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Abstract—Digitalization is transforming manufacturing systems to 

become more agile and smart thanks to the integration of sensors 

and connection technologies that help capture data at all phases of 

a product’s life cycle. Digitalization promises to improve 

manufacturing flexibility, quality, productivity, and reliability. 

However, there is still a significant need of effective methods to 

develop models that could enhance the capabilities of 

manufacturing systems. Formal methods and tools are becoming 

essential to achieve this objective. Within this context, this paper 

introduces a formal software solution for the automatic generation 

of modular manufacturing control systems software. The 

proposed solution leverages software Model-Based Design (MBD) 

techniques to reduce development effort, time, and human error 

by automating several manual steps. 
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I.  INTRODUCTION 

The world is in the midst of a new industrial revolution, 
referred to as Industry 4.0 or Smart Manufacturing (SM), driven 
by the rapid advancement in Information Communication 
Technologies (ICT) in terms of speed, power, autonomy, and 
mobility. The proliferation of ICT in the manufacturing domain 
has brought about Cyber-Physical Manufacturing Systems 
(CPMS), that combine physical production components (e.g., 
robots, machines, conveyors, and parts to be processed) with 
cyber components (e.g., logic controllers, networks, and data 
management infrastructures). CPMS gain their intelligence 
thanks to their connectivity to the Industrial Internet of Things 
(IIoT), which is an information network of physical objects (e.g., 
sensors and machines) that allows interaction and cooperation of 
these objects to reach common goals [1][2]. CPMS enable more 
flexibility, reactivity, proactivity, and adaptability to the 
dynamic global market shifts and fast changing customer 
requirements.  

For manufacturers to remain competitive, CPMS are 
required to strategically adapt to factory changes associated with 
the responsiveness to the rapid changes in customer 
requirements and market conditions over time. In such agile 
environments, defining the interaction between the 

manufacturing control system and the physical manufacturing 
units using conventional development processes, which are 
characterized by an overhead of manual work, is effort and time-
consuming and would have negative impacts on finances. Thus, 
to address uncertain and emerging situations, the manufacturing 
control system should be highly flexible, adaptable, and 
reconfigurable.  

In previous work [3][4][5[6], we introduced a formal 
approach to automatically synthesize modular / distributed 
supervisory control for CPMS. The approach divides the overall 
control problem into local and global controls. Local Controllers 
(LCs) are developed for individual subsystems, then global 
interactions are added to the LCs to cooperatively execute the 
overall control actions. This approach ensures the flexibility 
required in CPMS to adapt to rapid changing conditions. For 
instance, in case of redesign or system extension, the practitioner 
would modify only the LCs for the impacted production modules 
and extend the global specifications with the new requirements, 
then automatically synthesize the new control logic. In contrast 
to a centralized controller approach where the entire control 
system needs to be rebuilt, the proposed approach requires to 
update only the affected manufacturing units. This approach 
enables the manufacturing units to be versatile and reusable in 
different environments. 

The contribution of this paper is to derive a systematic 
software solution that is based on the previously proposed 
formal approach to support CPMS control designers in 
automatically generating control systems. The software solution 
leverages Model-Based Design (MBD) techniques to reduce 
development effort, time, and human error by automating 
several manual steps. 

The rest of this paper is organized as follows. Section II 
recalls the theoretical proposition. Section III details the design 
and development of the proposed software solution. Finally, 
Section IV summarizes the contributions of this paper and 
presents some future research avenues for this work. 
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II. PROPOSED THEORETICAL APPROACH 

The workflow shown in Fig. 1 displays the different steps of 
the supervisory controller synthesis process.  

First, the discrete operation physically realizable by the 
system is modeled using discrete automata models in a local 
modular way according to its mechanical and functional 
characteristics (e.g., sensors and actuators). A Local Controller 
(LC) is derived for each local plant component from its 
automaton model. Second, to enable the overall system 
coordination, global specifications over the local components 
are defined and formalized as logical Boolean expressions. 
Then, the LC are aggregated to enable applying the logical 
Boolean expressions to the automata models.  The aggregation 
procedure is carried out such that the states reached by 
controllable (actuator) events (σ∈Σc ) are merged into macro-
states that are interconnected with uncontrollable (sensor) events 
( σ∈Σuc ) as explained in Section III. The output of this 
endogenous transformation is saved as an ALC (Aggregated 
Local Controller).  

The Global synthesis activity consists of applying the formal 
global specifications to the corresponding ALC models, which 
allows the local components to coordinate among each other to 

reach the global control objective. At the output of this activity 
is the DC (Distributed Controller) models that implement both 
the local and coordination controls. A single DC is generated for 
each local manufacturing unit in the system. The last activity 
transforms the DCs into Grafcet specification in order to exploit 
the resulting model in the PLC (Programmable Logic 
Controller). The implemented transformation produces a JSON 
model visualized as Grafcet into GoJS [7]. The latter is a 
JavaScript library for creating and manipulating diagrams, 
charts, and graphs. 

III. PROOF OF CONCEPT 

According to the activity diagram of Fig. 1, after defining the 
system and control specification models, the proposed tool 
consists of four automated steps. First, the designer defines the 
system using UML Statechart models. Our statechart models are 
defined using PlantText [8], which is an Open-source tool, based 
on PlantUML [9], that uses a textual DSL to create graphical 
UML diagrams. Thus, our proposal is generic and not oriented 
for a particular software vendor (e.g., MagicDraw, Rational 
Software Modeler, Modelio, Visual Paradigm, etc.). In order to 
have a fully integrated MDE approach [10], we have proposed 

Figure 2.  Proposed grammar for PlantText 

Figure 1.  Activity diagram for the synthesis of distributed supervisory control 



an alternative to the online PlantText editor. For this, we propose 
a textual editor based on Xtext. Figure. 2 shows the implemented 
grammar of the textual editor. Second, the aim of the “Parse” 
activity is to take the UML Statechart model established by the 
designer and automatically produce a LC model (Fig. 3) that is 
conform to a General Controller Metamodel. 

