
Ensemble Approaches for Test Case Prioritization
in UI Testing

Tri Cao1,2,3, Tuan Ngoc Vu2,3, Huyen Thao Le2,3, Vu Nguyen1,2,3,*

1Katalon LLC
2Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam

3Vietnam National University, Ho Chi Minh City, Vietnam
{cttri19, vntuan19, lthuyen19}@apcs.fitus.edu.vn, nvu@fit.hcmus.edu.vn

Abstract—Test case prioritization, which focuses on ranking
test cases, is an important activity in software engineering
given a large number of test cases to be executed within a
short period of time. Recent approaches use test execution
history and test coverage as the key information for ranking
prediction while reinforcement learning has the potential for
improving the accuracy of prioritization. Still, each approach
has its own advantages and limitations. This paper proposes a
ensemble method to take advantages of several existing models
by combining different them into a single one. We evaluate our
ensemble models on the data sets, including sixteen projects.
The results show that one of our proposed models outperforms
all single models on 12 over 16 data sets.

Index Terms—test case prioritization, UI testing, ensemble
method

I. INTRODUCTION

Test case prioritization (TCP) is an important activity to
reduce testing effort in software projects given the lack of time
for testing and delivering software releases. For user interface
(UI) testing, TCP is even more important as UI testing requires
more time to execute than do other types of testing [1]. TCP
helps determine a subset of tests to run instead of running
all available tests while aiming to satisfy a certain objective.
One common objective is to maximize the chance of detecting
faults.

A number of approaches have been introduced for TCP
using this objective [2]–[5]. Among them, history-based and
coverage-based approaches have been shown to be effective in
prioritizing tests [2], [4], [5]. The history-based method uses
the test verdicts from the execution history of test cases while
the coverage-based focuses on optimizing the coverage of test
cases using features such as length of test cases, functions,
and code changes [2], [3], [6]. Bryce et al. [6] calculated
the coverage of test cases based on defined parameter-value
pairs. Nguyen and Le [4] proposed an approach combining test
execution history and test coverage together with reinforce-
ment learning to prioritize UI test cases. Each approach has
its own strengths and limitations. For example, history-based
and coverage-based approaches do not take into account the
addition of test cases in regression testing since the added

* Corresponding: Vu Nguyen (nvu@fit.hcmus.edu.vn)
DOI reference number: 10.18293/SEKE2022-148

test cases have less information of execution history and
coverage. Whereas the reinforcement learning method shows
its advantage in such scenarios as it facilitates the interaction
between the agent and the environment (i.e., the test cases
added).

In this paper, we present an ensemble method to build
test prioritization models by combining different approaches
with the hope of taking advantages of these approaches.
We introduce three ensemble models, including History-based
ensemble by combining two single models that use execution
history as the primary information, Coverage-based ensemble
by using two single models that rely on coverage information,
and History Coverage-based ensemble by combining History-
based and Coverage-based models. The ensemble method
proposed falls into the parallel category, which means each
model is run independently, and the final ranking is the average
of results received from those models. Furthermore, as our
method focuses on UI testing, it can take advantage of the
information of test steps in each test case. By that, the method
uses the test step verdict to calculate the weight of each test
case. To the best of our knowledge, though ensemble methods
are fairly common in machine learning, their application in UI
test case prioritization has not been explored before.

We perform experiments evaluating the proposed and other
state-of-the-art individual approaches using 16 data sets. The
results obtained from our experiments demonstrate that our
best ensemble model outperforms base models on 12 over 16
data sets. This finding suggests that the ensemble method can
take advantage of each individual method to produce better
test prioritization performance.

The rest of our paper is organized as follows. In section
II, we describe related studies on test case prioritization
in the context of UI testing. Section III presents in detail
our approach. Section IV describes the experimental setup,
including research questions, evaluation metrics, and data sets.
The experimental results are shown in section V and discussed
in section VI. Section VII is our conclusion and future work
discussion.

II. RELATED WORK

Research on test suite optimization can be grouped into
three main problems: test case selection, test set minimization,
and test case prioritization [7]. Since our work focuses on test



case prioritization for UI testing, this section presents related
works for this specific task.

