
*Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government. SAND2021-7711 C.

DOI reference number: 10.18293/SEKE2022-154.

Evaluating the Sustainability of Computational Science
and Engineering Software: Empirical Observations

James M. Willenbring
Software Engineering & Research Department

Sandia National Laboratories*
Albuquerque, New Mexico

jmwille@sandia.gov

Gursimran Singh Walia
School of Computer and Cyber Sciences

Augusta University
Augusta, Georgia

 gwalia@augusta.edu

Abstract— Software sustainability is critical for
Computational Science and Engineering (CSE) software.
It is also challenging due to factors ranging from funding
models to the typical lifecycle of a research code to the
inherent challenges of running fast on the newest
architectures. Furthermore, measuring sustainability is
challenging because sustainability consists of many
complex attributes. To identify useful metrics for
measuring CSE software sustainability, we gathered data
from multiple freely available sources, including GitHub,
SLOCCount, and Metrix++. This paper discusses the
challenges practitioners face when measuring the
sustainability of CSE software. We present an analysis of
data with associated observations and future directions to
better understand CSE software sustainability and how
this work can be used to support decisions and improve
sustainability by observing trends in metrics over time.

I. INTRODUCTION

Software sustainability is a key issue in the Computational
Science and Engineering (CSE) domain. CSE software projects
often begin as a research activity. Software engineering concerns
are secondary to the research objectives driving the project [4].
While some research activities fail (as is consistent with research),
successful projects often result in software with a very long useful
life. So while there is a risk that investing early on in sustainability
may prove to be a wasted effort in a sense if the research activity
fails, the penalty for not investing in sustainability for initially
successful projects is high. Projects developed without
sustainability in mind eventually become fragile. For example,
poor designs limit extensibility and evolvability, and insufficient
testing leads to a lack of maintainability. Other factors (e.g.,
funding models, developer training, staffing challenges, etc.) can
also contribute to a lack of sustainability [2].

Research and practice indicate that sustaining CSE software is
inherently complex, as discussed herewith. CSE software utilizes
cutting-edge algorithms and language features to promote
performance on the world's largest supercomputers, particularly

on new architectures. Codes are often significant - hundreds of
thousands or millions of code lines, and commonly use several
third-party software packages (many of which are open source).
While these challenges are not new, they have grown in recent
years. One of the author’s previous work offered some simple
ways to improve the quality of CSE software [4]. Our suggestions
included the use of source code management, issue tracking,
documented processes, source-centric documentation, pair
programming, continuous process improvement, and other
software practices. While the principles remain relevant,
developers' environment has evolved to be much more complex.

Prior work lists several sustainability attributes: extensibility,
interoperability, maintainability, portability, reusability,
scalability, and usability [10]. Motivated by an array of literature
on sustainability attributes, this work analyzes the most critical
aspects of software sustainability in the context of CSE software.
Several groups have gathered, analyzed, and/or defined metrics
with a focus towards software sustainability or an attribute of
software sustainability [15] [7] [5] [9] [8] [1]. However, previous
efforts have not closely examined metrics in the context of CSE
software sustainability. Furthermore, prior literature lacks tool
support for researchers in gathering more advanced metrics, such
as those in [7] for highly complicated (C++) codebases.

This research aims to charazterize better and identify barriers to
CSE software sustainability, as well as reduce those barriers by
identifying tools and techniques to support decision making
focused on improving software quality.

II. APPROACH

We analyzed CSE software projects openly available on GitHub,
GitLab, and Bitbucket. Although not all of the repositories go
back to the beginning of the projects (some first used another
version control system and snapshotted the code into git), all of
the repositories have substantial history to examine. Additionally,
due to scientific software community involvement, we have
access to the contributors to many of the projects being analyzed.

Our strategy for measuring sustainability focuses on the
various component attributes before embarking on a more

holistic analysis. An initial broad set of representative CSE
software projects was carefully selected for the study. We
started by considering software that comprises the Extreme-
scale Scientific Software Development Kit (xSDK). The
xSDK [14] project was created to improve the
interoperability and sustainability of scientific libraries that
are common dependencies for scientific software.

