
Quantum Software Models: Software Density Matrix
is a Perfect Direct Sum of Module Matrices

Iaakov Exman and Alexey Nechaev
Software Engineering

The Jerusalem College of Engineering, JCE, Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, alosha82@gmail.com

Abstract— Quantum Software Models is a theoretical framework
to systematically design and analyze any software system – be it
quantum, classical or hybrid – representing it by a design Density
Matrix. Recently, we have demonstrated a top-down approach, to
decompose a whole software system Density Matrix into modules,
using basis vector projectors of the Matrix. However, it would
be even more natural to have a systematic bottom-up procedure,
to compose a whole software system Density Matrix, given a set
of well-designed software module matrices, taken as sub-systems.
This is exactly the paper’s purpose. The result obtained: the
whole software system Density Matrix is a perfect Direct Sum of
module density matrices. This result yields clear software design
benefits: it is bidirectional, one can traverse the software system
hierarchy top-down or bottom-up, in particular, gradually
building up the whole system from verified correct modules,
assured by spectral decoupling techniques. The claim is formally
validated and is illustrated by software system studies.1

Keywords— Software Design; Software Density Matrix;
Modularity; Direct Sum; Module Density Matrix; Quantum
Software.

I. INTRODUCTION

Quantum Software Models is a theory of software system
design, consisting of a surprising synthesis of two apparently
unrelated knowledge frames, both based upon linear algebra.

The 1st knowledge frame, Linear Software Models [6], [7],
a linear algebraic software design theory, where vectors stand
for software concepts, combined into software system matrices,
such as the Laplacian [24]. Matrices enable software systems
decomposing into modules by spectral methods [8].

The unexpected synthesis starts with Frederick Brooks’
original idea: “Conceptual Integrity is the most important
consideration for software system design” [4]. Linear Software
Models express Brooks’ underlying conceptual principles in
algebra: Propriety – use only absolutely necessary concepts to
describe software and no more – implying vectors’ linear
independence. Orthogonality – concepts should be totally
independent of one another – a stronger demand than linear
independence. Propriety and Orthogonality lead to modularity.

The 2nd knowledge frame, Quantum theory is a generic
frame, explaining “whole systems in terms of their parts”. It is

1 DOI: 10.18293/SEKE2022-158

applicable to a wide variety of physical systems and their parts,
e.g. crystals, molecules, atoms, and particles.

Quantum Software Models (QSM) were inspired by
Quantum Computing, originally proposed by the physicist
Feynman [11] to perform challenging computations simulating
physical systems composed of particles. The QSM novelty is
the application to whole software systems in terms of modules.

A. From Software Modules to a Whole
Software System and Back

A Schematic Transition Diagram outlining a path from
separate module Density Matrices, through a Direct Sum, to a
whole software system Density Matrix, and back, is in Fig. 1.

Figure 1. Schematic Transition – from separate module Density Matrices
to a whole Software System Density Matrix, and back, with the intermediate
modules Direct Sum. Composition is from left to right (blue arrows).
Decomposition is from right to left (orange arrows). (Figures online in color).

The direct sum is formally defined for a few mathematical

objects. This work only refers to matrices and subspaces2*.
A matrix direct sum [20] – with symbol ⨁ – of n square

matrices (M1, M2,…,Mn) with possibly different sizes,
constructs (see Fig. 2) a block diagonal matrix as follows

⨁j Mj = diag(M1, M2,…,Mn)
(1)

* Direct sums are also defined for mathematical “modules”, which are
different entities from this paper’s software modules.

Figure 2. Matrices Direct Sum – constructs an enclosing block-diagonal Matrix.

A subspaces direct sum refers to subspaces having only the
zero vector in common. As Density Matrices act in Hilbert
spaces (e.g. [17] page 66), their direct sums, for software
matrices and their sub-spaces, are effectively equivalent.

B. Paper Organization

The remaining of the paper is organized as follows. Section
II reviews the basics of software system algebraic
representation. Section III illustrates the Direct Sum
composition of modules into a Classical Software System, then
formulates the software modules’ direct sum procedure.
Section IV illustrates the procedure for a Quantum Software
System. Section V validates the direct sum procedure from a
few viewpoints. Section VI is a concise review of related
works. Section VII concludes the paper with a discussion.

