
Improving Mutation-Based Fault Localization via
Mutant Categorization

Xia Li
Department of Software Engineering and
Game Design, Kennesaw State University

xli37@kennesaw.edu

Durga Nagarjuna Tadikonda
Department of Software Engineering and
Game Design, Kennesaw State University

dtadikon@students.kennesaw.edu

Abstract—Fault localization is one of the most important
activities in software debugging. Among various fault localization
techniques, mutation-based fault localization (MBFL) has been
commonly studied with its promising performance. However,
MBFL should be improved further by incorporating more useful
program information. In this paper, we propose MuCatFL, a
novel and lightweight technique for better MBFL via mutant
categorization. In details, after executing the original test suite
against all generated mutants, we categorize the mutants into
two groups, positive mutants and negative mutants, to rank the
tied program elements. We evaluate MuCatFL by performing
an extensive study on 395 real software faults from the widely
used benchmark Defects4J. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,
localizing 138 faults within the Top-1 position on method-level,
43.75% more than traditional Metallaxis technique). We also
investigate that only positive mutants can contribute to the
effectiveness of MBFL. Our findings can also provide guidance
for the strategies to reduce the execution cost of MBFL.

Index Terms—Software debugging, Fault localization, Muta-
tion testing

I. INTRODUCTION

In modern software development, bugs (a.k.a., faults) are
prevalent and inevitable due to the complexity of software
systems. They have been widely recognized as notoriously
costly and disastrous. For example, Tricentis.com [1] investi-
gated and reported software bugs impacting 3.7 billion users
and $1.7 trillion in assets. The first step of debugging is
to localize the potential faulty location(s). However, manual
fault localization can be time-consuming and error-prone due
to the huge code volume. To solve this problem, researchers
have proposed various automated fault localization (FL) tech-
niques [2], [3], [4], [5] to help reduce manual efforts. The
basic idea of fault localization techniques is to generate a
ranked list of program elements (e.g., methods or statements)
according to the descending order of their suspiciousness
values. Developers can use the ranked list to manually check
each element to find and fix the faults in the faulty program.
Thus, the target of FL techniques is to rank the faulty elements
as high as possible in the ranked list.

In the literature, spectrum-based fault localization
(SBFL) [6], [2], [7] has been intensively studied since it
simply considers the coverage information of failed/passed

DOI:10.18293/SEKE2022-157

tests which can be easily collected by many coverage analysis
tools. The basic intuition of SBFL is that one program
element is more suspicious if it is executed/covered by
more failed tests than passed tests. Based on the intuition,
various SBFL techniques are proposed (such as Tarantula [2],
Ochiai [3], DStar [8], Jaccard [6]) to utilize statistical
analysis to compute the suspiciousness values of program
elements. Despite the lightweightness, SBFL still has some
limitations. For example, some faulty elements may also
be covered by passed test cases coincidentally and failed
test cases may still cover non-faulty elements. To overcome
this limitation, researchers propose mutation-based fault
localization (MBFL) [5], [4] to consider the actual impact
information (a.k.a., killing information) of each program
element on the test outcomes by mutating program source
code. To localize faulty elements more precisely, typical
MBFL techniques such as Metallaxis [4] and MUSE [5]
generate mutants for the original program by changing
statements syntactically based on predefined rules (also called
mutation operators, such as changing a+b into a-b). All
the generated mutants are then executed by original test suite
and the new execution results of test cases are used for more
precise fault localization.

MBFL has been proved to be more effective than SBFL in
real bugs [9], but its accuracy is still not promising as expected
for many faults. The potential reason is that impact information
alone cannot help distinguish some tied program elements
(i.e., many elements share same suspiciousness values with
the actual buggy elements). Various studies are proposed to
improve the accuracy of MBFL. For example, MuSim [10]
is presented by identifying the faulty statements based on test
case proximity to different mutants. However, these techniques
heavily rely on complex computation or analysis (e.g., using
test case proximity or neural network). In this paper, therefore,
we propose MuCatFL, a novel and lightweight technique
for better MBFL by mutant categorization. In details, after
executing the original test suite against all generated mutants,
we categorize the mutants into two groups, positive mutants
and negative mutants, to rank the tied program elements.
To evaluate MuCatFL, we perform an extensive study on
395 real software faults from the widely used benchmark
Defects4J (V1.2.0) [11]. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,

localizing 138 faults within the Top-1 position, 43.75% more
than traditional Metallaxis technique). This paper makes the
following contributions:

• Technique A novel and lightweight MBFL technique
MuCatFL via mutant categorization.