Next, we chose packages that represented both large and
small source code bases and development teams and a variety
of primary development institutions (four US national
laboratories and two universities). We also wanted projects
with lengthy histories, which would allow us to go back and
look at changes over time. Six out of the seven projects
chosen are also currently funded in part under Math Libraries
within the Exascale Computing Project's (ECP) Software
Technologies (ST) thrust [3]. A group of experts initially
chose this software group to be part of ECP based on each
software package's current and potential value to high-
performance computing. Further, ECP ST is very interested
in improving the sustainability of this software. Below is a
brief description of the seven software projects chosen for our
metric collection activity. The names of the projects have
been changed to guard against unintended conclusions being
drawn about the sustainability of any specific project.

Project 1 includes linear and non-linear solvers as well as
preconditioners for partial differential equation-based
systems of equations. Project 2 is a collection of solvers and
enabling technologies used for large-scale, complex multi-
physics engineering and scientific problems. Project 3 is a
distributed memory direct LU solver for non-symmetric
sparse linear systems of equations. Project 4 provides
algebraic multigrid sparse preconditioners and solvers.
Project 5 is a dense linear algebra library that provides linear,
least squares, eigen, and S.V.D. solvers. Project 6 is a finite
element and adaptive mesh refinement code. Project 7 is a
sparse linear and nonlinear eigenvalue solver package.

TABLE 1: Language, SLOC, Contributors & Commits

Package Language SLOC Contribs Commits
Project 1 C 83% 796123 198 82663
Project 2 C++ 82% 4179781 250 95384
Project 3 C 96% 80752 14 645
Project 4 C 81% 441057 37 11587
Project 5 C++ 45% 317082 51 8086
Project 6 C++ 100% 293062 114 14668
Project 7 C 91% 109559 26 9045

The purpose of gathering these metrics is to analyze the
correlation of the metrics with aspects of sustainability.
Because no single metric fully reflects the sustainability of a
software project, we look at several metrics, including some
directly related to the source code, such as complexity and
lines of code, and others that are not directly related to the
code itself, such as a number of commits and contributors.
Additionally, we also analyzed metric trends over time.
Researchers and practitioners can utilize trends to better
understand if a codebase is becoming more or less sustainable

(e.g. observing an increasing or decreasing number of
contributors, cyclomatic complexity, or maintenance index).

III. DATA ANALYSIS AND RESULTS

Our approach involved gathering metrics from accessible
sources and tools. The first set of results consists of metrics
gathered from development snapshots of the seven codes we
chose from May 2021. The second set of results includes
metrics collected from five snapshots in time for each of the
seven codes from May 2017-2021 (once per year). We
describe each of these sets of metrics below.

The first set of results obtained information about the number
of contributors and the number of commits from GitHub and
Gitlab, and from the git command line (as Bitbucket does not
supply this information). We also gathered metrics involving
the use of the tool SLOCCount [11] to obtain the primary
programming language for each project, along with the
percentage of lines in the project of the primary language and
the total number of source lines of code (SLOC).

The second set of metrics was collected using Metrix++
version 1.7.0 [6]. To capture yearly snapshots, git commands
of the form git checkout `git rev-list -n 1 --first-parent --
before="2019-05-24 00:00" <primary_branch_name> were
used. The metrics included in this set are:
 Maximum Complexity: The maximum cyclomatic

complexity found in the code.
 Average Complexity: The average cyclomatic

complexity found in all regions of the code.
 Lines of code: The total number of lines of code. Note

Metrix++ considers only C, C++, and Java code (not
Fortran, Python, or scripts).

 Maintenance Index: A measure of maintainability
computed from cyclomatic complexity and lines of code.
A lower value indicates a higher level of maintainability.