II. THE BASICS OF SOFTWARE SYSTEM ALGEBRAIC

REPRESENTATION

A. From Bipartite Graph through Laplacian to

Density Matrix

Software system algebraic design refers to 3 entities:
 Structors are generalizations of classes in Object

Oriented Design (OOD).
 Functionals generalize OOD class methods.
 Concepts impart meaning to software systems’

Structors and Functionals.
The relations between Structors labelled by (S1, S2,…,Si),

and respective provided Functional declarations labelled by
(F1, F2,…,Fk) are depicted in bipartite graphs [23] as in Fig. 3.

Figure 3. Bipartite Graph of a Command Design Pattern – It has 12 vertices, 6
Structors (Si), 6 Functionals (Fk), decomposable into 3 modules (Mj) (blue
background). For instance, Structor S6 provides Functionals F5, F6 as shown
by arrows. See section III-A for the conceptual meanings of the Command
Design Pattern Structors and Functionals.

The Laplacian Matrix L is defined upon a graph as follows:

L = D - A

(2)

D is the diagonal Degree matrix with Dii the vertex i degree,
and A is the Adjacency matrix with negative 1-valued Aij if
vertex j is a neighbor of vertex i, and zero-valued otherwise.

Von Neumann’s ([22], pages 194, 214) Density Matrix –
the cornerstone of our Quantum Software Models, representing
software systems – is easily obtained from a Laplacian,

(Braunstein et al. [2]), by normalizing the Laplacian Matrix by
its Trace (sum of diagonal degrees) Tr(L):

 = L / Tr(L)

(3)

B. Software Modules Represented by Density
Matrices

A Density Matrix may represent whole software systems
or their modules. For example, the rightmost module M3 in
Fig. 3, is shown again in Fig. 4, beside its Density Matrix. The
Density Matrix – by eq. (3) – is the Laplacian Matrix (within
parentheses) normalized by the factor 1/6.

A Density Matrix, as a normalized Laplacian, preserves all
Laplacian properties, such as rows/columns summing zero,
positive diagonal, and so on.

Bipartite Graph Density Matrix of Module M3

Figure 4. Bipartite Graph and Density Matrix of module M3 – The left panel
bipartite graph shows 4 vertices, 2 Structors labelled (S5, S6) and 2 Functionals
labelled (F5, F6) as in Fig. 3. The right panel shows the Laplacian (within
parentheses) {by eq. (2)}. The 4 columns and 4 rows have the same vertex
order (light orange). The Degree matrix D is the diagonal (green circles). The
Adjacency matrix A (hatched blue) is in the upper-right and lower-left
quadrants. The Density Matrix is the Laplacian normalized by the factor 1/6
{eq. (3)} since the sum of degrees of the Diagonal D equals 6.

III. FROM MODULES TO SOFTWARE SYSTEM: BACK &

FORTH

This section, after an introductory classical software
system, describes procedural tasks for composing a set of
well-designed software modules, taken as sub-systems of a
whole software system. The outcome is a formal procedure
with an intermediate direct sum of modules.

A. Introductory Classical Software System:
Command Pattern

Design Patterns are canonical software sub-systems to be
used and re-used. Four authors, known as the Gang-of-Four,
collected patterns in the “GoF” book [13].

The Command Pattern is an example, whose basic ideas
are: a- it is an abstraction applicable to any common command
– copy, paste, delete, save, etc. b- it has four generic concepts:
an invoker, e.g. a menu-item or a button; a chosen command,
one of the previously mentioned, e.g. copy; a receiver of the
command application, e.g. a file or a document; a history
mechanism, enabling undo/redo of commands perhaps
invoked by mistake. These concepts, Structors & Functionals
of this software system, assign conceptual meanings to the Si
and Fk labels of Fig. 3. Command Pattern Structors &
Functionals are shown together with their modules, in Fig. 5.

Figure 5. Command Design Pattern: Structors & Functionals – It has 3
modules: Command, Invoker, Receiver. Compare with bipartite graph in Fig.
3. Structors’ names with an “I” are Interfaces inherited by Concrete classes.

Next are transition stages from modules (Fig. 6), through
a Direct Sum (Fig. 7) to System Density Matrix (Fig. 8).

Figure 6. Command Design Pattern: Separate Modules – One sees 3 separate
module Density Matrices (within red rectangles), and different normalizations:
M1 has a factor 1/10, M2 has a factor ½ and M3 has a factor 1/6.

