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Abstract — Software testers are an integral part of software
development teams, and consequently need to understand from
different perspectives the project entrusted to them. While
developers might be required to understand a particular module
or area of specialisation within a project, testers’ comprehension
requirements are more far-reaching [1]. Gaining insights into how
testers fare in different comprehension tasks is useful because it
sheds light on how we could potentially support the efforts of the
testing community. This paper reports the results of a laboratory
experiment involving 15 professional software testers. Using
NASA Task Load Index as our instrument of choice, we asked
participants to carry out eight comprehension and application
tasks across four categories (test case design, test automation,
bug finding and adequacy analysis). We then analysed the data
collected to seek to understand the effect of different task types,
education level and participant experience on effectiveness and
cognitive workload.

The results suggest that, while experience is a key element in
successful task completion, this is also influenced by task type. In
fact, the more experienced persons actually tended to fare worse
than their less experienced counterparts in certain tasks (namely,
test case design and adequacy analysis). Level of education had no
significant bearing on successful task completion but differences
in cognitive workload could be observed for both experience and
education-level variables.

I. INTRODUCTION

Program comprehension is a prerequisite for the effective
completion of most tasks in a software engineering context.
Sneed [1] argues that the program code is not the only
artefact that should be of concern. More specifically, effective
members of a development team would need to understand
the code, the environment in which it is deployed, the domain
which it serves, the stakeholders involved and so on. This is
especially the case for software testers, whose comprehension
requirements tend to be more demanding than those of a
developer. Vanitha and Alagarsamy [2] define software testing
as “one of the five main technical activity areas of the software
engineering life-cycle that still poses substantial challenges”.
Other than what seems to be a simple process of checking a
sample of runs, software testing encompasses various intricate
challenges and enfolds a mixture of activities and techniques.

Indeed, with the constantly growing demand for software
and its complexity, ensuring that the software performs as

per the required level of quality is becoming highly critical
and expensive [3]. From a comprehension perspective, while
developers might be required to understand a particular module
or area of specialisation within a project, the testers’ compre-
hension requirements usually span a significantly wider area
of a project. They also typically deal with a broader range of
stakeholders and are expected to carry out a variety of tasks
having significant comprehension prerequisites.

In this context, it would be desirable to gain insights into the
cognitive workload experienced by testers as they comprehend
a task, understand what is required and apply their understand-
ing in completing the task. Such an insight would help guide
recruitment, training, work allocation and mentoring efforts
within organisations. To this end, we approached this work by
posing the following research questions:

RQ1: How are cognitive load and effectiveness in software
testers affected when carrying out different types of
testing tasks?

RQ2: How are cognitive load and effectiveness influenced
by an individual’s experience and education?

The rest of this paper is organised into five further sections,
with Section II providing the necessary background on cogni-
tive workload measurement. Section III outlines the method-
ology we have adopted in this study. Section IV explores
the results and provides the bases for Section V, where the
results are discussed in the context of the research questions
posed above. Finally, through Section VI, we submit proposals
regarding future work, based on the observations made.

II. COGNITIVE WORKLOAD

The term cognitive workload (or mental workload) is widely
used and, while having many definitions, most of them con-
verge on two main aspects: stress and strain [4]. The first refers
to the demands of the task, whereas the second refers to its
impact on the person carrying it out.

When adapting a definition of mental workload, Galy et
al. [5] make reference to Young and Stanton’s [6] claim that
one should also consider “the amount of attentional resources
necessary to perform task as a function of task demand,
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environmental context in which the task is performed, and
past experience of individual with task” [5].

A. Measuring Cognitive Workload

The two most widely used instruments for measuring cog-
nitive workload are the subjective workload assessment tech-
nique (SWAT) [7] and the NASA-Task Load Index (NASA-
TLX) [8]. SWAT measures three dimensions of cognitive
workload (time load, mental effort and psychological stress)
whereas NASA-TLX has six subscales (mental demand, phys-
ical demand, temporal demand, performance, effort and frus-
tration). We have chosen to focus on NASA-TLX because of
its wide application across different domains, and its multi-
dimensional assessment of workload, which provides a richer
insight into the sources of workload over SWAT.