TABLE 2: Max Cyclomatic Compexity

Package 2017 2018 2019 2020 2021
Project 1 1786 1788 2319 540 540
Project 2 648 648 648 547 547
Project 3 202 204 301 301 301
Project 4 649 765 815 877 913
Project 5 261 261 261 261 261
Project 6 114 114 137 134 238
Project 7 86 86 86 86 83

TABLE 3: Average Cyclomatic Compexity

Package 2017 2018 2019 2020 2021
Project 1 4.63 4.69 4.88 4.69 4.58
Project 2 2.59 2.47 2.46 2.39 2.30
Project 3 12.50 11.97 10.62 10.31 10.36
Project 4 7.14 6.65 6.50 6.48 6.33
Project 5 5.45 5.40 5.27 5.30 5.33
Project 6 2.34 2.33 2.14 2.48 2.49
Project 7 3.95 3.97 4.14 4.11 4.10

TABLE 4: Lines of Code (in 1,000’s)

Package 2017 2018 2019 2020 2021
Project 1 483 525 584 613 657
Project 2 2682 3082 3076 3279 3414
Project 3 55 58 79 81 86
Project 4 410 359 365 390 405
Project 5 128 131 136 137 138
Project 6 107 122 154 216 284
Project 7 71 79 84 89 95

TABLE 5: Maintenance index computed by Metrix++
using complexity and lines of code data

Package 2017 2018 2019 2020 2021
Project 1 1.40 1.41 1.43 1.42 1.41
Project 2 1.21 1.18 1.18 1.19 1.18
Project 3 2.35 2.29 2.08 2.05 2.08
Project 4 1.81 1.78 1.77 1.79 1.79
Project 5 1.76 1.71 1.70 1.70 1.71
Project 6 1.21 1.21 1.19 1.24 1.24
Project 7 1.31 1.32 1.33 1.33 1.33

IV. DISCUSSION OF RESULTS

We discuss significant results concerning metrics reported
in the previous section focused around key themes and
contributions to understanding CSE software sustainability.

SLOC and Contributors: - Poor software design, for
example, poor understandability, has a greater than linear
impact as SLOC increases in terms of maintainability and
evolvability. Code size metrics such as SLOC can be useful
to measure over time. For example, SLOC growth in excess
of feature set growth may indicate the need to refactor.

A very low number of contributors can be a sustainability risk
in that the knowledge of the code is owned by a small group
of people. The number of contributors to the seven codes
varies by more than an order of magnitude. Further, the ratio
of SLOC to contributors may speak to maintainability. Less
code per contributor means fewer lines that each contributor
needs to maintain. Projects 2 and 4 have significantly higher
SLOC to contributor ratios than the other five codes.

Complexity: A lower average complexity should enhance
readability and maintainability, all else equal. Interestingly,
the average complexity of Project 3 is nearly twice the
average complexity of the next highest sample code.

TABLE 6: SLOC and Contributors

Package SLOC contributors SLOC/contrib
Project 1 796123 198 4021
Project 2 4179781 250 16719
Project 3 80752 14 5768
Project 4 441057 37 11920
Project 5 317082 51 6217
Project 6 293062 114 2571
Project 7 109559 26 4214

While cyclomatic complexity does not capture all aspects of
maintainability, by definition, it does reflect the number of

paths through the code. If this value is growing over time, it
can increase the maintenance burden. The Max complexity
data gathered in Table 2 is interesting in that for three codes
the value grew between 2017 and 2021, for two the value fell,
and for two it remained nearly or exactly the same. Metrix++
has a "hotspot" feature that allows a person to identify regions
with a complexity greater than a given threshold, which can
be used to support a targeted refactoring effort.

Maintenance Index: The Maintenance index data in Table 5
does not change dramatically for any packages over time.
This is again not surprising because these are large,
established code bases, and in any given year, large portions
of the codebase do not change. The most significant change
in the codes' value comes from Project 3 between 2018 and
2019, with the Maintenance index falling from 2.29 to 2.08.
We note that in the same period, Table 4 shows that the Lines
of code increased substantially from 58,034 to 79,069. It is
reasonable that a 36% increase in the size of the codebase
would cause a noticeable decrease in the maintainability
index if the new code was written more maintainably.