Figure 7. Command Design Pattern: Direct Sum of Module Density Matrices
– The single big matrix has 3 block-diagonal modules within red rectangles.

Figure 8. Command Design Pattern: Renormalized whole Software System
Density Matrix – The diagonal Degree Matrix D (green circles) keeps the
Direct Sum values, reordered due to repositioned Functionals and Structors.
The Adjacency Matrix A (hatched blue) keeps values as each module carries
the same Direct Sum columns and rows. Modules order is preserved.

Underlying the Transition from modules to the whole
software system 3 tasks were performed:

1- Reordering Structors & Functionals – composition
collects Structors together and Functionals together;
decomposition separates them by modules;

2- Preserving modules order – the stage from Direct
Sum to whole System Density Matrix, and vice-versa,
keeps the same modules order;

3- Renormalization – transition through direct sum needs
renormalization of density matrices in both directions.

B. Composition Procedure by Direct Sum of
Modules

Here the Composition Procedure from modules to a whole
software system is formulated in pseudo-code.

The reverse Decomposition Procedure from the whole
system Density Matrix back to modules’ Density Matrices is
easily inferred from the above Composition Procedure.

IV. QUANTUM SOFTWARE SYSTEM AND OTHER SYSTEMS

Having illustrated the classical Design Pattern, here we
describe a quantum software system, viz. Grover Search. In
addition, we concisely mention other systems.

Composition Procedure 1– by Direct Sum of Modules
Given: Density Matrices of all Modules needed;
Obtain: Density Matrix of the whole Software System.

 Preparation Phase
1. Modules Choice – Choose desired modules;
2. Normalization factors – Delete from matrices: they

are not needed for composition;

Direct Sum Phase
1. Modules’ order Choice – Decide the modules order,

to be preserved in the Transition Phase;
2. Prepare Direct Sum – in block-diagonal format, in

the decided modules’ order;

Transition to Whole System Density Matrix
1. Prepare labels list – first Functionals, then Structors;
2. Prepare empty system Density Matrix – with size

equal the sum of modules’ Density Matrices’ sizes;
3. Loop on list of modules, preserving their order;

For each module Density Matrix do:
 Add upper-right Adjacency matrix square module

(including its zeros) to the system Density matrix
according to the module respective row and
column labels, keeping the block diagonal format
of the upper-right quadrant;

 Add diagonal degrees in the same labelled rows,
such that the row values sum to zero;

 Reflect the Adjacency matrix module, around the
diagonal, to the lower-left quadrant;

 Fill-in remaining empty system matrix elements of
the whole system density matrix with zeros.

4. Renormalize the system Density Matrix
5. Output system Density Matrix

A. Quantum Software System: Grover Search

Quantum Software systems design starts getting Structors
& Functionals from Quantum Circuits ([17] page 22), i.e.
sequential circuits with time increasing from left to right.

The Grover quantum Algorithm [14] searches unsorted
databases with quadratic speedup relative to classical
algorithms. Grover search begins with equal probability qubits
superposition by the Hadamard operator H to the tensor power
of n, ending with measurement. Next are quantum circuit, its
Direct Sum, and system Density Matrix (in Figs. 9, 10, 11).

Figure 9. Grover Search Quantum Circuit – It has four (green) “boxes”, the
system Structors {S1,S2,S3,S4}. Each Structor contains one or more
Functionals {F1,F2,F3,F4}. The Amplification Structor S3 has two
Functionals F2 and F3. Modules {M1,M2,M3} (in red rectangles) contain one
or more Structors. The Grover Iteration module is a loop executed alternating
the Functionals inside the Oracle S2 and Amplification S3 Structors. Check
Amplification F3 decides when the loop ends, passing results to Measurement.

The Inversion Operator F2 of the Grover Iterator (Fig. 9) is
used in both Iterator Structors. F2 has the form I - 2*|x⟩⟨x|
([17] page 251) with x the correct searched item value in the
Oracle S2, or any item in the Amplification S3, where F2 is
multiplied by a minus sign. This is a typical inheritance case
between Structors, similar to classical software inheritance.

Figure 10. Grover Search Direct Sum of Modules’ Density Matrices –
modules are block-diagonal, enclosed by red rectangles.

Figure 11. Grover Search whole software system Density Matrix.

Let us compare the Command Design Pattern – the
classical software system – with the Grover Search – the
quantum software system.

