
A Model Based Approach for Generating Modular

Manufacturing Control Systems Software

Mahmoud El Hamlaoui

ENSIAS, Mohammed V University in Rabat

Rabat, Morocco

Youness Laghouaouta

National Institute of Posts and Telecommunications

Rabat, Morocco

Yassine Qamsane

Siemens Technology, Automation Engineering Software

Charlotte, NC 28273, USA

Anant Mishra

Siemens Technology, Automation Engineering Software

Charlotte, NC 28273, USA

Abstract—Digitalization is transforming manufacturing systems to

become more agile and smart thanks to the integration of sensors

and connection technologies that help capture data at all phases of

a product’s life cycle. Digitalization promises to improve

manufacturing flexibility, quality, productivity, and reliability.

However, there is still a significant need of effective methods to

develop models that could enhance the capabilities of

manufacturing systems. Formal methods and tools are becoming

essential to achieve this objective. Within this context, this paper

introduces a formal software solution for the automatic generation

of modular manufacturing control systems software. The

proposed solution leverages software Model-Based Design (MBD)

techniques to reduce development effort, time, and human error

by automating several manual steps.

Keywords-component; Industry 4.0; Cyber-Physical

Manufacturing; Formal methods; MDE; DSL; Grafcet

I. INTRODUCTION

The world is in the midst of a new industrial revolution,
referred to as Industry 4.0 or Smart Manufacturing (SM), driven
by the rapid advancement in Information Communication
Technologies (ICT) in terms of speed, power, autonomy, and
mobility. The proliferation of ICT in the manufacturing domain
has brought about Cyber-Physical Manufacturing Systems
(CPMS), that combine physical production components (e.g.,
robots, machines, conveyors, and parts to be processed) with
cyber components (e.g., logic controllers, networks, and data
management infrastructures). CPMS gain their intelligence
thanks to their connectivity to the Industrial Internet of Things
(IIoT), which is an information network of physical objects (e.g.,
sensors and machines) that allows interaction and cooperation of
these objects to reach common goals [1][2]. CPMS enable more
flexibility, reactivity, proactivity, and adaptability to the
dynamic global market shifts and fast changing customer
requirements.

For manufacturers to remain competitive, CPMS are
required to strategically adapt to factory changes associated with
the responsiveness to the rapid changes in customer
requirements and market conditions over time. In such agile
environments, defining the interaction between the

manufacturing control system and the physical manufacturing
units using conventional development processes, which are
characterized by an overhead of manual work, is effort and time-
consuming and would have negative impacts on finances. Thus,
to address uncertain and emerging situations, the manufacturing
control system should be highly flexible, adaptable, and
reconfigurable.

In previous work [3][4][5[6], we introduced a formal
approach to automatically synthesize modular / distributed
supervisory control for CPMS. The approach divides the overall
control problem into local and global controls. Local Controllers
(LCs) are developed for individual subsystems, then global
interactions are added to the LCs to cooperatively execute the
overall control actions. This approach ensures the flexibility
required in CPMS to adapt to rapid changing conditions. For
instance, in case of redesign or system extension, the practitioner
would modify only the LCs for the impacted production modules
and extend the global specifications with the new requirements,
then automatically synthesize the new control logic. In contrast
to a centralized controller approach where the entire control
system needs to be rebuilt, the proposed approach requires to
update only the affected manufacturing units. This approach
enables the manufacturing units to be versatile and reusable in
different environments.

The contribution of this paper is to derive a systematic
software solution that is based on the previously proposed
formal approach to support CPMS control designers in
automatically generating control systems. The software solution
leverages Model-Based Design (MBD) techniques to reduce
development effort, time, and human error by automating
several manual steps.

The rest of this paper is organized as follows. Section II
recalls the theoretical proposition. Section III details the design
and development of the proposed software solution. Finally,
Section IV summarizes the contributions of this paper and
presents some future research avenues for this work.

DOI reference number: 10.18293/SEKE2022-151

II. PROPOSED THEORETICAL APPROACH

The workflow shown in Fig. 1 displays the different steps of
the supervisory controller synthesis process.

First, the discrete operation physically realizable by the
system is modeled using discrete automata models in a local
modular way according to its mechanical and functional
characteristics (e.g., sensors and actuators). A Local Controller
(LC) is derived for each local plant component from its
automaton model. Second, to enable the overall system
coordination, global specifications over the local components
are defined and formalized as logical Boolean expressions.
Then, the LC are aggregated to enable applying the logical
Boolean expressions to the automata models. The aggregation
procedure is carried out such that the states reached by
controllable (actuator) events (σ∈Σc) are merged into macro-
states that are interconnected with uncontrollable (sensor) events
(σ∈Σuc) as explained in Section III. The output of this
endogenous transformation is saved as an ALC (Aggregated
Local Controller).