Similar to the previous observations for complexity, we feel
that looking at changes in the maintenance index both over
time and addressing maintenance "hotspots" could improve
the maintainability and sustainability of codes. In addition,
these checks can be automated in continuous integration or
nightly processes and tracked over time to identify trends.

Metrix++ Hotspot Feature: As mentioned above, the
hotspot feature in Metrix++ is a useful tool that allows
regions of code to be identified that exhibit a metric value
above a user-specified threshold. The tool is both simple to
use and powerful. For example, the below command
identified five regions of code in Project 4 with cyclomatic
complexity equal to or greater than 500: metrix++ limit --db-
file=proj4.2019.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500

The tool supports more advanced features that allow it to be
used in an automated testing environment. The return code of
the limit function is equal to the number of instances in the
code where the metric threshold specified is exceeded.
Therefore, automated, pre-push testing can prevent complex
code from being added by checking this return code.
Alternatively, automated metrics can be gathered and
provided to code reviewers to use in their analysis.

While finding all areas of high complexity might be useful in
some contexts, often it is preferable to consider only new or
modified (the term Metrix++ uses for this option is
“touched”) code. For those cases, specify a previous version
of a database file (using --db-file-prev) to compare against:
metrix++ limit --db-file=proj4.2019.lines.complex.maint.db --db-
file-prev=../2018-05-24/proj4.2018.lines.complex.maint.db --max-
limit=std.code.complexity:cyclomatic:500 --warn-mode=touched

In our example, three of the five regions were touched.
Finally, because refactoring all code that is touch may not be
practical, Metrix++ supports a “trend” feature (using --warn-
mode=trend, rather than touched) that only identifies code

for which the metric in question has gotten worse since the
previous state. In our example, two of the three touched
regions exhibited a negative trend.

In summary, the hotspot feature in Metrix++ allows a team
to not only identify regions of their code of concern (for
example, due to high complexity or maintenance index), but
also allows the team to automate the tracking and even
prevention of additional regions of concern. This feature can
be used to support maintainability and sustainability.

V. CONCLUSION AND RELEVANCE TO INDUSTRY

While it is never appropriate to make broad conclusions
based on a single metric, the metrics we studied provide
quantitative data that can be used to support decisions. We
caution, for example, against using any simple metrics to
claim that one code is more sustainable than another. That
said, a developer performing a code review can benefit from
using the Metrix++ hotspot feature by considering changes in
maintenance index or max or average complexity metrics in
the broader context of the proposed changes.

By sampling multiple metrics for a single code base over
time, practitioners can glean whether it is becoming more or
less sustainable. Such information may help assess the
effectiveness of changing development practices or tools. For
example, a decreasing maintenance index for a code base
following the adoption of a new development practice
supports the hypothesis that the new practice is beneficial.

A similar approach could be used in evaluating the impact of
a refactoring effort. For example, before refactoring a large
chunk of code, one might gather average and maximum
complexity as well as lines of code and maintenance index
metrics. Then, the areas of complexity higher than a given
threshold could be identified as candidates for refactoring.
After the refactoring step, the metrics can be taken again to
help quantify the impact of the refactoring, and metrics could
be sampled periodically to understand the effects of
development practices on the sustainability of the codebase.

In the future, we plan to explore sustainability factors not
addressed by source code metrics, such as sustainability of
dependencies, and how the sustainability of CSE software is
impacted by the sustainability of the CSE software ecosystem
as a whole [12]. For example, consider how common
interfaces could improve software sustainability.

Another area of future work would be to consider smaller
logical subsets of codebases and "hotspots" identified using
Metrix++. We could also study other metrics such as
contributors at a more granular level. Specifically, we could
compare the number of frequent and recent contributors and
total contributors to functionality in the code that is
effectively orphaned (no currently assigned developers) to
functionality that is more actively supported.

In an effort to help code teams and project leadership gather
and effectively utilize metrics and related tools in their
scientific software development efforts, we are also forming

a Software Development Kit (SDK) community in the area
of Tools for Code Mining and Data Analysis [13].