1) NASA-Task Load Index: NASA-TLX [8] is a multi-
dimensional scale designed to obtain workload estimates from
one or more operators as they are performing a task or imme-
diately afterwards. Since its publication in the 1980s, NASA-
TLX has been cited extensively and used in several fields,
ranging across nuclear power plant control rooms, certification
of aeroplanes, operating rooms, computer-generated fighting,
and designing of websites [9]. It consists of a multi-item
questionnaire which, when processed, provides an overall task
load index with a range between 0 and 100. The higher the
rating, the more demanding the task would be. The instrument
also provides measurements of six subscales, as indicated
above (i.e., mental demand, physical demand, temporal de-
mand, performance, effort and frustration). A weighted load
index could also be obtained following a pairwise comparison
of these subscales. Like other interface metrics and question-
naires, the TLX application cannot tell what to repair, but
it assists research in understanding if variations made to an
interface generated a better or deteriorated workload. Although
the instrument has most commonly been used in studies that
contain physical components [10], existing literature on the
topic also includes a substantial amount of work where the
study was used to analyse ergonomics in software systems in
which the physical component was not necessarily of concern.
On the basis of a survey of 500 studies, undertaken 20 years
after first being developed [9], its creator noted that while the
instrument was originally developed for use in the aviation
sector, it had grown to be used in a wide variety of sectors,
not least in software engineering.

III. METHODOLOGY

In this section, we present the methodology and discuss key
decisions taken during its design. All material related to the
methodology and results is available on our OSF repository1.

A. Task Design

Task selection and design was of critical importance in this
study. Given the rich spectrum of activities in which software
testers are involved, it was important to choose a reasonable

1https://osf.io/gnyv7/?view only=963454403e5c42acbd344d8d8e2c80cd

subset of tasks that could be carried out in the limited context
and time-frame of a lab-based experiment.

1) Tasks Taxonomy: Hrabovská et al. [11] carried out a
wide ranging review of software-testing process models. As
part of this review, they identified five groups of practices,
as follows: planning (21 practices); design (9 practices); set-
up (12 practices); execution (13 practices); and monitoring (17
practices). These groups collectively characterise the spectrum
of tasks that testers carry out, depending on which process
model they follow. We employed this knowledge to guide us in
selecting a pragmatic subset of tasks that could be carried out
in a lab setting, in a restricted amount of time (approximately
one hour). This led us to focus on these four practices: (1) test
case design; (2) test automation; (3) exploratory test execution
or bug finding; and (4) test adequacy analysis.

In order to minimise participant fatigue, we set out to
ensure that the experiment would take approximately one hour.
After factoring in an estimated 10 minutes for participant on-
boarding and exit interviews, we calculated 40 minutes for
data collection. Hence, we deemed it best to design a series
of eight tasks, each of which we estimated would take 3-5
minutes to complete. Each task was to be preceded by a 2-
minute calming fish-tank video, which enabled participants to
reset their mental state in preparation for the task. We also
opted to include two practice tasks to be carried out at on-
boarding stage, and thus helping to reduce possible participant
anxiety due to unfamiliarity during data collection.

We decided to distribute the eight tasks as follows: three test
case design tasks of increasing difficulty, three test automation
tasks of increasing difficulty, one bug-finding task and one
adequacy analysis task. During each task, participants were
required to read a concise specification or a short snippet of
C# code presented on screen. They were then asked to verbally
explain how they would complete a specific task related
to what they were observing on the screen. For example,
after being presented with the specification for a feature,
participants were asked to outline how many tests would be
required for testing the implementation of that specific feature.
The full set of tasks can be found in our replication pack.

B. Data Collection
Data was collected in two ways. Firstly, participants con-

sented to the recording of their onscreen activity and their
voice. This enabled us to evaluate, at a later stage, the success
rate in the completion of each task. Secondly, participants
filled in a NASA-TLX evaluation on paper for each task.

