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Abstract— Quantum Software Models is a theoretical framework 
to systematically design and analyze any software system – be it 
quantum, classical or hybrid – representing it by a design Density 
Matrix. Recently, we have demonstrated a top-down approach, to 
decompose a whole software system Density Matrix into modules, 
using basis vector projectors of the Matrix.   However, it would 
be even more natural to have a systematic bottom-up procedure, 
to compose a whole software system Density Matrix, given a set 
of well-designed software module matrices, taken as sub-systems. 
This is exactly the paper’s purpose. The result obtained: the 
whole software system Density Matrix is a perfect Direct Sum of 
module density matrices. This result yields clear software design 
benefits: it is bidirectional, one can traverse the software system 
hierarchy top-down or bottom-up, in particular, gradually 
building up the whole system from verified correct modules, 
assured by spectral decoupling techniques. The claim is formally 
validated and is illustrated by software system studies.1 

Keywords— Software Design; Software Density Matrix; 
Modularity; Direct Sum; Module Density Matrix; Quantum 
Software. 

I.  INTRODUCTION 

Quantum Software Models is a theory of software system 
design, consisting of a surprising synthesis of two apparently 
unrelated knowledge frames, both based upon linear algebra.  

The 1st knowledge frame, Linear Software Models [6], [7], 
a linear algebraic software design theory, where vectors stand 
for software concepts, combined into software system matrices, 
such as the Laplacian [24]. Matrices enable software systems 
decomposing into modules by spectral methods [8]. 

The unexpected synthesis starts with Frederick Brooks’ 
original idea: “Conceptual Integrity is the most important 
consideration for software system design” [4]. Linear Software 
Models express Brooks’ underlying conceptual principles in 
algebra: Propriety – use only absolutely necessary concepts to 
describe software and no more – implying vectors’ linear 
independence. Orthogonality – concepts should be totally 
independent of one another – a stronger demand than linear 
independence. Propriety and Orthogonality lead to modularity. 

The 2nd knowledge frame, Quantum theory is a generic 
frame, explaining “whole systems in terms of their parts”. It is 

 
1 DOI: 10.18293/SEKE2022-158 

applicable to a wide variety of physical systems and their parts, 
e.g. crystals, molecules, atoms, and particles. 

Quantum Software Models (QSM) were inspired by 
Quantum Computing, originally proposed by the physicist 
Feynman [11] to perform challenging computations simulating 
physical systems composed of particles. The QSM novelty is 
the application to whole software systems in terms of modules. 

 

A. From Software Modules to a Whole 
Software System and Back 

A Schematic Transition Diagram outlining a path from 
separate module Density Matrices, through a Direct Sum, to a 
whole software system Density Matrix, and back, is in Fig. 1. 

 

 
 

Figure 1. Schematic Transition – from separate module Density Matrices 
to a whole Software System Density Matrix, and back, with the intermediate 
modules Direct Sum. Composition is from left to right (blue arrows). 
Decomposition is from right to left (orange arrows). (Figures online in color). 

 
The direct sum is formally defined for a few mathematical 

objects. This work only refers to matrices and subspaces2*. 
A matrix direct sum [20] – with symbol ⨁ – of n square 

matrices (M1, M2,…,Mn) with possibly different sizes, 
constructs (see Fig. 2) a block diagonal matrix as follows 

 
 

⨁j Mj = diag(M1, M2,…,Mn) 
(1) 
 

 
* Direct sums are also defined for mathematical “modules”, which are 
different entities from this paper’s software modules. 



 
Figure 2. Matrices Direct Sum – constructs an enclosing block-diagonal Matrix. 
 

A subspaces direct sum refers to subspaces having only the 
zero vector in common. As Density Matrices act in Hilbert 
spaces (e.g. [17] page 66), their direct sums, for software 
matrices and their sub-spaces, are effectively equivalent.  