This research effort can make significant contributions to the
understanding of the sustainability of relevant components of
the CSE software stack. We analyzed the seven code projects
part of the xSDK, six of which are part of the US DOE
Exascale Computing Project. This allows us to base our
findings on industrial representative CSE software,
increasing the generalizability of our results.

Perhaps most importantly, a better understanding of software
sustainability can help to identify how to design from the
onset for sustainability, which has the potential to save
significant developer time (and money) and prevent a lot of
frustration dealing with unsustainable code.

Bibliography
[1] Bouwers, E., van Deursen, A., & Visser, J. (2013). Evaluating
Usefulness of Software Metrics: An Industrial Experience Report. Proc. Int’l
Conf. Software Eng. (ICSE 13), IEEE, 921-930.
[2] Heroux, M. A., & Allen, G. (2016, Sept). Computational Science
and Engineering Software Sustainability and Productivity (CSESSP)
Challenges Workshop Report. Networking and Information Technology
Research and Development (NITRD) Program.
[3] Heroux, M. A., Carter, J., Thakur, R., McInnes, L., Ahrens, J.,
Munson, T., & Neeley, J. R. (2020, February 1). ECP Software Technology
Capability Assessment Report. 10.2172/1606665
[4] Heroux, M. A., & Willenbring, J. M. (2009). Barely sufficient
software engineering: 10 practices to improve your CSE software. 2009
ICSE Workshop on Software Engineering for Computational Science and
Engineering, 15-21. 10.1109/SECSE.2009.5069157
[5] Koziolek, H. (2011). Sustainability evaluation of software
architectures: A systematic review. Proceedings of the Joint ACM SIGSOFT
Conference - QoSA and ACM SIGSOFT Symposium - ISARCS on Quality of
Software Architectures - QoSA and Architecting Critical Systems - ISARCS
QoSA-ISARCS '11, 3-12.
[6] Metrix++ Web Page. (n.d.).
https://metrixplusplus.github.io/metrixplusplus/
[7] Sarkar, S., Kak, A., & Rama, G. (2008). Metrics for Measuring
the Quality of Modularization of Large-Scale Object-Oriented Software.
IEEE Transactions on Software Engineering, 34(5), 700-720.
[8] Sarkar, S., Rama, G. M., & Kak, A. C. (2007). API-Based and
Information-Theoretic Metrics for Measuring the Quality of Software
Modularization. IEEE Trans. Software Eng., 33(1), 14-32.
[9] Sehestedt, S., Cheng, C.-H., & Bouwers, E. (2014). Towards
quantitative metrics for architecture models. In Proceedings of the WICSA
2014 Companion Volume (WICSA '14 Companion). ACM, Article 5, 4 pages.
http://dx.doi.org/10.1145/2578128.2578226
[10] Venters, C. C., Lau, L., Griffiths, M. K., Holmes, V., Ward, R.
R., Jay, C., & J, X. (2014). The Blind Men and the Elephant: Towards an
Empirical Evaluation Framework for Software Sustainability. Journal of
Open Research Software, 2(1)(8). http://doi.org/10.5334/jors.ao
[11] Wheeler, D. A. (n.d.). SLOCCount.
https://dwheeler.com/sloccount/
[12] Willenbring, J. M. (2019). The Layers of CSE Software
Sustainability. 2019 Collegeville Workshop on Sustainable Scientific
Software (CW3S19). https://collegeville.github.io/CW3S19/
WorkshopResources/WhitePapers/CSEswSustainabilityLayers.pdf
[13] Willenbring, J. M. & Shende S. (2022). Impacting Software Quality and
Process Through the Extreme-Scale Scientific Software Stack (E4S) and
Software Development Kit (SDK) Projects.
[14] xSDK Web Page. (n.d.). xSDK: Extreme-scale Scientific
Software Development Kit. Retrieved 12 01, 2020, from http://xsdk.info
[15] Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q., & Xu, B. (2015).
An empirical analysis of package-modularization metrics: Implications for
software fault-proneness. Information and Software Technology, 57, 186-
203. 10.1016/j.infsof.2014.09.006