• Study An extensive study on localizing real faults to
demonstrate the effectiveness of MuCatFL.

The structure of this paper is as follows. In Section II, we
introduce the basis of fault localization and related studies
on MBFL. In Section III, we propose the framework and
algorithm of MuCatFL. Next, we introduce the experimental
study design and analyze the experimental results in Section
IV and Section V. Finally, we conclude our paper in Section
VI and Section VII.

II. BACKGROUND AND RELATED WORK

A. Fault Localization

Spectrum-Based Fault Localization. The basic idea of SBFL
is that program elements covered by more failed test cases
tend to be more suspicious. SBFL takes the coverage infor-
mation between program elements and test suite as input and
output a suspicious ranked list in the descending order of
suspiciousness values. To date, various SBFL techniques have
been proposed such as Tarantula [12], SBI [7], Ochiai [3],
Jaccard [6], etc. Even though these techniques use different
statistical analysis, they mainly rely on the following compo-
nents for calculation: (1) the number of all failed/passed tests,
i.e., nf /np, (2) the number of failed/passed tests executing
program element e, i.e., nf (e)/np(e), and (3) the number of
failed/passed tests that do not execute program element e,
i.e., nf (ē)/np(ē). For example, SBI formula can calculate the
suspiciousness value of element e as Susp(e) =

nf (e)
nf (e)+np(e)

.
All program elements are ranked based on their suspiciousness
values calculated from the formulae and the ranked list is
provided to developers to check and repair bugs manually.
Mutation-Based Fault Localization. SBFL has one major
limitation. In buggy programs, failed tests may cover non-
buggy program elements that do not contribute to the program
failure and buggy program elements are also executed by
passed tests. MBFL techniques overcome this limitation by
considering more effective impact information between test
suite and program elements. The first MBFL technique Met-
allaxis [13], [4] is proposed based on the following intuition: if
one mutant impacts failed tests (e.g., the test outcomes change
after mutation), its corresponding program element may have
caused the failures so that this element should have higher
probability to be faulty than others. In Metallaxis, mutants that
have impacts on tests are viewed as program elements covered
by the tests while the others as uncovered. By simulating
the coverage information, Metallaxis applies traditional SBFL
formulae to calculate each mutant’s suspiciousness value.
Finally, the maximum value of mutants is treated as the
suspiciousness value of corresponding program element. For
example, based on the SBI formula, the suspiciousness value

of mutant m can be calculated as Susp(m) =
n
(m)

f
(e)

n
(m)

f
(e)+n

(m)
p (e)

,

where n
(m)
f (e)/n(m)

p (e) is the number of failed/passed tests
whose outcomes are changed due to the mutant m on element
e. Another popular MBFL technique is called MUSE [5]
which shares similar intuitions with Metallaxis that mutating
faulty program elements may cause more failed tests to pass
than mutating correct elements and mutating correct elements
may cause more passed tests to fail than mutating faulty
elements. Besides the two basic MBFL techniques, TraPT [9]
extends them to obtain more detailed impact information
by transforming test outcomes to extract various test failure
messages for better fault localization. For example, TraPT
considers MBFL results with the following four different types
of test outcomes: (1) Type1: pass/fail information, (2) Type2:
exception type, (3) Type3: exception type and exception mes-
sage, and (4) Type4: exception type, message, and the full
stack trace. The four types of test outcomes will generate
different impact information. Please note that Metallaxis uses
Type4 test failure outcomes and MUSE uses Type1 test failure
outcomes according to TraPT.