C. Experimental Procedure
Participants were welcomed to the lab, introduced to the

experiment and given time to review and sign consent forms.
Once the formalities were completed, the participants were
introduced to the two practice tasks in order to familiarize
themselves with the experiment. At this point, participants
iteratively watched a fish-tank video to reset their mental state,
carried out a task and completed a NASA-TLX assessment for
the task. When all tasks were completed, an exit interview was
carried out and the experiment was concluded.



IV. RESULTS

This section explores the data collected in the experiment
guided by the research questions posed in Section I.

A. Participant Demographics

Following initial screening of participants, we selected 20
individuals, of whom 15 made it to the lab and success-
fully completed the assigned tasks. In terms of experience,
3 participants (20%) had up to 2 years’ experience, 8 par-
ticipants (53%) had between 3 and 5 years of experience,
and 4 participants (27%) had 6 years’ experience or more.
Education levels consisted of 2 participants (13%) having a
diploma level of education, 9 participants (60%) holding a
first degree, and 4 participants (27%) having postgraduate
qualifications. Unfortunately, the gender balance of our cohort
was heavily skewed towards male participants, who constituted
14 participants (93%).

B. Task Performance

We post-processed the collected data towards establishing
the extent to which participants were successful in their
allocated tasks. For each task, we classified the participants’
individual performance as not successful, mostly successful
or successful. Although determining task success was not a
primary goal of this experiment, it provided another dimension
from which to evaluate the research questions.

Out of 120 attempts, 24 (20%) were unsuccessful, 44 (37%)
were mostly successful and 52 (43%) were successful. Success
decreased as tasks became more difficult within each category.
Whilst 60% of participants completed the first test design task
successfully, this was only the case with 33% in the third
task. Similarly, 80% of participants completed the first test
automation task successfully, whereas none were successful
with the third one. However, is worth noting that while
the number of completely unsuccessful candidates increased
with each level of difficulty in test case design, the number
of unsuccessful attempts at test automation tasks remained
constant at 7% (one participant). The bug-finding task had
a reasonable level of success, when taking into account that
the participants did not know that they were expected to find
10 bugs. Finally, the participants seemed to find test-adequacy
analysis the most challenging, with only 27% getting it right
and 47% getting it wrong.

1) Effect of Experience on Task Success: We analysed the
success by task type and participant experience. The data
indicates that experience is a determining factor in task success
with 0-2, 3-5 and 6+ year cohorts being successful or mostly
successful 92%, 81% and 69% of the time respectively. It is
interesting to note that, overall, relatively inexperienced testers
had a higher success rate, outperforming individuals more
experienced in test case design and test adequacy analysis.
We believe that this is due to the recent nature of their formal
training. However, experience seems to play a key role in
determining success in test automation and bug-finding tasks.

2) Effect of Education on Task Success: When analysing
task success by education, the data at hand suggested that
the level of education did not have a significant impact
on performance. When considering all tasks collectively, the
participants having a diploma were successful or mostly suc-
cessful 81% of the time, participants having a first degree
were successful 79% of the time, and those with postgraduate
degrees were successful 81% of the time. This contrasts with
the more varied success rates when grouping participants by
experience.

C. Overall Cognitive Workload

We began our analysis by taking a high-level view of the
cognitive workload generated by tasks among our participants.
This was done by analysing the distribution of NASA-TLX
scores across task types and participants. We did this from the
point of view of participant experience and the participants’
level of education.

1) Analysing Workload by Experience: When grouping the
NASA-TLX scores by task type and participant experience,
one notices that the general trend was for cognitive workload
to decrease with experience. This was particularly evident in
test case design and test adequacy tasks. Both are activities
which are taught in all testing curricula, but require repeated
practice in order to be applied confidently.

Interestingly, the less proficient testers experienced a lower
cognitive workload when carrying out implementation tasks
and bug-finding tasks. We believe that this is due to a number
of reasons. Firstly, less experienced testers are likely to be
fresh graduates, having completed a degree programme focus-
ing on programming skills. Hence, their comfort zone at this
point would consist mostly of coding. Secondly, it is probable
that experienced testers would specialise in certain subfields
of software testing. Therefore, a test engineer specialising
primarily in building regression test automation frameworks
would be out of touch with bug-hunting skills (and vice-versa).
This argument is further strengthened when one notes that the
more experienced testers were subject to extreme upper and
lower whisker values, which indicate individuals who have
specialised in or away from that particular skill.