B. Paper Organization 

The remaining of the paper is organized as follows. Section 
II reviews the basics of software system algebraic 
representation. Section III illustrates the Direct Sum 
composition of modules into a Classical Software System, then 
formulates the software modules’ direct sum procedure. 
Section IV illustrates the procedure for a Quantum Software 
System. Section V validates the direct sum procedure from a 
few viewpoints. Section VI is a concise review of related 
works. Section VII concludes the paper with a discussion. 

 
 

II. THE BASICS OF SOFTWARE SYSTEM ALGEBRAIC 

REPRESENTATION 

 
A. From Bipartite Graph through Laplacian to 

Density Matrix 

Software system algebraic design refers to 3 entities:  
 Structors are generalizations of classes in Object 

Oriented Design (OOD).  
 Functionals generalize OOD class methods.  
 Concepts impart meaning to software systems’ 

Structors and Functionals.  
The relations between Structors labelled by (S1, S2,…,Si), 

and respective provided Functional declarations labelled by 
(F1, F2,…,Fk) are depicted in bipartite graphs [23] as in Fig. 3.  
 

 
 

Figure 3. Bipartite Graph of a Command Design Pattern – It has 12 vertices, 6 
Structors (Si), 6 Functionals (Fk), decomposable into 3 modules (Mj) (blue 
background). For instance, Structor S6 provides Functionals F5, F6 as shown 
by arrows. See section III-A for the conceptual meanings of the Command 
Design Pattern Structors and Functionals.  
  

The Laplacian Matrix L is defined upon a graph as follows: 
 

L = D - A 
 

(2) 

D is the diagonal Degree matrix with Dii the vertex i degree, 
and A is the Adjacency matrix with negative 1-valued Aij if 
vertex j is a neighbor of vertex i, and zero-valued otherwise.  

Von Neumann’s ([22], pages 194, 214) Density Matrix   – 
the cornerstone of our Quantum Software Models, representing 
software systems – is easily obtained from a Laplacian, 

(Braunstein et al. [2]), by normalizing the Laplacian Matrix by 
its Trace (sum of diagonal degrees) Tr(L): 

 

 = L / Tr(L) 

(3) 
 

B. Software Modules Represented by Density 
Matrices 

A Density Matrix  may represent whole software systems 
or their modules. For example, the rightmost module M3 in 
Fig. 3, is shown again in Fig. 4, beside its Density Matrix. The 
Density Matrix – by eq. (3) – is the Laplacian Matrix (within 
parentheses) normalized by the factor 1/6. 

A Density Matrix, as a normalized Laplacian, preserves all 
Laplacian properties, such as rows/columns summing zero, 
positive diagonal, and so on.  

 

Bipartite Graph Density Matrix of Module M3 

 

 
 

 

Figure 4. Bipartite Graph and Density Matrix  of module M3 – The left panel 
bipartite graph shows 4 vertices, 2 Structors labelled (S5, S6) and 2 Functionals 
labelled (F5, F6) as in Fig. 3.  The right panel shows the Laplacian (within 
parentheses) {by eq. (2)}.  The 4 columns and 4 rows have the same vertex 
order (light orange). The Degree matrix D is the diagonal (green circles). The 
Adjacency matrix A (hatched blue) is in the upper-right and lower-left 
quadrants. The Density Matrix  is the Laplacian normalized by the factor 1/6  
{eq. (3)} since the sum of degrees of the Diagonal D equals 6. 

 
III. FROM MODULES TO SOFTWARE SYSTEM: BACK & 

FORTH 

This section, after an introductory classical software 
system, describes procedural tasks for composing a set of 
well-designed software modules, taken as sub-systems of a 
whole software system. The outcome is a formal procedure 
with an intermediate direct sum of modules.  

A. Introductory Classical Software System: 
Command Pattern 

Design Patterns are canonical software sub-systems to be 
used and re-used. Four authors, known as the Gang-of-Four, 
collected patterns in the “GoF” book [13].  

