
*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned 
subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.  
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the 
views of the U.S. Department of Energy or the United States Government. SAND2021-7711 C.   
 
DOI reference number: 10.18293/SEKE2022-154.  

Evaluating the Sustainability of Computational Science 
and Engineering Software: Empirical Observations 

James M. Willenbring 
Software Engineering & Research Department 

Sandia National Laboratories* 
Albuquerque, New Mexico 

jmwille@sandia.gov 
 

Gursimran Singh Walia 
School of Computer and Cyber Sciences 

Augusta University 
Augusta, Georgia 

                                     gwalia@augusta.edu

Abstract— Software sustainability is critical for 
Computational Science and Engineering (CSE) software. 
It is also challenging due to factors ranging from funding 
models to the typical lifecycle of a research code to the 
inherent challenges of running fast on the newest 
architectures. Furthermore, measuring sustainability is 
challenging because sustainability consists of many 
complex attributes. To identify useful metrics for 
measuring CSE software sustainability, we gathered data 
from multiple freely available sources, including GitHub, 
SLOCCount, and Metrix++. This paper discusses the 
challenges practitioners face when measuring the 
sustainability of CSE software. We present an analysis of 
data with associated observations and future directions to 
better understand CSE software sustainability and how 
this work can be used to support decisions and improve 
sustainability by observing trends in metrics over time. 

I. INTRODUCTION 

Software sustainability is a key issue in the Computational 
Science and Engineering (CSE) domain. CSE software projects 
often begin as a research activity. Software engineering concerns 
are secondary to the research objectives driving the project [4]. 
While some research activities fail (as is consistent with research), 
successful projects often result in software with a very long useful 
life. So while there is a risk that investing early on in sustainability 
may prove to be a wasted effort in a sense if the research activity 
fails, the penalty for not investing in sustainability for initially 
successful projects is high. Projects developed without 
sustainability in mind eventually become fragile. For example, 
poor designs limit extensibility and evolvability, and insufficient 
testing leads to a lack of maintainability. Other factors (e.g., 
funding models, developer training, staffing challenges, etc.) can 
also contribute to a lack of sustainability [2].  

Research and practice indicate that sustaining CSE software is 
inherently complex, as discussed herewith. CSE software utilizes 
cutting-edge algorithms and language features to promote  
performance on the world's largest supercomputers, particularly 

on new architectures. Codes are often significant - hundreds of 
thousands or millions of code lines, and commonly use several 
third-party software packages (many of which are open source). 
While these challenges are not new, they have grown in recent 
years. One of the author’s previous work offered some simple 
ways to improve the quality of CSE software [4]. Our suggestions 
included the use of source code management, issue tracking, 
documented processes, source-centric documentation, pair 
programming, continuous process improvement, and other 
software practices. While the principles remain relevant, 
developers' environment has evolved to be much more complex.  

Prior work lists several sustainability attributes: extensibility, 
interoperability, maintainability, portability, reusability, 
scalability, and usability [10]. Motivated by an array of literature 
on sustainability attributes, this work analyzes the most critical 
aspects of software sustainability in the context of CSE software. 
Several groups have gathered, analyzed, and/or defined metrics 
with a focus towards software sustainability or an attribute of 
software sustainability [15] [7] [5] [9] [8] [1]. However, previous 
efforts have not closely examined metrics in the context of CSE 
software sustainability. Furthermore, prior literature lacks tool 
support for researchers in gathering more advanced metrics, such 
as those in [7] for highly complicated (C++) codebases.  

This research aims to charazterize better and identify barriers to 
CSE software sustainability, as well as reduce those barriers by 
identifying tools and techniques to support decision making 
focused on improving software quality. 

II. APPROACH 

We analyzed CSE software projects openly available on GitHub, 
GitLab, and Bitbucket. Although not all of the repositories go 
back to the beginning of the projects (some first used another 
version control system and snapshotted the code into git), all of 
the repositories have substantial history to examine. Additionally, 
due to scientific software community involvement, we have 
access to the contributors to many of the projects being analyzed.  

Our strategy for measuring sustainability focuses on the 
various component attributes before embarking on a more 



holistic analysis. An initial broad set of representative CSE 
software projects was carefully selected for the study. We 
started by considering software that comprises the Extreme-
scale Scientific Software Development Kit (xSDK). The 
xSDK [14] project was created to improve the 
interoperability and sustainability of scientific libraries that 
are common dependencies for scientific software.  