2) Analysing Workload by Education: When considering all
NASA-TLX scores regardless of tasks, one notes that partici-
pants with the lowest level of education tended to experience
the lightest cognitive workload. The highest score for this
cohort was 71, compared to 97 and 73 for undergraduates and
postgraduates respectively. This pattern was driven by scores
related to test design, test automation and bug-finding task
categories, but not test adequacy analysis. The measurements
for the latter category suggest that higher levels of education
result in a lighter cognitive workload when carrying out
adequacy analysis. However, it is to be noted that, since there
was only one adequacy analysis task and one bug-finding
task, the sample plots for these tasks were equivalent to the
number of participants in each education group. For instance,
the sample of diploma graduates was only 2.



The cohort of participants exposed to the largest cognitive
load tended to be first-time graduates, with the top of their
interquartile range clearly exceeding 70 for test automation
tasks and bug-finding tasks. The resulting mean overall tasks
for undergraduates was 52, with 44 for diploma holders and
49 for postgraduates.

D. Individual NASA-TLX Scales

We also examined how participants fared in individual
scales of NASA-TLX, the main categories being: (1) mental
demand; (2) physical demand; (3) temporal demand; (4) effort;
and (5) frustration. It is to be noted that, although we have
charted the values for physical demand, we have opted not to
analyse this aspect for these tasks. The main reason for this
being that it did not offer a scale of interest for our tasks.

1) NASA-TLX Scales by Experience: Beginning with the
scales related for test case design tasks (Figure 1(a)), we
have noted that the less proficient participants experienced the
heaviest cognitive load in all the scales, with notable peaks
for mental demand, frustration and effort. This is interesting
when considering that this group accomplished these tasks at
optimal levels, outperforming the other two cohorts. It is also
interesting to note that their performance score was higher
than that of the other cohorts, indicating that they did not feel
they were successful with the task.

In the test automation tasks (Figure 1(b)), mental demand,
frustration, effort and performance were quite similar for all
three groups, with the least experienced group recording the
lowest values. As regards the temporal demand value, there
was a marked spike among the participants with 3-5 years’
experience.

The radar chart for bug finding (Figure 1(c)) indicates
elevated levels of effort for both the group with 0-2 years’
experience and the group having 3-5 years’ experience. The
more experienced testers in the group seem to have been min-
imally affected in all scales except mental demand. Moreover,
on the basis of the compiled data, we established that the most
experienced cohort performed exceptionally well in this task.

Finally, following an analysis of test adequacy analysis
(Figure 1(d)), we observed a somewhat similar picture to
test case design. More precisely, the least experienced cohort
registered the highest levels of scales, compared to other
cohorts, even obtaining an average score of 75 for effort. This
effort paid off, with the group significantly outperforming the
others in test adequacy analysis. It is worth nothing that all
groups scored a very low score on the performance scale,
which would suggest that participants felt they were successful
in this particular task.

2) NASA-TLX Scales by Education: When analysing indi-
vidual NASA-TLX scales from the perspective of the par-
ticipants’ education, one of the most notable values is the
level of frustration experienced by diploma-level holders when
carrying out the test adequacy analysis task. Being the most
pronounced component in this task it called for particular
attention, when one considers that all other scales for the same
task scored similar values to other cohorts. This outcome may

be due to a lack of training in this particular technique at
diploma level.

One also notes that first-degree graduates tended to be
exposed more than other cohorts, scoring an average of 60 in
every task category except test case design. Postgraduates had
similar temporal demand readings in test automation and bug-
finding tasks. Unlike the other two groups, diploma holders
tended rarely to experience any significant temporal demand.

V. DISCUSSION

This section seeks to address each of the two research ques-
tions defined in Section I, discussing the respective outcomes
on the basis of the results presented in Section IV.