B. Improvement of Mutation-Based Fault Localization

Previous studies [4], [5], [13] have demonstrated the ef-
fectiveness of basic MBFL. However, MBFL still has two
major limitations regarding its efficiency and accuracy. The
first limitation is that MBFL suffers from the extremely high
mutant execution cost problem since it generates a significant
number of mutants for the program under test, and each mutant
must be executed by all test cases [14], [15]. To overcome this
limitation, various studies have been proposed. FTMES [16]
is proposed to use only failed tests to execute against mutants
and avoid the execution of passed test cases by replacing the
impact information with coverage information. IETCR [15] is
introduced to reduce the execution of test cases by calculating
the entropy change of tests and selecting a proportion of them
according to the entropy values. SMBFL [17] is proposed to
reduce the execution cost by examining only the statements
in the dynamic slice of the program under test to reduce the
number of statements to be mutated. Another limitation of
MBFL is that impact information alone cannot distinguish
many tied program elements so that more advanced program
features should be further extracted. For example, MuSim [10]
is presented by identifying the faulty statements based on test
case proximity to different mutants, 33.21% more effective
than existing fault localization techniques such as DStar,
Tarantula and Ochiai. In this paper, we propose a novel and
lightweight approach to improve the accuracy of MBFL, but
our results and findings can provide valuable guidance for
more efficient MBFL.
Buggy Program

Test Suite Mutation Operators Mutant Generation Suspiciousness Calculation Reranking

Mutant Categorization

positive negative

Fig. 1: MuCatFL framework

III. APPROACH

In this section, we introduce the framework (Section III-A)
and algorithm (Section III-B) of our new technique MuCatFL.
We also present a real-world example in Section III-C.

Algorithm 1: MuCatFL Algorithm
Input: Faulty program P , test suite T , coverage

information C, SBFL formula F , a group of
mutators Op

Output: A ranked list S
1 P ′ ← A set of elements that covered by failed tests

based on the coverage C
2 for element e ∈ P ′ do
3 M(e) ← a set of mutants for e based on Op
4 Npositive(e) ← 0 which is the number of positive

mutants for e
5 Nnegative(e) ← 0 which is the number of negative

mutants for e
6 for m ∈ M(e) do
7 Sus(m) ←

F (n(m)
p (e),n(m)

f (e),n(m)
f (ē),n(m)

p (ē))
8 if n(m)

f (e) > 0 then
9 Npositive(e) ++

10 else
11 if n(m)

p (e) > 0 then
12 Nnegative(e)++
13 end
14 end
15 end
16 Sus(e) ← Max(Sus(m))
17 end
18 List S′ ← ranked elements according to initial

suspiciousness values (descending order)
19 List S′′ ← ranked elements from S′ according to the

number of positive mutants (descending order)
20 List S′′′ ← ranked elements from S′′ according to the

number of negative mutants (ascending order)
21 Final ranked list S ← S′′′

A. Framework of MuCatFL

Figure 1 shows the framework with detailed procedures of
MuCatFL. The first several steps are same with traditional
MBFL. Given a buggy program under test and its test suite,
traditional MBFL techniques apply mutation testing to gen-
erate a huge number of mutants for each program statement
based on predefined mutation operators (also called mutators).
Next, the test suite including all failed and passed test cases is
executed against all mutants to record the impact information.
The preliminary suspiciousness values can be calculated based
on various formulae to get the initial ranked list of the program
elements.

In many cases, even the impact information is adopted, some
program elements still are tied with the same suspiciousness
value. To overcome this limitation, in MuCatFL, we also

collect various types of mutants for each program element
based on the impact information. We define the following
mutant categories based on Type1 failure message (pass/fail
information): (1) positive mutant that makes any failed test
pass, (2) neutral mutant that makes all test cases unchanged
and (3) negative mutant that makes all failed tests still fail and
makes any passed test fail. Since neutral mutants do not con-
tribute to the impact information (no change of test outcomes),
we only consider positive mutants and negative mutants in
the detailed implementations. Please note that the category
definitions based on Type4 failure message is different due
to the different impact information (e.g., Type1 for MUSE
and Type4 for Metallaxis). For example, the positive mutant
according to Type4 failure message represents the mutant that
makes the exception type, message and full stack trace of
any failed test change (even the failed test still fails on the
mutant). According to the categories of mutants, we further
rank the tied program elements to break the ties based on the
following intuitions: (1) if a program element can generate
more positive mutants, it has higher probability to be faulty,
and (2) if a program element can generate more negative
mutants, it has lower probability to be faulty. To this end,
for the tied program elements with same suspiciousness value
computed by traditional MBFL, we rank the element higher
if it generates more positive mutants than others. If there are
still tied program elements, we further rank the element lower
if it generates more negative mutants than others. Finally, we
can get the final ranked list for all program elements.