The Global synthesis activity consists of applying the formal
global specifications to the corresponding ALC models, which
allows the local components to coordinate among each other to

reach the global control objective. At the output of this activity
is the DC (Distributed Controller) models that implement both
the local and coordination controls. A single DC is generated for
each local manufacturing unit in the system. The last activity
transforms the DCs into Grafcet specification in order to exploit
the resulting model in the PLC (Programmable Logic
Controller). The implemented transformation produces a JSON
model visualized as Grafcet into GoJS [7]. The latter is a
JavaScript library for creating and manipulating diagrams,
charts, and graphs.

III. PROOF OF CONCEPT

According to the activity diagram of Fig. 1, after defining the
system and control specification models, the proposed tool
consists of four automated steps. First, the designer defines the
system using UML Statechart models. Our statechart models are
defined using PlantText [8], which is an Open-source tool, based
on PlantUML [9], that uses a textual DSL to create graphical
UML diagrams. Thus, our proposal is generic and not oriented
for a particular software vendor (e.g., MagicDraw, Rational
Software Modeler, Modelio, Visual Paradigm, etc.). In order to
have a fully integrated MDE approach [10], we have proposed

Figure 2. Proposed grammar for PlantText

Figure 1. Activity diagram for the synthesis of distributed supervisory control

an alternative to the online PlantText editor. For this, we propose
a textual editor based on Xtext. Figure. 2 shows the implemented
grammar of the textual editor. Second, the aim of the “Parse”
activity is to take the UML Statechart model established by the
designer and automatically produce a LC model (Fig. 3) that is
conform to a General Controller Metamodel.

The transformation is expressed as graph transformation unit
implemented using Henshin [11]. Henshin is a transformation
language and tool environment based on graph transformation
concepts and operating on EMF models [11]. It provides features
needed to express complex transformation such as negative
application conditions (NACs), which specify the non-existence
of model patterns in certain contexts and transformation units to
control the rules application sequence. We have to notice that the
rule declaration in the Henshin formalism does not explicit the
description of the left- and right-hand sides. Instead, it is based
on the following stereotypes to depict the rule application
semantic: preserve, create, require, and forbid

Third, the “Aggregation” activity is an endogenous
transformation that takes as input the LC model and produces
the corresponding ALC model. The aim of this transformation is
to apply corresponding control specifications to the latter. The
ALC is produced through a graph transformation implemented
with Henshin. Figure. 4 shows the rules being used to aggregate
states respectively according to Inh and Ord. Transformations
consist of removing the controllable evolutions from the LC
model, and joining them into macro-states as follows: if the
controllable event is associated with a rising edge, then the order

is authorized and belongs to the set 𝑂𝑟𝑑(𝐷𝐶) ; otherwise, the

order is inhibited and belongs to the set 𝐼𝑛ℎ(𝐷𝐶). Figure. 5 shows
the resulted ALC model.

The basic data structure of a global constraint is a Boolean
expression of the following form:

If (Condition) Then (Action)

Formally, the set of global constraints is defined by the pair

𝑆𝑝𝑒𝑐 = (𝐶(𝑠𝑝𝑒𝑐), 𝐴𝑐𝑡(𝑠𝑝𝑒𝑐)) , where 𝐶(𝑠𝑝𝑒𝑐) is the set of

conditions; and Act(spec) = {Ord(spec), Inh(spec)} is the set of

activation/deactivation actions. Due to space limit, we choose to
not present the textual editor grammar as it is based on the same
idea of Fig. 2.

Example global constraints to be applied to the LC of Fig. 3
are stipulated as presented in Fig. 6. The global constraints are
added to the ALC as follows. Check all the constraints for each
ALC state. If an authorized (resp., inhibited) order of an ALC
state is similar to that authorized (resp., inhibited) within a global
constraint, then the constraint's condition should be associated
with the actual state to condition the authorization (resp., the
inhibition) of the corresponding order. The resulting controller
is a DC model (conforms to the General Controller Metamodel).
To avoid any confusion between the LC and ALC metamodels,
the values regarding the conditions Ord_If and Inh_If are only
represented in the DC model.