The diagrams serving as information source for the whole
system and its modules, are different:

 UML class diagrams for classical systems;
 high-level quantum circuits, such as Fig. 9, for

quantum systems.

However, once one has the list of Structors & Functionals,
from then on, the procedure is identical, and totally
independent of the conceptual meanings of the system.

This observation reinforces the plausibility of the idea that
the same design approach should be applied to whatever kind
of software system, classical, quantum or hybrid.

B. Hybrid and Simulation Systems

We have performed studies of other systems, which due to
space limitations are not shown here. They will appear in a
longer paper to be published. Other studies include: a) hybrid
systems containing classical and quantum sub-systems; b)
software systems whose purpose is not to compute specific
numerical/logical results; the ultimate purpose of these
software systems is to simulate real-world systems, to enable
verification of the correctness of their control mechanisms,
e.g. elevator systems.

V. VALIDATION

This paper’s claim, the Software Density Matrix is a Perfect
Direct Sum of Modules’ Density Matrices, and its implications
are formally validated here, from three complementary
viewpoints:

 The meaning of Perfect Direct Sum;
 Density Matrix as a complete information source

of the Software System;
 Software Conceptual Integrity from Modularity.

A. Meaning of Perfect Direct Sum

We first provide a definition of a well-designed software
system, in terms of algebraic Conceptual Integrity, in the next
text-box.

Definition 1 – Well-designed Software System
A Density Matrix software system, well-designed in
algebraic Conceptual Integrity terms, obeys the following
Adjacency Matrix conditions, within the Density Matrix:

 Linear Independences – all its Structors are
mutually linearly independent and all its
Functionals are mutually linearly independent;

 Square Adjacency Matrix – each quadrant of the
Adjacency Matrix, within the Density Matrix is
square, a linear algebraic consequence of the
previous Linear Independences’ condition [6];

 Orthogonality – all modules in both quadrants of
the Adjacency Matrix, are block diagonal.

The meaning of the Perfect Direct Sum of the modules
composing a software system is formulated in the next
theorem.

Proof:

Item a- all vectors within each module are linearly independent
by the assumption (a) of well-designed modules; modules
block-diagonality follows from their matrix elements being in
disjoint differently labelled columns and rows; the overall
modules constitute a square, since their number of columns
equals their number of rows;
Item b- 1. The degrees diagonal matrix elements are generated
for all rows of each module, the same rows of the Direct Sum;
they are reordered, since the columns/rows are repositioned;
Item b- 2. Exactly the same matrix elements in the same
modules’ order is determined by assumption (b) the
Composition Procedure 1;
Item b- 3. The normalization factors’ denominators are the
sum-of-degrees of the respective Density Matrix. By the Item
b- 1 the degrees’ of the whole system Density Matrix are
exactly all the Direct Sum diagonal elements. Thus the whole
Density Matrix denominator is the sum of the modules sum-of-
degrees. ⧠

B. Density Matrix: Complete Source of
Software System Information

Here we regard the whole software Density Matrix as an
information source about the software system, and inquire
about its information completeness.

Composing the software system from modules, through the
modules’ Direct Sum, two information aspects need analysis:
 Completeness about each module – Theorem 1 is a full

positive answer: no information is lost in the process from
separate modules, through Direct Sum, to a whole system.

 Completeness beyond individual modules – the software
representation of Procedure 1 is a Density Matrix for all
purposes. The 1st quantum computing axiom, in von
Neumann’s Density Operator version ([17] page 102) is a
full positive answer: “the system is completely described
by its density matrix acting on the system state space”.

C. Software Conceptual Integrity from
Modularity

Modularity is an essential contribution to Conceptual
Integrity of the whole system Density Matrix, obtained by
Composition Procedure 1. This follows from assumption (a) of
the Perfect Direct Sum Theorem 1.

Definition 1, on well-designed software systems, the basis
of the referred assumption (a), explicitly incorporates the linear
algebraic expressions of Frederick Brooks’ underlying
principles of Conceptual Integrity, viz. Propriety and
Orthogonality [4].

VI. RELATED WORKS

This section offers a very concise review of related works.
We start with algebraic approaches to modularity. Within

Linear Software Models, two spectral approaches to modularity
were developed: one used the Modularity Matrix [7] and
another used the Laplacian Matrix [8]. In both cases, modules
were extracted from matrix eigenvectors. Within Quantum
Software Models, Exman andrefer Shmilovich modularized
software system Density Matrices [10] based upon disjoint
projectors of the Matrix subspaces.