Coverage approaches [2], [6] try to order test cases to cover
the target items (which can be branches, functions, objects,
code changes, etc.). These approaches are straightforward and
simple. However, code coverage tools which are used to track
code items during execution are not always available.

History-based approaches [8], [9] use the verdicts from the
execution history of test cases in different ways to prioritize
test cases. Hemmati et al. grouped test cases with similar
fault percentages and used diversity or random algorithms to
prioritize test cases in each group [5]. Other studies proposed
functions that calculate a historical value from the cost and
fault severity of each test case, then order these test cases
using their values [10], [11]. Noor and Hemmati calculate the
similarity between the code of each test case using Hamming
distance, edit distance, basic counting and combine the simi-
larity with historical verdicts to prioritize the test cases. Wu
et al. [12] consider the time window before the execution of
each test case, calculate the percentage of failure for each time
window, then sort the test cases based on their likelihood of
failure.

Alongside new methods to represent and extract data, ma-
chine learning algorithms have been used in TCP recently
because they can learn the rules automatically and therefore
becomes more compatible for each project compared to tra-
ditional methods. Learning to rank algorithms, which were
originally used to rank searching results or prioritize content
on websites, was applied to TCP in [13]. In [4], researchers
proposed a coverage graph that can utilize both the historical
and coverage information of the test case. The graph can
update itself after each cycle so that cycles would affect the
order of test cases. Sharma and Agrawal built an information
graph from UML and user story, then fed that graph into meta-
heuristic algorithms [14]. Kaur et al. extracted the elements
of UI in each test step, then used this data as input for
traditional machine learning algorithms (SVM, decision trees,
naive Bayes, etc.) [15]. For the first time, ensemble methods
are applied with traditional machine learning for a general case
of TCP in [16].

III. OUR APPROACH

In this section, we describe the proposed ensemble method
for UI test case prioritization.

A. Ensemble method for UI test case prioritization

Ensemble is a common method in machine learning where
models need to make predictions. Combining the predictions
of two or more models often gives better results than the
performance of a single model [17]. This is because by
joining multiple models together, weaknesses of one model are
expected to be improved by other models and vice versa. In UI
test case prioritization, there are different approaches with their
own strengths and limitations which are able to complement
each other. Hence, we apply this idea of the ensemble method
for prioritizing UI test cases.

Ensemble methods in machine learning have two main
paradigms: sequential ensemble methods and parallel en-
semble methods [18]. In sequential ensemble methods, the
dependence between base models is exploited by successively
applying those base models one after another. On the contrary,
parallel ensemble methods focus on the independence between
base models by running them in parallel and combining the
results later on. In this paper, we apply parallel methods since
we do not observe any considerable dependencies between the
chosen UI test case prioritization approaches.

Fig. 1 provides an overview of our model. Our ensemble
method is divided into two phases: the first is to obtain
predictive ranking from different models, and the second phase
is to combine results from the first phase to one final ranking
using a voting policy. The test suite to be prioritized contains N
test cases that are passed through each individual model. The
output of every single model is the order of the test cases in
the test suite. That is, each test case has an index representing
its position corresponding to each model. Thus, each test case
in the test suite will have M position values from M single
models, where M is the number of models participating in the
ensemble model. We calculate the final weight of a certain
test case by adding all the weights of that test case from M
models. Specifically, in formula (1), ai is the final weight of
the test case ith in the original order, and it is the sum of wji

where wji represents the weight (position) of the ith test case
in the test suite given by the jth model. The test cases are
then sorted according to their final weights.

B. Strategies to choose the method for ensemble

In the context of UI testing, many TCP approaches have
been proposed. Two common approaches are history-based
and coverage-based. Both aim to increase the efficiency of
fault detection, yet they use different information and are
based on different hypotheses. Moreover, each method carries
different advantages. We implement ensemble models to com-
bine those advantages in the hope that they can help increase
the overall performance. In detail, we propose three ensemble
models, which are History-based, Coverage-based, and History
Coverage-based models.

