respectively. Taking the last rule as an ex-
ample, given a call-site from which an inter-procedural
call (represented by the CALLGRAPH relation) can be
established at call-site 7 from context c; to ¢; where the
callee method is identified as m, we construct a one-step
flow from the receiver x5 (in context co) to this of m
in context cj.

C. Generating Traces for Taint Analysis

Formally, our analysis exports finite traces of the form
[wo, w1, ws ... wg], where w; = (¢;,2;) with value z; in
context ¢; for all 1 < ¢ < k — 1. A valid trace is required
to satisfy the following three conditions.

1) Variable z; receives a return value from the pre-defined
taint source vg in context ¢; € CTX.

2) Variable z; in context ¢; performs a one-step flow to
variable z;4; in context c;1q forall 1 <7 <k —1.

3) Variable x;_1 passes value to a taint sink wy.

TABLE VI
SAMPLE RULES FOR TAINT TRACE GENERATION

.type list = [next:list, x:ctype]
TTRACE (trace : list)
INTTRACE (trace : list)

// a taint trace is a list of values
/I an intermediate trace

CALLGRAPH (c, i, _, m),
ACTUALRET(,), wa = (¢,),
w1 = (¢, 1), SOURCE (m, type).

INTTRACE ([[nil, w1], w2])

t = [t1, wi], w1 = (c1,y), INTTRACE (1),
w = (¢,x), VFLOW(c, z, c1, Y).

INTTRACE ([t, w])

t = [t1, wil, w1 = (¢, x), INTTRACE (%),
SINK (m, n), CALLGRAPH (c, ¢, _ m),
ACTUALARG (i, n, z), w = (c,1).

TTRACE ([t, w])

The construction of each trace relies on the recursively typed
records supported by the Datalog engine Soufflé [11]. For
example, in order to encode a list of values, one needs to define
a type list by [list, ctype] where ctype is the (component) type
for the values in the list, and the recursion is terminated by a
special predefined constant list nil. We present the definition
of a taint trace (TTRACE) in Table VI. In this formulation, an
intermediate trace (INTTRACE) encodes a list of component
starting with a pre-defined source location (but it has not
reached a sink location). The algorithm then tries to extend
the list by looking for elements that are reachable from the
last element in the existing list, following the VFLOW relation.
Once a INTTRACE reaches a pre-defined taint sink, the search
terminates with a complete TTRACE ready for output.

IV. IMPLEMENTATION AND EXPERIMENT

We have implemented our algorithm in Doop which extracts
Datalog facts from the Shimple code which is an SSA-based
Intermediate Representation (IR) in Soot. The experiment is
conducted on a laptop equipped with an Intel Core® i5-
8250U CPU@1.60GHz*8 and 16GB RAM, running Union-
Tech OS GNU/Linux 5.4.50-amd64-desktop. The software
environment includes Doop (version 4.24.2), soufflé (version
2.0.2), graphviz (version 2.49.3), python (version 3.8.0) and
Open]JDK (version 1.8.0). Our implementation is publicly
available at https://github.com/lyj18688610256/LDoop.>

To measure the efficiency of our implementation, we carry
out an experiment on Securibench Micro, an open source
benchmark suite with 140 pairs of known source-to-sink flows
located in a range of small web applications [13], from which
we evaluate the precision, recall and efficiency of TTA. Differ-
ent from the other methods that merely output (source, sink)
pairs, we produce a set of graphically represented traces (with
a context at each node of the trace) similar to what is shown
in Fig. 2. We then start to manually check the traces in order
to verify whether there are false positives. Fortunately, this
procedure is not very time consuming, thanks to all taint flows
being made explicit. We observe that sometimes our analysis
produces a trace that contains a circle, i.e., v; = v; with
0 < i < j < k where k is the length of the trace. One strategy

3A substantial amount of effort has been made to ensure that TTA aligns
with the expected P/Taint analysis results. Due to recent updates in Doop, it
is currently infeasible to directly reproduce the results as given in [8].