Next, we chose packages that represented both large and 
small source code bases and development teams and a variety 
of primary development institutions (four US national 
laboratories and two universities). We also wanted projects 
with lengthy histories, which would allow us to go back and 
look at changes over time. Six out of the seven projects 
chosen are also currently funded in part under Math Libraries 
within the Exascale Computing Project's (ECP) Software 
Technologies (ST) thrust [3]. A group of experts initially 
chose this software group to be part of ECP based on each 
software package's current and potential value to high-
performance computing. Further, ECP ST is very interested 
in improving the sustainability of this software. Below is a 
brief description of the seven software projects chosen for our 
metric collection activity. The names of the projects have 
been changed to guard against unintended conclusions being 
drawn about the sustainability of any specific project. 

Project 1 includes linear and non-linear solvers as well as 
preconditioners for partial differential equation-based 
systems of equations. Project 2 is a collection of solvers and 
enabling technologies used for large-scale, complex multi-
physics engineering and scientific problems. Project 3 is a 
distributed memory direct LU solver for non-symmetric 
sparse linear systems of equations. Project 4 provides 
algebraic multigrid sparse preconditioners and solvers. 
Project 5 is a dense linear algebra library that provides linear, 
least squares, eigen, and S.V.D. solvers. Project 6 is a finite 
element and adaptive mesh refinement code. Project 7 is a 
sparse linear and nonlinear eigenvalue solver package. 

TABLE 1: Language, SLOC, Contributors & Commits 

Package Language SLOC Contribs Commits 
Project 1 C 83% 796123 198 82663 
Project 2 C++ 82% 4179781 250 95384 
Project 3 C 96% 80752 14 645 
Project 4 C 81% 441057 37 11587 
Project 5 C++ 45% 317082 51 8086 
Project 6 C++ 100% 293062 114 14668 
Project 7 C 91% 109559 26 9045 

 
The purpose of gathering these metrics is to analyze the 
correlation of the metrics with aspects of sustainability. 
Because no single metric fully reflects the sustainability of a 
software project, we look at several metrics, including some 
directly related to the source code, such as complexity and 
lines of code, and others that are not directly related to the 
code itself, such as a number of commits and contributors. 
Additionally, we also analyzed metric trends over time. 
Researchers and practitioners can utilize trends to better 
understand if a codebase is becoming more or less sustainable 

(e.g. observing an increasing or decreasing number of 
contributors, cyclomatic complexity, or maintenance index). 

III. DATA ANALYSIS AND RESULTS 

Our approach involved gathering metrics from accessible 
sources and tools. The first set of results consists of metrics 
gathered from development snapshots of the seven codes we 
chose from May 2021. The second set of results includes 
metrics collected from five snapshots in time for each of the 
seven codes from May 2017-2021 (once per year). We 
describe each of these sets of metrics below. 

The first set of results obtained information about the number 
of contributors and the number of commits from GitHub and 
Gitlab, and from the git command line (as Bitbucket does not 
supply this information). We also gathered metrics involving 
the use of the tool SLOCCount [11] to obtain the primary 
programming language for each project, along with the 
percentage of lines in the project of the primary language and 
the total number of source lines of code (SLOC). 

The second set of metrics was collected using Metrix++ 
version 1.7.0 [6]. To capture yearly snapshots, git commands 
of the form git checkout `git rev-list -n 1 --first-parent --
before="2019-05-24 00:00" <primary_branch_name> were 
used. The metrics included in this set are: 
 Maximum Complexity: The maximum cyclomatic 

complexity found in the code. 
 Average Complexity: The average cyclomatic 

complexity found in all regions of the code. 
 Lines of code: The total number of lines of code. Note 

Metrix++ considers only C, C++, and Java code (not 
Fortran, Python, or scripts). 

 Maintenance Index: A measure of maintainability 
computed from cyclomatic complexity and lines of code. 
A lower value indicates a higher level of maintainability. 