Non-algebraic alternatives have been often based upon a
DSM (Design Structure Matrix) [21]. Some of them [5], were
justified by economic arguments (Baldwin & Clark [1]).
Another alternative, to extend UML to quantum circuits [18], is
certainly interesting and accumulated large experience, but still
lacks a rigorous and self-consistent theory. See also Rodriguez
on OpenUP [19] and its bibliography.

Next, we refer to Quantum Computing (QC) (e.g. [17])
issues. This paper’s Introduction states that QC is a foundation
of Quantum Software Models. A QC modularity issue
addressed by these models is human understanding and reuse
of quantum circuits or parts thereof, as opposed to emphasis on
efficient runtime implementation. An example [12] refers to
alternative Grover iteration optimizations, with this respect.

Finally, we highlight the concepts’ importance to software
design. Conceptual Integrity notions and underlying principles
were introduced in the well-known books by Frederick Brooks,
The Mythical Man-Month [3] and The Design of Design [4]. A
recent contribution to the software design field, is the book by
Daniel Jackson “The Essence of Software”, in which he
explains why concepts matter for great design [15].

This, and our previous papers, claim that an algebraic
approach is essential for software design, as discussed next.

Theorem 1 – Perfect Direct Sum of Software System
Modules’ Density Matrices
Assuming:
(a) each module Density Matrix of a chosen set of

modules is well-designed,
and:
(b) The whole software system Density Matrix, composed

of the chosen set of modules, is obtained from the
Direct Sum of the modules’ Density Matrices by the
Composition Procedure 1;

Then:
a- The composed whole software system Density Matrix is

well-designed;
b- The composed whole software system Density Matrix

perfectly contains all the information of the Direct Sum,
no less and no more, in the following sense:

1. The degrees’ diagonal of the whole system Density
Matrix has exactly the same matrix elements of the
Direct Sum diagonal, only reordered;

2. The modules in the upper-right quadrant of the
whole system Density Matrix have exactly the same
matrix elements of the Direct Sum modules, in
exactly the same modules’ order;

3. The renormalization factor of the whole system
Density Matrix – the inverse of the sum-of-degrees
– is the inverse of the sum of denominators of the
normalization factors of the Direct Sum modules.

VII. DISCUSSION

A. Density Matrix Choice for Software Design

The first and foremost consideration for the Density Matrix
choice for software design, is the Quantum theory in which it is
embedded. It offers invaluable benefits: it is rigorous, self-
consistent, and triggers otherwise unthinkable questions.
Furthermore, the Density Matrix affords utmost generality
relative to software systems’ pure or mixed states.

Practical benefits of the algebraic design are:
a) Agile-Design-Rules –Brook’s Conceptual Integrity

[3][4], implemented by a Laplacian or a Density Matrix, is a
theory behind Agile-Design-Rules, conforming to accepted
best practices’ wisdom (see [9] and its bibliography);

b) Input modules a priori correctness – the correctness of
Direct Sum input modules, is assured by algebraic spectral
modularization and its specialized decoupling techniques [8].

c) Format uniformity & Software generality – the core
asset of the algebraic software design, is an extremely simple
and uniform Density Matrix format, stimulating general
applicability to software systems of any kind, size, or module
numbers.

B. Direct Sum, Direct Product and Tensor
Product

We use Direct Sum and not Direct Product because a
direct sum element is nonzero only for a finite number of
entries, and our Density Matrices act on finite vector spaces.
Direct product elements may have an infinite number of
nonzero entries [20]; as Lang notes for abelian groups ([16],
page 36), the direct sum is a direct product subset.

The Tensor Product is applicable to Density Matrices. But
its relation to Direct Sum, in the software design context, is out
of the scope of this paper, and will be discussed elsewhere.

C. Future work

Two topics are the subject of future work:
1st- Outliers’ Presence – the Direct Sum has been applied to

modules’ Density Matrix in the Composition Procedure 1,
assuming absence of outliers coupling modules. Outliers will
be pre-processed by module decoupling techniques [8].

2nd- Overlapping concepts – a Natural Language post-
processing function will be developed, to check the existence,
and to streamline semantically overlapping concepts, occurring
in different modules composed by Procedure 1.