The rules implied in the transformation unit that takes as
input the ALC and constraint models and produces the DC
model as output (Fig. 7) have been implemented using Henshin.
Dedicated rules have been expressed in order to retrieve Inh and
Ord nodes from the constraint models and set the adequate
values of Inh_If and Ord_If attributes.

The purpose of the last activity is to create a Grafcet model
to be used in a running system (the PLC). To do so, we have used
the metamodel proposed in [12]. It defines the steps and the
different transitions between them.

To avoid defining a concrete representation for the Grafcet
model, we decide to visualize the output into GoJS [5]. For that,
the transformation is defined to a JSON model. For the sake of
brevity, we don’t explicit the transformation rules in this paper.
Figure. 8 presents the visual model being generated for the LC
of Fig. 3.

Figure 3. Local Controller (LC) model example

Figure 6. Aggregation transformation rule

Figure 5. Aggregated Local Controller ALC model example

Figure 4. Aggregation transformation rule in Henshin

IV. CONCLUSION & PERSPECTIVES

This paper presents a tool for automating the process of
generating distributed supervisory control interpreted as Grafcet
specification (IEC 60848 [13]) for CPMS. The tool framework
decreases the state space explosion problem inherent to formal
supervisory control theory methods by using a
modular/distributed structure that avoids the synchronous
composition of subsystem models. It also increases the
flexibility required in manufacturing systems through
distributed control models that enable a simple and adaptive
control strategy, i.e., in the case of a redesign, only a small
amount of data related to the corresponding subsystem
controllers will be updated.

The founding framework of the tool uses model-checking
technique for the verification of absence of deadlocks and
making sure that the system safety and liveness requirements are
met before the Grafcet implementation of the distributed control
models. Model-checking technique allows tracing the sequences
altering the system behavior, which enables easy update of the
distributed control models. After the verification phase,
simulation is used to validate the distributed control behavior.

We believe that additional investigations of the
verification/validation process are of significant importance and
would bring improvements to our software tool.

Extensions of this work would introduce a linkage between
our software tool and model-checking technique. Another
avenue of research is the introduction of time-domain to the
framework of this paper to evaluate quantitative control
problems and measure system performance.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
internet of things: Challenges, opportunities, and directions,” IEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] Y. Qamsane, E. C. Balta, J. Moyne, D. Tilbury, and K. Barton, “Dynamic
rerouting of cyber-physical production systems in response to disruptions
based on sdc framework,” in 2019 American Control Conference (ACC).
IEEE, 2019, pp. 3650–3657.

[3] Y. Qamsane, A. Tajer, and A. Philippot, “A synthesis approach to
distributed supervisory control design for manufacturing systems with
grafcet implementation,” International Journal of Production Research,
vol. 55, no. 15, pp. 4283–4303, 2017.

[4] Y. Qamsane, M. E. Hamlaoui, A. Tajer, and A. Philippot, “A tool support
to distributed control synthesis and grafcet implementation for discrete
event manufacturing systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
5806–5811, 2017.

[5] Y. Qamsane, M. E. Hamlaoui, A. Tajer, and A. Philippot. “A model-based
transformation method to design PLC-based control of discrete automated
manufacturing systems.” 4th International Conference on Automation,
Control Engineering and Computer Science (ACECS-2017). Vol. 19.
2017.

[6] Y. Qamsane, A. Tajer, and A. Philippot. “Towards an approach of
synthesis, validation and implementation of distributed control for AMS
by using events ordering relations.” International Journal of Production
Research 55.21 (2017): 6235-6253.

[7] N. Software, “Gojs, a javascript library for html diagrams,” 2019.

[8] P. U. editor, “Uml editor - an online tool that generates images from text,”
https://www.planttext.com/, 2008.

[9] A. Roques, “Plantuml: Open-source tool that uses simple textual
descriptions to draw uml diagrams,” 2015.

[10] M. E. Hamlaoui, S. Bennani, M. Nassar, S. Ebersold, and B. Coulette,
“Heterogeneous design models alignment: from matching to consistency
management,” in 33rd ACM/SIGAPP Symposium On Applied
Computing (SAC 2018). ACM Digital Library, 2018, pp. 1695–1697.

[11] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
advanced concepts and tools for in-place emf model transformations,” in
International Conference on Model Driven Engineering Languages and
Systems. Springer, 2010, pp. 121–135.

[12] P. Guyard, “Atl transformation example : Bridging grafcet, petri net, pnml
and xml,” 2005.

[13] IEC-60848, “Grafcet specification language for sequential function
charts,” 2013.

Figure 7. Resulting DC model example

Figure 8. The generated Grafcet