TABLE 2: Max Cyclomatic Compexity 

Package 2017 2018 2019 2020 2021 
Project 1 1786 1788 2319 540 540 
Project 2 648 648 648 547 547 
Project 3 202 204 301 301 301 
Project 4 649 765 815 877 913 
Project 5 261 261 261 261 261 
Project 6 114 114 137 134 238 
Project 7 86 86 86 86 83 

TABLE 3: Average Cyclomatic Compexity 

Package 2017 2018 2019 2020 2021 
Project 1 4.63 4.69 4.88 4.69 4.58 
Project 2 2.59 2.47 2.46 2.39 2.30 
Project 3 12.50 11.97 10.62 10.31 10.36 
Project 4 7.14 6.65 6.50 6.48 6.33 
Project 5 5.45 5.40 5.27 5.30 5.33 
Project 6 2.34 2.33 2.14 2.48 2.49 
Project 7 3.95 3.97 4.14 4.11 4.10 

 

 



TABLE 4: Lines of Code (in 1,000’s) 

Package 2017 2018 2019 2020 2021 
Project 1 483 525 584 613 657 
Project 2 2682 3082 3076 3279 3414 
Project 3 55 58 79 81 86 
Project 4 410 359 365 390 405 
Project 5 128 131 136 137 138 
Project 6 107 122 154 216 284 
Project 7 71 79 84 89 95 

TABLE 5: Maintenance index computed by Metrix++ 
using complexity and lines of code data 

Package 2017 2018 2019 2020 2021 
Project 1 1.40 1.41 1.43 1.42 1.41 
Project 2 1.21 1.18 1.18 1.19 1.18 
Project 3 2.35 2.29 2.08 2.05 2.08 
Project 4 1.81 1.78 1.77 1.79 1.79 
Project 5 1.76 1.71 1.70 1.70 1.71 
Project 6 1.21 1.21 1.19 1.24 1.24 
Project 7 1.31 1.32 1.33 1.33 1.33 

 
IV. DISCUSSION OF RESULTS 

We discuss significant results concerning metrics reported 
in the previous section focused around key themes and 
contributions to understanding CSE software sustainability. 

SLOC  and Contributors: - Poor software design, for 
example, poor understandability, has a greater than linear 
impact as SLOC increases in terms of maintainability and 
evolvability. Code size metrics such as SLOC can be useful 
to measure over time. For example, SLOC growth in excess 
of feature set growth may indicate the need to refactor.  

A very low number of contributors can be a sustainability risk 
in that the knowledge of the code is owned by a small group 
of people. The number of contributors to the seven codes 
varies by more than an order of magnitude. Further, the ratio 
of SLOC to contributors may speak to maintainability. Less 
code per contributor means fewer lines that each contributor 
needs to maintain. Projects 2 and 4 have significantly higher 
SLOC to contributor ratios than the other five codes.  

Complexity: A lower average complexity should enhance 
readability and maintainability, all else equal. Interestingly, 
the average complexity of Project 3 is nearly twice the 
average complexity of the next highest sample code. 

TABLE 6: SLOC and Contributors 

Package SLOC contributors SLOC/contrib 
Project 1 796123 198 4021 
Project 2 4179781 250 16719 
Project 3 80752 14 5768 
Project 4 441057 37 11920 
Project 5 317082 51 6217 
Project 6 293062 114 2571 
Project 7 109559 26 4214 

 
While cyclomatic complexity does not capture all aspects of 
maintainability, by definition, it does reflect the number of 

paths through the code. If this value is growing over time, it 
can increase the maintenance burden. The Max complexity 
data gathered in Table 2 is interesting in that for three codes 
the value grew between 2017 and 2021, for two the value fell, 
and for two it remained nearly or exactly the same. Metrix++ 
has a "hotspot" feature that allows a person to identify regions 
with a complexity greater than a given threshold, which can 
be used to support a targeted refactoring effort. 

Maintenance Index: The Maintenance index data in Table 5 
does not change dramatically for any packages over time. 
This is again not surprising because these are large, 
established code bases, and in any given year, large portions 
of the codebase do not change. The most significant change 
in the codes' value comes from Project 3 between 2018 and 
2019, with the Maintenance index falling from 2.29 to 2.08. 
We note that in the same period, Table 4 shows that the Lines 
of code increased substantially from 58,034 to 79,069. It is 
reasonable that a 36% increase in the size of the codebase 
would cause a noticeable decrease in the maintainability 
index if the new code was written more maintainably. 

Similar to the previous observations for complexity, we feel 
that looking at changes in the maintenance index both over 
time and addressing maintenance "hotspots" could improve 
the maintainability and sustainability of codes. In addition, 
these checks can be automated in continuous integration or 
nightly processes and tracked over time to identify trends. 