B. Algorithm of MuCatFL

Algorithm 1 describes more implementation details of Mu-
CatFL. The entries of MuCatFL include faulty program P ,
test suite T (with passed tests and failed tests), coverage
information C between P and T . It also includes SBFL
formula F used by MBFL techniques and a group of pre-
defined mutation operators Op. Next, we explain the details
of the algorithm. As the previous study TraPT [9], only
suspicious mutants occurring on program elements executed
by failed tests contribute to MBFL, so we collect a set of
elements P ′ covered by failed tests in Line 1. From Line
2 to Line 17, we iterate all elements from P ′ to collect
required components for MuCatFL. In Line 3, we generate
a set of mutants for each element e based on a group of
predefined mutation operators Op. In Line 4 and Line 5, we
initialize two variables Npositive(e) and Nnegative(e) to store
the numbers of positive mutants and negative mutants for each
element. From Line 6 to Line 15, we iterate all mutants for
e to calculate their suspiciousness values based on the basic
MBFL. We also check if the mutant is positive or negative.
In detail, we first check that if n(m)

f (e) is greater than 0 then
we add 1 to Npositive(e). Otherwise, if n

(m)
p (e) is greater

than 0, we add 1 to Nnegative(e). In Line 16, we assign the
maximum suspiciousness value of all mutants of e as its final
value. Finally, we rank all elements based on the orders of
suspiciousness values, the number of positive and negative
mutants to get the final ranked list (Line 18 to Line 21).

public LegendItemCollection getLegendItems() {
...
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(

index);
--- if (dataset != null) {
+++ if (dataset == null) {

return result;
}
int seriesCount = dataset.getRowCount();
...

}

Fig. 2: Example of buggy and fixed statements from Chart-
1

public DefaultDrawingSupplier(Paint[] paintSequence,
Paint[] fillPaintSequence,...) {

...
this.fillPaintSequence = fillPaintSequence;
...
...

}

Fig. 3: Example of non-buggy statement from Chart-1

C. Example of MuCatFL
In this section, we use a real-world example from Defects4J

(V1.2.0) [11], a widely used Java bug benchmark in the field
of software testing and debugging, to demonstrate the effec-
tiveness of our technique MuCatFL. We use Chart-1 which
denotes the first buggy version from JFreeChart [18] project.
The buggy statement (i.e., if (dataset != null) is
located in the method getLegendItems() of Class
AbstractCategoryItemRenderer as shown in Fig-
ure 2. Based on the traditional MBFL, this buggy state-
ment shares the same suspiciousness value with one non-
buggy statement in Class DefaultDrawingSupplier as
shown in Figure 3. By means of mutant categorization, we
observe that there are two positive mutants generated on
this buggy statement that can make the failed test pass
according to the mutators RemoveConditionalMutator
and NegateConditionalsMutator from the widely
used mutation testing tool PIT [19] while there is
only one positive mutant generated by the mutator
MemberVariableMutator for the non-buggy statement.
This example demonstrates the effectiveness of MuCatFL to
differentiate the buggy elements and non-buggy elements via
mutant categorization, indicating that program elements with
more positive mutants are prone to be faulty.

IV. STUDY DESIGN

In this work, we aim to investigate the following research
questions:

• RQ1: How does MuCatFL perform in localizing real
faults compared with traditional MBFL techniques?

• RQ2: How do positive mutants or negative mutants
impact the performance of MuCatFL separately?

• RQ3: What mutators can generate most positive mutants
for the studied real-world faults?