The Command Pattern is an example, whose basic ideas 
are: a- it is an abstraction applicable to any common command 
– copy, paste, delete, save, etc. b- it has four generic concepts: 
an invoker, e.g. a menu-item or a button; a chosen command, 
one of the previously mentioned, e.g. copy; a receiver of the 
command application, e.g. a file or a document; a history 
mechanism, enabling undo/redo of commands perhaps 
invoked by mistake. These concepts, Structors & Functionals 
of this software system, assign conceptual meanings to the Si 
and Fk labels of Fig. 3. Command Pattern Structors & 
Functionals are shown together with their modules, in Fig. 5.  



 
Figure 5. Command Design Pattern: Structors & Functionals – It has 3 
modules: Command, Invoker, Receiver. Compare with bipartite graph in Fig. 
3. Structors’ names with an “I” are Interfaces inherited by Concrete classes.  
 

Next are transition stages from modules (Fig. 6), through 
a Direct Sum (Fig. 7) to System Density Matrix (Fig. 8). 

 

 
Figure 6. Command Design Pattern: Separate Modules – One sees 3 separate 
module Density Matrices (within red rectangles), and different normalizations: 
M1 has a factor 1/10, M2 has a factor ½ and M3 has a factor 1/6. 
 

 
Figure 7. Command Design Pattern: Direct Sum of Module Density Matrices 
– The single big matrix has 3 block-diagonal modules within red rectangles. 
 

 
 

Figure 8. Command Design Pattern: Renormalized whole Software System 
Density Matrix – The diagonal Degree Matrix D (green circles) keeps the 
Direct Sum values, reordered due to repositioned Functionals and Structors. 
The Adjacency Matrix A (hatched blue) keeps values as each module carries 
the same Direct Sum columns and rows. Modules order is preserved. 

Underlying the Transition from modules to the whole 
software system 3 tasks were performed: 

1- Reordering Structors & Functionals – composition 
collects Structors together and Functionals together; 
decomposition separates them by modules; 

2- Preserving modules order – the stage from Direct 
Sum to whole System Density Matrix, and vice-versa, 
keeps the same modules order; 

3- Renormalization – transition through direct sum needs 
renormalization of density matrices in both directions. 

B. Composition Procedure by Direct Sum of 
Modules 

Here the Composition Procedure from modules to a whole 
software system is formulated in pseudo-code. 

The reverse Decomposition Procedure from the whole 
system Density Matrix back to modules’ Density Matrices is 
easily inferred from the above Composition Procedure. 

IV. QUANTUM SOFTWARE SYSTEM AND OTHER SYSTEMS 

Having illustrated the classical Design Pattern, here we 
describe a quantum software system, viz. Grover Search. In 
addition, we concisely mention other systems. 

Composition Procedure 1– by  Direct Sum of Modules 
Given:  Density Matrices of all Modules needed; 
Obtain: Density Matrix of the whole Software System. 
 

 Preparation Phase 
1. Modules Choice – Choose desired modules; 
2. Normalization factors – Delete from matrices: they 

are not needed for composition;  
 

Direct Sum Phase 
1. Modules’ order Choice – Decide the modules order, 

to be preserved in the Transition Phase; 
2. Prepare Direct Sum – in block-diagonal format, in 

the decided modules’ order;  
 

Transition to Whole System Density Matrix 
1. Prepare labels list – first Functionals, then Structors; 
2. Prepare empty system Density Matrix – with size 

equal the sum of modules’ Density Matrices’ sizes; 
3. Loop on list of modules, preserving their order; 

For each module Density Matrix do: 
 Add upper-right Adjacency matrix square module 

(including its zeros) to the system Density matrix 
according to the module respective row and 
column labels, keeping the block diagonal format 
of the upper-right quadrant; 

 Add diagonal degrees in the same labelled rows, 
such that the row values sum to zero; 

 Reflect the Adjacency matrix module, around the 
diagonal, to the lower-left quadrant; 

 Fill-in remaining empty system matrix elements of 
the whole system density matrix with zeros. 