A. Effect of Types of Testing Task (RQ1)
The discussion of RQ1 revolves around effectiveness and

cognitive load.
1) Task Effectiveness: The results indicate that participant

effectiveness decreased when we increased the difficulty level
of tasks in both the test design category and the test automation
category. However, the pattern of diminished effectiveness
differed substantially between the two categories. In test
design tasks, the number of participants who were completely
unsuccessful in their attempts, increased from 7% to 27%
to 40% for each successive task and difficulty increment.
More encouragingly, the percentage for the test automation
category remained constant at 7%. A closer look at our raw
data revealed that the failing participant was a different person
in each test automation task, leading us to conclude that the
failure may be due to lack of familiarity with the specific test
automation technique being used in that task. In contrast, the
participants who failed the second test design task, also failed
the third one, and were joined by three new participants who
were similarly unsuccessful in the task. This suggests that test
design tasks tend to be more cohesive in nature than their
automation counterparts.

The number of partially successful candidates in the test
design tasks remained relatively constant from one task to the
other (33%, 27%, 27%). We have interpreted this to suggest
that, with test case design, participants either know a technique
or they do not, with little room for a middle ground. On the
other hand, test automation tasks saw the partially successful
range going from 13% to 47% to 93%, but with no candidates
completing the task successfully. This would suggest that
there are multiple ways in which to carry out the same test
automation task and that the nature of test automation would
allow a wider margin of error without resulting in complete
failure.

The bug-finding task was not based on any specific tech-
nique but relied on the participants’ level of observation and
ability to detect anomalies. More than half the participants
(53%) managed to find all 10 bugs on the screenshot, while
27% found at least 8 (which was our boundary for a partially
successful rating).

Finally, participants found test adequacy analysis, the most
challenging task of all with 47% failing the task completely
and only 27% completing it successfully.



Fig. 1. NASA-TLX scales by experience for (a) test design, (b) test automation, (c) bug finding, and (d) adequacy analysis

2) Cognitive Workload: When analysing the NASA-TLX
scores across all participants, we observed that both the test
design tasks and the bug-finding task had a mean score
of 47. However, there were differences in the distribution
of the scores. Whereas interquartile scores (middle 50% of
participants) for test design tasks were compacted between 34
and 60, the interquartile range for bug finding ranged from
26 to 74. This suggests that test design tasks generate a more
consistent cognitive load than bug finding, which tends to be
more varied. Test automation tasks generated a mean cognitive
load of 55, with an interquartile range of 39 to 70. Finally,
test adequacy analysis generated a mean load of 52 with an
interquartile range of 40 to 63. This makes test adequacy the
most compactly distributed task category.

In the NASA-TLX scales (see Table I) the type of task had
minimal effect on mean mental demand, temporal demand
and effort. The exception to this was that the test design
had a significantly lower value (45) than the cluster of the
other three categories (56, 52, 53). However, performance and
frustration were significantly affected by the type of task.
The performance scale indicated that participants were most
confident with test design and bug finding, but less so with
adequacy analysis and test automation. It is worth noting that
the maximum value of 50 was nowhere near the higher end of
the scale’s bounds, thus indicating that the participants were
relatively confident in their performance, even if the actual
results appeared to point in a different direction.

Frustration also exhibited a certain variability based on
the type of task being carried out. Participants found test
automation to be the most frustrating category with a score of
54. This was followed by adequacy analysis (49), test design
(40) and bug finding (35).

B. Effect of Experience and Education (RQ2)

As discussed in Section IV, the participants’ experience in
the field had an impact on both their effectiveness and cog-
nitive workload. However, whilst education did demonstrate
some variability in cognitive workloads, it had a negligible
impact on task effectiveness.

1) Task Effectiveness: The idea that experience would have
an effect on task effectiveness was arguably an expected
outcome of this work. However, we were surprised to ob-
serve that this impact was not always positive with the less

experienced participants outperforming more experienced ones
in test design and adequacy analysis tasks. This may be
due to a combination of two factors. Firstly, less experi-
enced candidates would have just recently been trained in the
methodological aspects of testing required by these two types
of tasks. Secondly, in our conversations with the participants
collectively working across a spectrum of studies over these
past years, we have observed that testers tend to eventually
settle into a preferred role or specialisation. For example, one
might specialise as a test engineer, a test analyst or a test
lead. Each of these specialisations would result in certain skills
being given less attention in favour of others, over time.