A. Implementation and Tool Supports

In this paper, we perform on-the-fly bytecode instrumen-
tation using ASM [20] and Java Agent [21] to collect the
required coverage information. We apply the widely used mu-
tation testing framework PIT (Version 1.1.5) [19] to perform
mutation testing. Following the previous study TraPT [9],
we use all 16 mutation operators available in PIT-1.1.5 and
modify PIT to collect the required impact information. For
example, we modify PIT to enable it executing on programs
with failed tests and force it to execute each mutant against
the remaining tests even the mutant is killed by earlier tests.
We implement MUSE and 5 widely used traditional SBFL
formulae (Tarantula [2], Ochiai [3], DStar [8], Jaccard [6] and
SBI [7]) for Metallaxis. We use 395 faulty versions from all
the 6 projects (Lang, Chart, Time, Math, Mockito and Closure)
in widely used Defects4J benchmark (V1.2.0) [11].

B. Evaluation Metrics

Many prior studies [22], [23], [24], [25] perform fault
localization techniques on method-level, i.e., localizing faulty
methods among all source code methods, since statement-
level fault localization may be too fine-grained without context
information [26] and class-level fault localization is too coarse-
grained [27]. In these studies, the suspiciousness value of
one method is assigned as the the maximum suspiciousness
value of all mutants generated in this method. In this paper,
we also evaluate MuCatFL on method-level inspired by other
studies but make some changes since the number of mutants
is involved. In detail, we firstly rank all statements in each
source code method based on Algorithm 1. Next, we find
the top-rank statement and assign its suspiciousness value,
the number of positive mutants and the number of negative
mutants to its corresponding method. Finally, we rank all
source code methods based on the Line 18-20 in Algorithm 1.
We use following evaluation metrics to evaluate various MBFL
techniques. (1) Top-N (Top-1, Top-3, and Top-5 in our study)
metric simply represents the exact position of the buggy
elements in the ranked list. The motivation to use Top-N metric
is that most developers will stop using debugging tools if
they cannot return the actual buggy elements within the Top-5
positions [27]. (2) MFR (mean first rank). For a buggy version
with multiple buggy elements, we use MFR to compute the
mean of the first buggy element’s rank for each buggy version
since the localization of the first buggy element can be a guide
to the rest of buggy elements. (3) MAR (mean average rank)
is simply the mean of the average of all buggy elements’ ranks
for each buggy version.

V. RESULT ANALYSIS

A. RQ1 - Performance of MuCatFL

In this section, we investigate the effectiveness of MuCatFL
compared with traditional MBFL techniques (Metallaxis and
MUSE). Figure 4 shows the overall fault localization results
on all studied subjects (i.e., Lang, Chart, Time, Math, Mock-
ito and Closure from the Defects4J benchmark) in terms

96

192

242

138

232
265

0

100

200

300

Top−1 Top−3 Top−5

Me−Ochiai

97

193

244

138

229
263

0

100

200

300

Top−1 Top−3 Top−5

Me−DStar

79

176

228

128

223
257

0

100

200

300

Top−1 Top−3 Top−5

Me−SBI

79

176

228

122

227
260

0

100

200

300

Top−1 Top−3 Top−5

Me−Tarantula

95

191

243

137

229
265

0

100

200

300

Top−1 Top−3 Top−5

Me−Jaccard

87

170
198

116

193
215

0

100

200

300

Top−1 Top−3 Top−5

MUSE

13.72

16.23

11.49

13.96

0

5

10

15

MAR MFR

Me−Ochiai

13.92

16.57

11.86

14.41

0

5

10

15

MAR MFR

Me−DStar

15.26
17.4

12.43
14.69

0

5

10

15

MAR MFR

Me−SBI

15.26
17.4

12.32
14.6

0

5

10

15

MAR MFR

Me−Tarantula

14.12

16.52

11.95
14.28

0

5

10

15

MAR MFR

Me−Jaccard

50.77
55.05

30.38
35.12

0

20

40

60

MAR MFR

MUSE

MBFL MuCatFL

Fig. 4: Results of MuCatFL compared with Metallaxis and MUSE
TABLE I: Impacts of positive and negative mutants