4. Renormalize the system Density Matrix 
5. Output system Density Matrix 



A. Quantum Software System: Grover Search 

Quantum Software systems design starts getting Structors 
& Functionals from Quantum Circuits ([17] page 22), i.e. 
sequential circuits with time increasing from left to right. 

The Grover quantum Algorithm [14] searches unsorted 
databases with quadratic speedup relative to classical 
algorithms. Grover search begins with equal probability qubits 
superposition by the Hadamard operator H to the tensor power 
of n, ending with measurement. Next are quantum circuit, its 
Direct Sum, and system Density Matrix (in Figs. 9, 10, 11).   
 

 
 

Figure 9. Grover Search Quantum Circuit – It has four (green) “boxes”, the 
system Structors {S1,S2,S3,S4}. Each Structor contains one or more 
Functionals {F1,F2,F3,F4}. The Amplification Structor S3 has two 
Functionals F2 and F3. Modules {M1,M2,M3} (in red rectangles) contain one 
or more Structors. The Grover Iteration module is a loop executed alternating 
the Functionals inside the Oracle S2 and Amplification S3 Structors. Check 
Amplification F3 decides when the loop ends, passing results to Measurement. 
 

The Inversion Operator F2 of the Grover Iterator (Fig. 9) is 
used in both Iterator Structors. F2 has the form I - 2*|x⟩⟨x| 
([17] page 251) with x the correct searched item value  in the 
Oracle S2, or any item  in the Amplification S3, where F2 is 
multiplied by a minus sign. This is a typical inheritance case 
between Structors, similar to classical software inheritance.  

 

 
 

Figure 10. Grover Search Direct Sum of Modules’ Density Matrices – 
modules are block-diagonal, enclosed by red rectangles. 

 
 

 
 

Figure 11. Grover Search whole software system Density Matrix. 

Let us compare the Command Design Pattern – the 
classical software system – with the Grover Search – the 
quantum software system.  

The diagrams serving as information source for the whole 
system and its modules, are different: 

 
 UML class diagrams for classical systems; 
 high-level quantum circuits, such as Fig. 9, for 

quantum systems. 
 

However, once one has the list of Structors & Functionals, 
from then on, the procedure is identical, and totally 
independent of the conceptual meanings of the system.  

This observation reinforces the plausibility of the idea that 
the same design approach should be applied to whatever kind 
of software system, classical, quantum or hybrid. 
 

B. Hybrid and Simulation Systems 

We have performed studies of other systems, which due to 
space limitations are not shown here. They will appear in a 
longer paper to be published. Other studies include: a) hybrid 
systems containing classical and quantum sub-systems; b) 
software systems whose purpose is not to compute specific 
numerical/logical results; the ultimate purpose of these 
software systems is to simulate real-world systems, to enable 
verification of the correctness of their control mechanisms, 
e.g. elevator systems.  

V. VALIDATION 

This paper’s claim, the Software Density Matrix is a Perfect 
Direct Sum of Modules’ Density Matrices, and its implications 
are formally validated here, from three complementary 
viewpoints: 

 The meaning of Perfect Direct Sum; 
 Density Matrix as a complete information source 

of the Software System; 
 Software Conceptual Integrity from Modularity. 

 
A. Meaning of Perfect Direct Sum 

We first provide a definition of a well-designed software 
system, in terms of algebraic Conceptual Integrity, in the next 
text-box. 

Definition 1 – Well-designed Software System 
A Density Matrix software system, well-designed in 
algebraic Conceptual Integrity terms, obeys the following 
Adjacency Matrix conditions, within the Density Matrix: 

 Linear Independences – all  its Structors are 
mutually linearly independent and all its 
Functionals are mutually linearly independent; 

 Square Adjacency Matrix – each quadrant of the 
Adjacency Matrix, within the Density Matrix is 
square, a linear algebraic consequence of the 
previous Linear Independences’ condition [6]; 

 Orthogonality – all modules in both quadrants of 
the Adjacency Matrix, are block diagonal. 