Metrix++ Hotspot Feature: As mentioned above, the 
hotspot feature in Metrix++ is a useful tool that allows 
regions of code to be identified that exhibit a metric value 
above a user-specified threshold. The tool is both simple to 
use and powerful. For example, the below command 
identified five regions of code in Project 4 with cyclomatic 
complexity equal to or greater than 500: metrix++ limit --db-
file=proj4.2019.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500 

The tool supports more advanced features that allow it to be 
used in an automated testing environment. The return code of 
the limit function is equal to the number of instances in the 
code where the metric threshold specified is exceeded. 
Therefore, automated, pre-push testing can prevent complex 
code from being added by checking this return code. 
Alternatively, automated metrics can be gathered and 
provided to code reviewers to use in their analysis. 

While finding all areas of high complexity might be useful in 
some contexts, often it is preferable to consider only new or 
modified (the term Metrix++ uses for this option is 
“touched”) code. For those cases, specify a previous version 
of a database file (using --db-file-prev) to compare against: 
metrix++ limit --db-file=proj4.2019.lines.complex.maint.db --db-
file-prev=../2018-05-24/proj4.2018.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500 --warn-mode=touched 

In our example, three of the five regions were touched. 
Finally, because refactoring all code that is touch may not be 
practical, Metrix++ supports a “trend” feature (using --warn-
mode=trend, rather than touched) that only identifies code 



for which the metric in question has gotten worse since the 
previous state. In our example, two of the three touched 
regions exhibited a negative trend. 

In summary, the hotspot feature in Metrix++ allows a team 
to not only identify regions of their code of concern (for 
example, due to high complexity or maintenance index), but 
also allows the team to automate the tracking and even 
prevention of additional regions of concern. This feature can 
be used to support maintainability and sustainability. 

V. CONCLUSION AND RELEVANCE TO INDUSTRY 

While it is never appropriate to make broad conclusions 
based on a single metric, the metrics we studied provide 
quantitative data that can be used to support decisions. We 
caution, for example, against using any simple metrics to 
claim that one code is more sustainable than another. That 
said, a developer performing a code review can benefit from 
using the Metrix++ hotspot feature by considering changes in 
maintenance index or max or average complexity metrics in 
the broader context of the proposed changes. 

By sampling multiple metrics for a single code base over 
time, practitioners can glean whether it is becoming more or 
less sustainable. Such information may help assess the 
effectiveness of changing development practices or tools. For 
example, a decreasing maintenance index for a code base 
following the adoption of a new development practice 
supports the hypothesis that the new practice is beneficial.  

A similar approach could be used in evaluating the impact of 
a refactoring effort. For example, before refactoring a large 
chunk of code, one might gather average and maximum 
complexity as well as lines of code and maintenance index 
metrics. Then, the areas of complexity higher than a given 
threshold could be identified as candidates for refactoring. 
After the refactoring step, the metrics can be taken again to 
help quantify the impact of the refactoring, and metrics could 
be sampled periodically to understand the effects of 
development practices on the sustainability of the codebase. 

In the future, we plan to explore sustainability factors not 
addressed by source code metrics, such as sustainability of 
dependencies, and how the sustainability of CSE software is 
impacted by the sustainability of the CSE software ecosystem 
as a whole [12]. For example, consider how common 
interfaces could improve software sustainability. 

Another area of future work would be to consider smaller 
logical subsets of codebases and "hotspots" identified using 
Metrix++. We could also study other metrics such as 
contributors at a more granular level. Specifically, we could 
compare the number of frequent and recent contributors and 
total contributors to functionality in the code that is 
effectively orphaned (no currently assigned developers) to 
functionality that is more actively supported. 

In an effort to help code teams and project leadership gather 
and effectively utilize metrics and related tools in their 
scientific software development efforts, we are also forming 

a Software Development Kit (SDK) community in the area 
of Tools for Code Mining and Data Analysis [13].  

This research effort can make significant contributions to the 
understanding of the sustainability of relevant components of 
the CSE software stack. We analyzed the seven code projects 
part of the xSDK, six of which are part of the US DOE 
Exascale Computing Project. This allows us to base our 
findings on industrial representative CSE software, 
increasing the generalizability of our results.  

Perhaps most importantly, a better understanding of software 
sustainability can help to identify how to design from the 
onset for sustainability, which has the potential to save 
significant developer time (and money) and prevent a lot of 
frustration dealing with unsustainable code. 
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