TABLE VII
ACCURACY OF TTA ON SECURIBENCH MICRO
(2-OBJECT-SENSITIVE+HEAP)

Suite TP FP FN Precision Recall F-score
Total 131 20 9 87% 94% 90%
aliasing 11 0 1 100% 92% 96%
arrays 10 3 1 77% 91% 83%
basic 61 0 0 100% 100% 100%
collections 16 3 0 84% 100% 91%
datastructures 6 0 0 100% 100% 100%
factories 3 0 0 100% 100% 100%
inter 11 6 5 65% 69% 67%
pred 3 5 0 38% 100% 55%
reflection 4 0 0 100% 100% 100%
sanitizers 2 0 2 100% 50% 67%
session 3 1 0 75% 100% 86%
strong_updates 1 2 0 33% 100% 50%

3obj+3H 408

5.20bj+H 1308

20bj+2H 400

291
0 200 400 600 800 1000 1200 1400 1600 1800

No Trace M Trace

Fig. 4. Run-time (in seconds) with and without trace generation for different
context-sensitivity options. For example, 3obj + 3H means that (lists of) at
most 3 objects are used to represent method/variable contexts in CTX and
also at most 3 objects are used to represent heap contexts in HCTX.

that we currently use is to set up a search limit for traces,
which rules out most of the redundant trace being reported.
However, it should be noticed that some taint flows will be
beyond our reach and becomes false negatives if the depth is
too short. Currently, we are using an empirical limit for the
Securibench Micro suite for an optimal result.

Accuracy of TTA: The accuracy results of TTA with the
sensitive 2-object-1-heap analysis (i.e., s.20bj + H) on the
benchmark suite are shown in Table VII, where TP, FP and
FN represent true positive, false positive and false negative,
respectively. From the table, one may find that for our imple-
mentation, the worst performed portion of the benchmark suite
is the strong_updates folder (33% precision), which is due to
that value flows for strong update usually require a must PTA,
while the current TTA is based on may PTA. Nevertheless,
over all, we still achieves 87% precision and 94% recall, with
a 90% F} score. This effectively shows that TTP produces an
acceptable result for the current benchmark suite.

Performance of TTA: We also check the run-time cost of
our TTA implementation compared to the original P/Taint
algorithm [8], with results shown in Fig. 4. When running the
benchmark suite, for each context-sensitivity option, we ana-

lyze all programs in Securibench Micro simultaneously. From
the table, one may find that our trace generation algorithm only
adds a small amount of run-time overhead (less than 38%)
to the original algorithm. Although the run-time cost of our
implementation increases with larger contexts, for 20bj + H
and 3o0bj + 3H, the increased time cost becomes negligible.
One possible explanation is that although 30bj 4+ 3H analysis
needs more time to compute variable contexts, it potentially
produces less false positives. Therefore, the amount of time
required for computing the traces becomes less.

V. RELATED WORK

Perhaps the earliest taint analysis was implemented as the
“taint mode” in the Perl language, which tracks taint flows
via data-dependencies at runtime, i.e., taintness flows from the
right hand side of each assignment to the left hand side, and
reports an error if the arguments of a system call is tainted [4].
In general, a dynamic taint analysis tracks taint information at
program execution, implemented with various methodologies
such as binary instrumentation [16], [6], hardware-based taint
tracking [23], and compiler-based taint tracking [27]. Static
taint analysis heavily relies on underlying tools and repre-
sentations of a program, including control flow graph [19],
program dependence graph [10], program slicing [18], and
type system [7]. In general, dynamic taint analysis provides
security guarantee at runtime, while static analysis achieve
better coverage at the cost of false positives. Our work is in
the category of static taint analysis, with powerful context-
sensitivity options from the underlying Doop framework and
partial flow-sensitivity from the Shimple IR of Soot. Therefore,
we are able to report potential vulnerabilities with relatively
low false positive rate (c.f. Section IV). Moreover, our focus
is on producing explicit taint traces for software developers.

Our work is an extension on P/Taint [8], a unified points-
to analysis and taint analysis in the Doop framework [2]
equipped with a range of context-sensitivity options. Given
that P/Taint only reports source-sink pairs which are hard to
comprehend by human, we explore ways of trace generation
from the explicit flow relation in Type Flow Analysis [28],
which express a flow relation by joining intraprocedural flow,
inter-procedural flow, and pairing of load and store. Such a
one-step relation can be connected with a recursive encoding
technique supported in the Datalog engine Soufflé [11].