Tech Name Top-1 Top-3 Top-5 MFR MAR
Me-Ochiai 96 192 242 13.72 16.23

MuCatFL(P and N) 138 232 265 11.49 13.96
MuCatFL(Only P) 133 230 263 12.08 14.71
MuCatFL(Only N) 104 205 246 12.93 15.28

of Top-1, Top-3, Top-5, MFR and MAR. The upper sub-
figures represent the Top-N results and bottom sub-figures
indicate the MFR/MAR results. Each pair of bars in the sub-
figures represents the comparison between MuCatFL and one
traditional MBFL with different formulae. Please note that in
the figure we use “Me-formula” to represent Metallaxis with
corresponding SBFL formula. In these figures, higher Top-N
value and lower MFR/MAR value indicate a better localization
technique. From the figures, we have following observations.
First, MuCatFL with mutant categorization outperforms tradi-
tional MBFL techniques for all SBFL formulae. For example,
in total, Metallaxis with Ochiai formula can localize 96 faulty
methods within Top-1, while MuCatFL is able to localize
138 faulty methods, 43.75% more effective than traditional
MBFL technique. Furthermore, in terms of MAR, MuCatFL
for Ochiai is 13.96, 13.99% more precise than Metallaxis with
Ochiai (16.23). Second, in terms of MAR/MFR, MuCatFL can
improve Metallaxis by less than 20% for the five formulae.
However, MUSE can be improved by 36.2% and 40.16% when
we consider different categories of mutants. The potential
reason can be that MUSE only considers pass/fail information
so that there are more rooms to be improved by utilizing
positive mutants and negative mutants.

B. RQ2 - Impacts of Positive Mutants or Negative Mutants

In the RQ1, we compare MuCatFL with traditional MBFL
techniques by considering both positive and negative mutants.
However, whether both of them contributes to MuCatFL has
not been studied. In this section, we investigate the effective-
ness of MuCatFL by considering positive or negative mutants
separately. Table I shows the fault localization results with
only Ochiai formula for different configurations since Mu-
CatFL with Ochiai can achieve the best performance according
to RQ1. In this table, Me-Ochiai represents traditional MBFL
technique and MuCatFL (P and N) indicates MuCatFL with

both positive and negative mutants. Also, MuCatFL (Only P)
represents MuCatFL only considering positive mutants while
MuCatFL (Only N) represents MuCatFL only considering
negative mutants. From the table, we have following obser-
vations. First, both positive and negative mutants are helpful
for MuCatFL. For example, in terms of Top-1, MuCatFL (P
and N) can localize 138 faulty methods within Top-1, more
than any other configurations. Second, only positive mutants
can still contribute to promising performance of MuCatFL. In
detail, MuCatFL (Only P) can help localize 133 faulty methods
within Top-1, very close to MuCatFL (P and N). However,
MuCatFL with only negative mutants performs worse than that
with only positive mutant (localizing 104 bugs within Top-1).
Such findings demonstrate that failed tests should be more
important than passed tests when localizing faults for MBFL,
indicating the potential improvement of accuracy for some cost
reduction strategies (e.g., FTMES [16] with the execution of
only failed tests against all mutants).

C. RQ3 - Impacts of Mutation Operators for Positive Mutants

In MBFL, we generate mutants by applying different mu-
tation operators, and the findings in RQ2 show that only
positive mutants can contribute to MuCatFL. In this section,
we investigate what mutation operators can mostly lead to
positive mutants in terms of both Type1 and Type4 test failure
messages. We count the number of positive mutants with their
corresponding mutators in Table II and Table III, accordingly.
Please note that we only include 6 most frequent mutators
in the tables, which can reveal some interesting findings. In
the two tables, the first column represents the mutators from
PIT and the second column indicates the number of positive
mutants generated by the corresponding mutators. From the
two tables, we can find that the top 6 mutators are exactly
same for Type1 and Type4 failure message even the orders are
different, indicating that program elements that can be mutated
by these mutators tend to be faulty. This finding can be also
applied to reduce the huge execution cost of MBFL. For
example, mutants generated by top frequent mutators can have
higher execution priorities, or only the top frequent mutators
can be selected to generate mutants.