The meaning of the Perfect Direct Sum of the modules 
composing a software system is formulated in the next 
theorem. 

Proof: 

Item a- all vectors within each module are linearly independent 
by the assumption (a) of well-designed modules; modules 
block-diagonality follows from their matrix elements being in 
disjoint differently labelled columns and rows; the overall 
modules constitute a square, since their number of columns 
equals their number of rows; 
Item b- 1. The degrees diagonal matrix elements are generated 
for all rows of each module, the same rows of the Direct Sum; 
they are reordered, since the columns/rows are repositioned; 
Item b- 2. Exactly the same matrix elements in the same 
modules’ order is determined by assumption (b) the 
Composition Procedure 1; 
Item b- 3. The normalization factors’ denominators are the 
sum-of-degrees of the respective Density Matrix. By the Item 
b- 1 the degrees’ of the whole system Density Matrix are 
exactly all the Direct Sum diagonal elements. Thus the whole 
Density Matrix denominator is the sum of the modules sum-of-
degrees.            ⧠ 
 

B. Density Matrix: Complete Source of 
Software System Information 

Here we regard the whole software Density Matrix as an 
information source about the software system, and inquire 
about its information completeness.  

Composing the software system from modules, through the 
modules’ Direct Sum, two information aspects need analysis: 
 Completeness about each module – Theorem 1 is a full 

positive answer: no information is lost in the process from 
separate modules, through Direct Sum, to a whole system. 

 Completeness beyond individual modules – the software 
representation of Procedure 1 is a Density Matrix for all 
purposes. The 1st quantum computing axiom, in von 
Neumann’s Density Operator version ([17] page 102) is a 
full positive answer: “the system is completely described 
by its density matrix acting on the system state space”.  
 

C. Software Conceptual Integrity from 
Modularity 

Modularity is an essential contribution to Conceptual 
Integrity of the whole system Density Matrix, obtained by 
Composition Procedure 1. This follows from assumption (a) of 
the Perfect Direct Sum Theorem 1.  

Definition 1, on well-designed software systems, the basis 
of the referred assumption (a), explicitly incorporates the linear 
algebraic expressions of Frederick Brooks’ underlying 
principles of Conceptual Integrity, viz. Propriety and 
Orthogonality [4]. 

VI. RELATED WORKS 

This section offers a very concise review of related works. 
We start with algebraic approaches to modularity. Within 

Linear Software Models, two spectral approaches to modularity 
were developed: one used the Modularity Matrix [7] and 
another used the Laplacian Matrix [8]. In both cases, modules 
were extracted from matrix eigenvectors. Within Quantum 
Software Models, Exman andrefer Shmilovich modularized 
software system Density Matrices [10] based upon disjoint 
projectors of the Matrix subspaces.  

Non-algebraic alternatives have been often based upon a 
DSM (Design Structure Matrix) [21]. Some of them [5], were 
justified by economic arguments (Baldwin & Clark [1]). 
Another alternative, to extend UML to quantum circuits [18], is 
certainly interesting and accumulated large experience, but still 
lacks a rigorous and self-consistent theory. See also Rodriguez 
on OpenUP [19] and its bibliography. 

Next, we refer to Quantum Computing (QC) (e.g. [17]) 
issues. This paper’s Introduction states that QC is a foundation 
of Quantum Software Models. A QC modularity issue 
addressed by these models is human understanding and reuse 
of quantum circuits or parts thereof, as opposed to emphasis on 
efficient runtime implementation. An example [12] refers to 
alternative Grover iteration optimizations, with this respect.  