The transformation is expressed as graph transformation unit 
implemented using Henshin [11]. Henshin is a transformation 
language and tool environment based on graph transformation 
concepts and operating on EMF models [11]. It provides features 
needed to express complex transformation such as negative 
application conditions (NACs), which specify the non-existence 
of model patterns in certain contexts and transformation units to 
control the rules application sequence. We have to notice that the 
rule declaration in the Henshin formalism does not explicit the 
description of the left- and right-hand sides. Instead, it is based 
on the following stereotypes to depict the rule application 
semantic: preserve, create, require, and forbid 

Third, the “Aggregation” activity is an endogenous 
transformation that takes as input the LC model and produces 
the corresponding ALC model. The aim of this transformation is 
to apply corresponding control specifications to the latter. The 
ALC is produced through a graph transformation implemented 
with Henshin. Figure. 4 shows the rules being used to aggregate 
states respectively according to Inh and Ord. Transformations 
consist of removing the controllable evolutions from the LC 
model, and joining them into macro-states as follows: if the 
controllable event is associated with a rising edge, then the order 

is authorized and belongs to the set 𝑂𝑟𝑑(𝐷𝐶) ; otherwise, the 

order is inhibited and belongs to the set 𝐼𝑛ℎ(𝐷𝐶). Figure. 5 shows 
the resulted ALC model. 

The basic data structure of a global constraint is a Boolean 
expression of the following form: 

If (Condition) Then (Action) 

Formally, the set of global constraints is defined by the pair 

𝑆𝑝𝑒𝑐 =  (𝐶(𝑠𝑝𝑒𝑐), 𝐴𝑐𝑡(𝑠𝑝𝑒𝑐)) , where 𝐶(𝑠𝑝𝑒𝑐) is the set of 

conditions; and Act(spec) = {Ord(spec), Inh(spec)} is the set of 

activation/deactivation actions. Due to space limit, we choose to 
not present the textual editor grammar as it is based on the same 
idea of Fig. 2. 

Example global constraints to be applied to the LC of Fig. 3 
are stipulated as presented in Fig. 6. The global constraints are 
added to the ALC as follows. Check all the constraints for each 
ALC state. If an authorized (resp., inhibited) order of an ALC 
state is similar to that authorized (resp., inhibited) within a global 
constraint, then the constraint's condition should be associated 
with the actual state to condition the authorization (resp., the 
inhibition) of the corresponding order. The resulting controller 
is a DC model (conforms to the General Controller Metamodel). 
To avoid any confusion between the LC and ALC metamodels, 
the values regarding the conditions Ord_If and Inh_If are only 
represented in the DC model. 

The rules implied in the transformation unit that takes as 
input the ALC and constraint models and produces the DC 
model as output (Fig. 7) have been implemented using Henshin. 
Dedicated rules have been expressed in order to retrieve Inh and 
Ord nodes from the constraint models and set the adequate 
values of Inh_If and Ord_If attributes. 

The purpose of the last activity is to create a Grafcet model 
to be used in a running system (the PLC). To do so, we have used 
the metamodel proposed in [12]. It defines the steps and the 
different transitions between them.  

To avoid defining a concrete representation for the Grafcet 
model, we decide to visualize the output into GoJS [5]. For that, 
the transformation is defined to a JSON model.  For the sake of 
brevity, we don’t explicit the transformation rules in this paper. 
Figure. 8 presents the visual model being generated for the LC 
of Fig. 3. 

Figure 3. Local Controller (LC) model example 

Figure 6.   Aggregation transformation rule 

Figure 5. Aggregated Local Controller ALC  model example 

Figure 4. Aggregation transformation rule in Henshin 



IV. CONCLUSION & PERSPECTIVES 

This paper presents a tool for automating the process of 
generating distributed supervisory control interpreted as Grafcet 
specification (IEC 60848 [13]) for CPMS. The tool framework 
decreases the state space explosion problem inherent to formal 
supervisory control theory methods by using a 
modular/distributed structure that avoids the synchronous 
composition of subsystem models. It also increases the 
flexibility required in manufacturing systems through 
distributed control models that enable a simple and adaptive 
control strategy, i.e., in the case of a redesign, only a small 
amount of data related to the corresponding subsystem 
controllers will be updated.  

The founding framework of the tool uses model-checking 
technique for the verification of absence of deadlocks and 
making sure that the system safety and liveness requirements are 
met before the Grafcet implementation of the distributed control 
models. Model-checking technique allows tracing the sequences 
altering the system behavior, which enables easy update of the 
distributed control models. After the verification phase, 
simulation is used to validate the distributed control behavior. 

We believe that additional investigations of the 
verification/validation process are of significant importance and 
would bring improvements to our software tool.  

Extensions of this work would introduce a linkage between 
our software tool and model-checking technique. Another 
avenue of research is the introduction of time-domain to the 
framework of this paper to evaluate quantitative control 
problems and measure system performance. 
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Figure 7. Resulting DC model example 

Figure 8.   The generated Grafcet 