D. Main Contribution of this Paper

This paper’s main theoretical contribution is the Module
Matrices’ Direct Sum as a perfect composition of the whole
software system Density Matrix. Practical benefits are design
flexibility, enabling whole system gradual build-up from
verified correct modules, assured by the theoretical framework.

REFERENCES

[1] Carliss Y. Baldwin and Kim B. Clark, Design Rules, Vol. I. The Power

of Modularity, MIT Press, MA, USA, 2000.

[2] Samuel L. Braunstein, Sibasish Ghosh and Simone Severini, “The
Laplacian of a graph as a density matrix: a basic combinatorial approach

to separability of mixed states”, https://arxiv.org/abs/quant-ph/0406165
Oct 2006.

[3] Frederick P. Brooks Jr., The Mythical Man-Month – Essays on Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[4] Frederick P. Brooks Jr., The Design of Design: Essays from a Computer
Scientist, Addison-Wesley, Boston, MA, USA, 2010.

[5] Yuanfang Cai and Kevin J. Sullivan, “Modularity Analysis of Logical
Design Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software
Eng. ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[6] Iaakov Exman, “Linear Software Models: Standard Modularity
Highlights Residual Coupling”, Int. Journal on Software Engineering
and Knowledge Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[7] Iaakov Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal on Software Engineering
and Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015.
DOI: 10.1142/S0218194015500308

[8] Iaakov Exman and Rawi Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[9] Iaakov Exman, “Conceptual Software: The Theory Behind Agile-
Design-Rules”, in Proc. SEKE’2018 30th Int. Conf. on Software
Engineering and Knowledge Engineering, Redwood City, CA, USA, pp.
110-115, July 2018. DOI: 10.18293/SEKE2018-182.

[10] Iaakov Exman and Alon Tsalik Shmilovich, “Quantum Software
Models: The Density Matrix for Classical and Quantum Software
Systems Design”, (2021) https://arxiv.org/abs/2103.13755

[11] Richard P. Feynman, “Simulating Physics with Computers”, Int. J.
Theor. Phys., 21:467, 1982.

[12] Caroline Figgatt, Dmitri Maslov, Kevin A. Landsman, Norbert M.
Linke, Shantanu Debnath and Christofer Monroe, “Complete 3-Qubit
Grover Search on a programmable quantum computer”, Nature
Communications, 8: 1918, 2018. DOI: https://doi.org/10.1038/s41467-
017-01904-7

[13] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Boston, MA, 1995.

[14] Lov K. Grover, “Quantum Computers can search arbitrarily large
databases by a single query”, Phys. Rev. Lett. 79(23): 4709-4712, 1997.

[15] Daniel Jackson, The Essence of Software, Princeton University Press,
Princeton, NJ, USA, 2021.

[16] Serge Lang, Algebra, Revised 3rd edition, Springer-Verlag, Berlin, 2002.

[17] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge, UK,
2000.

[18] Ricardo Perez-Castillo, Luis Jimenez-Navajas and Mario Piattini,
“Modelling Quantum Circuits with UML”, in Proc. QSE’2021 Quantum
Software Engineering Workshop. https://arxiv.org/abs/2103.16169.

[19] Andres Rodriguez, “Extending OpenUP to Conform with the ISO
Usability Maturity Model”, in Sauer et al. (eds.) Human-Centered
Software Engineering, HCSE 2014, LNCS, vol. 8742, Springer, Berlin,
pp. 90-107, (2014). https://doi.org/10.1007/978-3-662-44811-3_6

[20] Todd Rowland and Eric W. Weisstein, “Direct Sum”,
https://mathworld.wolfram.com/DirectSum.html, 2022.

[21] Neeraj Sangal, Ev Jordan, Vineet Sinha and Daniel Jackson,
"Dependency Models to Manage Complex Software Architecture", Proc.
OOPSLA'05, pp. 167-176, October 2005.
https://doi.org/10.1145/1094811.1094824

[22] John von Neumann, Mathematical Foundations of Quantum Mechanics,
New Edition, Princeton University Press, Princeton, NJ, USA, 2018.

[23] Eric W. Weisstein, Bipartite graph (2022),
http://mathworld.wolfram.com/Bipartite-Graph.html

[24] Eric W. Weisstein, Laplacian (2022),
http://mathworld.wolfram.com/LaplacianMatrix.html