Finally, we highlight the concepts’ importance to software 
design. Conceptual Integrity notions and underlying principles 
were introduced in the well-known books by Frederick Brooks, 
The Mythical Man-Month [3] and The Design of Design [4]. A 
recent contribution to the software design field, is the book by 
Daniel Jackson “The Essence of Software”, in which he 
explains why concepts matter for great design [15]. 

This, and our previous papers, claim that an algebraic 
approach is essential for software design, as discussed next. 

Theorem 1 – Perfect Direct Sum of Software System 
Modules’ Density Matrices 
Assuming:  
(a) each module Density Matrix of a chosen set of 

modules is well-designed, 
and: 
(b) The whole software system Density Matrix, composed 

of the chosen set of modules, is obtained from the 
Direct Sum of the modules’ Density Matrices by the 
Composition Procedure 1; 

Then: 
a- The composed whole software system Density Matrix is 

well-designed; 
b- The composed whole software system Density Matrix 

perfectly contains all the information of the Direct Sum, 
no less and no more, in the following sense: 

1. The degrees’ diagonal of the whole system Density 
Matrix has exactly the same matrix elements of the 
Direct Sum diagonal, only reordered; 

2. The modules in the upper-right quadrant of the 
whole system Density Matrix have exactly the same 
matrix elements of the Direct Sum modules, in 
exactly the same modules’ order; 

3. The renormalization factor of the whole system 
Density Matrix – the inverse of the sum-of-degrees 
– is the inverse of the sum of denominators of the 
normalization factors of the Direct Sum modules. 



VII. DISCUSSION 

A. Density Matrix Choice for Software Design 

The first and foremost consideration for the Density Matrix 
choice for software design, is the Quantum theory in which it is 
embedded. It offers invaluable benefits: it is rigorous, self-
consistent, and triggers otherwise unthinkable questions. 
Furthermore, the Density Matrix affords utmost generality 
relative to software systems’ pure or mixed states. 

Practical benefits of the algebraic design are:  
a) Agile-Design-Rules –Brook’s Conceptual Integrity 

[3][4], implemented by a Laplacian or a Density Matrix, is a 
theory behind Agile-Design-Rules, conforming to accepted 
best practices’ wisdom (see [9] and its bibliography);  

b) Input modules a priori correctness – the correctness of 
Direct Sum input modules, is assured by algebraic spectral 
modularization and its specialized decoupling techniques [8]. 

c) Format uniformity & Software generality – the core 
asset of the algebraic software design, is an extremely simple 
and uniform Density Matrix format, stimulating general 
applicability to software systems of any kind, size, or module 
numbers. 

B. Direct Sum, Direct Product and Tensor 
Product 

We use Direct Sum and not Direct Product because a 
direct sum element is nonzero only for a finite number of 
entries, and our Density Matrices act on finite vector spaces. 
Direct product elements may have an infinite number of 
nonzero entries [20]; as Lang notes for abelian groups ([16], 
page 36), the direct sum is a direct product subset. 

The Tensor Product is applicable to Density Matrices. But 
its relation to Direct Sum, in the software design context, is out 
of the scope of this paper, and will be discussed elsewhere.  

C. Future work 

Two topics are the subject of future work:  
1st- Outliers’ Presence – the Direct Sum has been applied to 

modules’ Density Matrix in the Composition Procedure 1, 
assuming absence of outliers coupling modules. Outliers will 
be pre-processed by module decoupling techniques [8]. 

2nd- Overlapping concepts – a Natural Language post-
processing function will be developed, to check the existence, 
and to streamline semantically overlapping concepts, occurring 
in different modules composed by Procedure 1. 

D. Main Contribution of this Paper 

This paper’s main theoretical contribution is the Module 
Matrices’ Direct Sum as a perfect composition of the whole 
software system Density Matrix. Practical benefits are design 
flexibility, enabling whole system gradual build-up from 
verified correct modules, assured by the theoretical framework. 
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