TABLE II: Mutators generating most positive mutants in
terms of Type1 failure message

Mutator # of positive mutants
NonVoidMethodCallMutator 4686
NegateConditionalsMutator 4170

RemoveConditionalMutator EQUAL ELSE 2698
InlineConstantMutator 1998

ReturnValsMutator 1960
RemoveConditionalMutator EQUAL IF 1912

TABLE III: Mutators generating most positive mutants in
terms of Type4 failure message

Mutator # of positive mutants
NonVoidMethodCallMutator 115912
NegateConditionalsMutator 66043

ReturnValsMutator 47439
InlineConstantMutator 47218

RemoveConditionalMutator EQUAL IF 45171
RemoveConditionalMutator EQUAL ELSE 31347

VI. THREATS TO VALIDITY

The main threat to internal validity is from our implemen-
tation. To reduce this threat, we implement our techniques by
utilizing state-of-the-art tools and frameworks, such as ASM
and PIT. The main threat to external validity mainly lies in
the selection of the studied subjects. To reduce this threat,
we evaluate on more real-world projects. The main threat to
construct validity is that the measurements used may not fully
reflect real-world situations. To reduce this threat, we use Top-
N, MAR and MFR metrics, which have been widely used in
previous studies [9], [25], [28], [24].

VII. CONCLUSION

In this paper, we propose MuCatFL, a novel and lightweight
technique for better MBFL via mutant categorization. In de-
tails, after executing the original test suite against all generated
mutants, we categorize the mutants into two groups, positive
mutants and negative mutants, to rank the tied program el-
ements. We evaluate MuCatFL by performing an extensive
study on 395 real software faults from the widely used
benchmark Defects4J. The experimental results show that
MuCatFL can significantly outperform MBFL techniques (e.g.,
localizing 138 faults within the Top-1 position, 43.75% more
than traditional Metallaxis technique).

REFERENCES

[1] “Tricentis reports,” 2018. [Online]. Available:
https://www.tricentis.com/blog/how-to-avoid-the-tricentis-software-
fail-watch/

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[4] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[5] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[6] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM Sigplan Notices, vol. 40, no. 6, pp. 15–26,
2005.

[8] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using dstar (d*),” in Software Security and Reliability (SERE), 2012
IEEE Sixth International Conference on. IEEE, 2012, pp. 21–30.

[9] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
Oct. 2017. [Online]. Available: https://doi.org/10.1145/3133916

[10] A. Dutta, A. Jha, and R. Mall, “Musim: Mutation-based fault localization
using test case proximity,” International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 31, no. 05, pp. 725–744, 2021.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[12] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault
localization,” in in Proceedings of ICSE 2001 Workshop on Software
Visualization, 2001.

[13] M. Papadakis and Y. Le Traon, “Using mutants to locate” unknown”
faults,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 691–700.

[14] M. Kooli, F. Kaddachi, G. Di Natale, A. Bosio, P. Benoit, and L. Torres,
“Computing reliability: On the differences between software testing and
software fault injection techniques,” Microprocessors and Microsystems,
vol. 50, pp. 102–112, 2017.

[15] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “Ietcr: An information
entropy based test case reduction strategy for mutation-based fault
localization,” IEEE Access, vol. 8, pp. 124 297–124 310, 2020.

[16] A. A. L. de Oliveira, C. G. Camilo-Junior, E. N. de Andrade Freitas,
and A. M. R. Vincenzi, “Ftmes: A failed-test-oriented mutant execution
strategy for mutation-based fault localization,” in 2018 IEEE 29th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2018, pp. 155–165.

[17] N. Bayati Chaleshtari and S. Parsa, “Smbfl: slice-based cost reduction
of mutation-based fault localization,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4282–4314, 2020.

[18] “Jfreechart website,” 2022. [Online]. Available:
https://github.com/jfree/jfreechart

[19] “Pit mutation testing system,” 2022. [Online]. Available: http://pitest.org/
[20] “Asm java bytecode manipulation and analysis framework,” 2022.

[Online]. Available: https://asm.ow2.io/
[21] “Java programming language agents,” 2022. [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-
summary.html

[22] T. Dao, L. Zhang, and N. Meng, “How does execution information help
with information-retrieval based bug localization?” in Proceedings of
the 25th International Conference on Program Comprehension, 2017,
pp. 241–250.

[23] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[24] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[25] J. Sohn and S. Yoo, “Fluccs: using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 273–283.

[26] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis, 2011, pp. 199–209.

[27] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[28] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 2014, pp. 191–200.