The opposite held true for test automation and bug finding.
An interesting point, here, was that the increased effectiveness
in test automation is not impressive, in that it ranged from
89% to 92% to 100% as the level of experience increased.
One could argue that an 89% success rate is actually to be
expected. However, the differences in bug finding were much
more pronounced, ranging from 67% to 79% to 100%. We
believe that bug finding is one skill that benefits more from
a trained eye, developed through experience and practice, as
opposed to a technique that could be applied methodologically.

2) Cognitive Workload: The highest mean levels of cogni-
tive workload were exhibited in test automation tasks for can-
didates with 3-5 years of experience (57) and undergraduates
(59). The interquartile range for 3-5 years’ experience ranged
from 40 to 75, whereas that of the undergraduate cohort ranged
from 41 to 78. The means were at 63 and 57 respectively,
indicating that experience produced a wider distribution of
NASA-TLX scores. In both cases, the scores seemed to be
driven by all subscales concurrently, with no specific subscale
providing a disproportional influence.

As regards test design tasks, cognitive load decreased as
experience increased, going from a mean of 57 (0-2 years) to
47 (3-5 years) to 41 (6+ years). The influence of education in
this category was less pronounced and moved in the opposite
direction, with means of 43, 46, and 51 for diploma holders,
first-degree holders and postgraduates respectively.

Bug finding inflicted the least cognitive demands on both
the least educated (34) and the least experienced (42). Among
the least-qualified participants, this was driven by low levels
of mental demand, frustration, effort and temporal demand,
whereas in the least experienced the higher mean was driven



TABLE I
MEAN VALUES FOR NASA-TLX SCALES

Mental Demand Physical Demand Temporal Demand Performance Effort Frustration
Test Design 50 38 45 31 52 40
Test Automation 54 47 56 50 55 54
Bug Finding 47 57 52 38 55 35
Adequacy Analysis 52 45 53 41 56 49

by higher levels of effort (57 vs 35) and temporal demand (47
vs 30). This suggested that a lack of experience generates the
need for more effort and concentration than does a lack of
education.

C. Threats to Validity

This work is subject to the same threat to external validity as
other experiments, in that it is a single experiment. Although
we have presented some of the results on the basis of empirical
analysis, we cannot claim that these results are representative
of the whole testing population. Nevertheless, we are confident
that they provide a useful insight and form a foundation for
further study. We also mitigated internal validity risks through
rigorous experimental procedure and utilising NASA-TLX,
which has been used successfully in countless studies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we set out to shed light on the cognitive
workload experienced by testers from different cohorts as they
attempted to complete a range of tasks typical of the field. Our
results uncovered interesting patterns in effectiveness based
on the type of task alone. They also indicated that, although
experience is a key influence on successful task completion,
success is also conditioned by task type. Moreover, more
experienced persons tended to fare worse than their less
experienced counterparts in certain tasks (test case design and
adequacy analysis). Level of education had no significant bear-
ing on successful task completion but differences in cognitive
workload could be observed for both experience and education
level variables. Here too, it was experience that exerted the
strongest influence.

Throughout the course of analysing our data and writing the
paper, we have identified a number of shortcomings, which
would be addressed as part of our future work.

A. Future Work

This study lays the foundations for a number of oppor-
tunities for further exploration. Firstly, it would be useful
to observe a better balance of demographic properties, such
as a much wider representation of the female population.
Moreover, a more balanced sample of education level and
experience would be similarly highly desirable. More varied
cohorts would shed light on whether the results presented
here do indeed hold for a wider population. In addition, it
would be beneficial to refine the experimental protocol to
balance out the number of tasks within each category and
provide the space for more qualitative data through follow-up
discussions. This would make it possible to elaborate upon

mere numbers, and gain deeper insight into, for example, why
the more experienced persons tended to fare worse than their
less experienced counterparts in certain tasks.

Once the data would have been sufficiently replicated, we
would be in a better position to apply our observations to
producing guidelines for companies regarding the management
of software testers. At present, the data presented here could
be used to inform recruitment decisions, team composition
decisions, project management, training paths and promotion
ladders in the field of software testing.
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