VI. CONCLUSION AND FUTURE WORK

We have introduced an extension for context-sensitive taint
analysis for Java (P/Taint), called Taint Trace Analysis (TTA),
which produces a set of taint traces with context information
included. Little run-time overhead on top of P/Taint has been
shown for our implementation. In contrast to most existing
taint analysis works, the produced taint traces from TTA may
provide more useful information for the detection and tracking
of security vulnerabilities in Java web applications. In the
future, we will extend the existing work to analyze Android
apps, and we also plan to further optimize our algorithm to
achieve higher precision and a quicker visualization procedure.

[1]

[2

—

[3

—

[4]
[5

=

[6

=

[7]
[8

[t

[9]
[10]

(11]
[12]

[13

[t

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In OOPSLA’09, page 243-262, 2009.
https://bitbucket.org/yanniss/doop/.

T. Chen and S. Abu-Nimeh. Lessons from stuxnet. IEEE Computer,
44(4):91-93, 2011.

T. Christiansen. Perl security. https://perldoc.perl.org/. Taint module
available November 1997.

C. Cifuentes, N. Keynes, L., N. Hawes, and M. Valdiviezo. Transitioning
parfait into a development tool. IEEE Security and Privacy, 10(3):16—
23, 2012.

J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. In Proceedings of the 2007 International Symposium on
Software Testing, pages 196—-206, 2007.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In PLDI’02, pages 1—12, 2002.

N. Grech and Y. Smaragdakis. P/Taint: unified points-to and taint
analysis. In OOPSLA’17, pages 102:1-102:26, 2017.

B. Greenman. Datalog for static analysis. History of programming
language seminar (2017) https://github.com/nuprl/hopl-s2017.

C. Hammer, J. Krinke, and G. Snelting. Information flow control for java
based on path conditions in dependence graphs. In IEEE International
Symposium on Secure Software Engineering, 2006.

H. Jordan, B. Scholz, and P. Suboti¢. Soufflé: On synthesis of program
analyzers. In CAV’16, pages 422430, 2016.

G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-to
analysis. In PLDI’13, pages 423-434, 2013.

B. Livshits. Improving Software Security with Precise Static and Runtime
Analysis. PhD thesis, Stanford University, 2006.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for Java. ACM Transations on Software
Engineering and Methodology, 14(1):1-41, 2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the slammer worm. [EEE Security and Privacy,
1(4):33-39, 2003.

J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In NDSS’ 05, 2005.

OWASP. Top 10 web application security risks.
www-project-top-ten/. Accessed: 2021-11-23.

M. Pistoia, L. Koved R. J. Flynn, and V. C. Sreedhar. Interprocedural
analysis for privileged code placement and tainted variable detection. In
ECOOP’05, pages 362—-386, 2005.

B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis
via graph reachability. In SCAM’08, pages 25—-34, 2008.

O. G. Shivers. Control-flow Analysis of Higher-order Languages or
Taming Lambda. PhD thesis, Carnegie Mellon University, 1991. UMI
Order No. GAX91-26964.

Y. Smaragdakis, M. Bravenboer, and O. Lhotdk. Pick your contexts
well: understanding object-sensitivity. In POPL’11, pages 17-30, 2011.
M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg.
F4F: taint analysis of framework-based web applications. In OOPSLA
2011, pages 1053-1068. ACM, 2011.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS’ 04, page
85-96, 2004.

Symantec. Top 10 web application security risks.
Threat Report, Vol. 21., April 2016.

O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ:
effective taint analysis of web applications. In PLDI’09, pages 87-97.
ACM, 2009.

US-CERT. Vulnerability note vu#881872, sun solaris telnet authen-
tication bypass vulnerability. http://www.kb.cert.org/vuls/id/881872.
Accessed: 2021-11-23.

W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In Proceedings
of the 15th USENIX Security Symposium, page 121-136, 2006.

X. Zhuo and C. Zhang. TFA: an efficient and precise virtual method
call resolution for Java. Formal Aspects of Computing, 32:395—416,
2020.

https://owasp.org/

Internet Security