1) History-based ensemble: History-based approach is
based on the hypotheses that test cases with errors in the
past have a high probability of continuing to detect errors. We
choose two methods to include in the history-based ensemble.
The first method prioritizes test cases according to the number
of failures of each test case in the past. This approach, which
is called HBRL hereafter, was proposed by Hemmati et al.
[5]. The second is RLTCP [4], which also uses execution
history information and a combination of test coverage and
reinforcement learning. Although RLTCP is generally more
efficient, the first method prevails in the first cycles of the
application under test (AUT) because RLTCP needs to go
through several cycles to be effective. Combining an ML-based
and a traditional method is expected to provide a stable use
of the model across stages in software development.



Model 1

Model m

Test suite ...
...

...
...

...

...

...
Sorting

Final
ranking

Fig. 1: The basic scheme of the two-step data fusion approach. The first one is to obtain predictive results from different
models. The second one is to combine these results to one final result with voting policy

2) Coverage-based ensemble: Coverage-based is based on
the coverage information of a test case for one or several
components in the AUT. We choose two methods for the
coverage-based ensemble. The first method is implemented by
sorting based on the number of test steps of a test case, i.e.,
the length-based method. The test case with the most number
of test steps will be ranked first. The second method, called
StepGreedy, tries to cover all test steps as quickly as possible
using a greedy algorithm. The former considers test cases to
be independent of each other, meaning that though test cases
include the same test steps, they are considered different. In
other words, if two test cases share the same large number
of test steps, they are both ranked high even though we just
need to execute one of them. Whereas the latter takes into
account the relation between test cases, which means that two
test steps doing the same action are considered as one test step.
After one test case is ranked, its test steps are marked satisfied
and removed from further consideration. We select a next test
case that maximizes the number of test steps not covered in
previously selected tests. In the context of UI testing, certain
test cases depend on each other, but there are also test cases
entirely independent of each other. Therefore, the expectation
of combining these two methods is to increase the efficiency
of the model.

3) History Coverage-based approach: We choose RLTCP
and StepGreedy from the coverage-based approach for the
history coverage-based ensemble. This combination aims to
create an approach that uses both execution history and
coverage information of test cases.

IV. EXPERIMENTAL DESIGN

A. Overview

We conduct experiments based on how TCP approaches can
be used in the software development process. At each iteration
or cycle, testers use the models to predict the order of test cases
to be executed for the release corresponding to the iteration.
They then use the prediction to execute tests that are highly
ranked given their time limit.

B. Research Questions

We design the experiments to answer the following research
questions:

RQ1: How do the ensemble models perform in comparison
with individual models in UI test case prioritization?

We compare the performance of ensemble models with
single models to see how effective they are. Single models
are the four that we discussed in section III. From that, we
find out which ensemble method has the best performance for
optimizing early error detection.

RQ2: How does the performance of the ensemble models
change over test iterations?

The number of test cases changes after each iteration in
software development. Test cases that fail in previous iterations
may no longer fail in the current iteration or vice versa.
We perform an experiment to represent the performance of
ensemble models to compare with the single methods across
test execution iterations.

C. Evaluation metrics

We use a standard metric in the Test case selection and
prioritization problem called Average Percentage of Fault
Detected (APFD). This metric is proposed by Rothermel et
al. [19], and it measures the proportion of errors identified at
each percentage of test suite execution and then calculates the
average to evaluate the effectiveness of a test case prioritizing
approach. APFD is calculated according to equation (1). For
each fault, the metric determines the first test case index that
detects that fault and computes the summation of those indexes
of all faults, then divides it by the product of m total faults and
n total test cases in the test suite. TFi denotes the number of
tests needed to execute before discovering the fault i. That is,
if all test cases that expose undetected errors are prioritized
and run before test cases that fail to detect new errors, the
APFD value for that order will be the highest.

APFD = 1− TF1 + TF2 + TF3 + ...+ TFm

mn
+

1

2n
(1)

We use a paired-sample non-parametric Mann-Whitney U
test with a confidence level of 0.05 to confirm if the APFD
difference between the proposed and other methods is sta-
tistically significant. The null hypothesis states that the two
methods have no statistically significant difference in APFD.
If a paired-sample Mann–Whitney U test has a p-value of
less than 0.05, the null hypothesis is rejected, which means



that the difference between two methods in terms of APFD is
statistically significant.

D. Data sets

In our experiment, we use four web applications, includ-
ing Mattermost1, Moodle2, Spectrum3, and Elementary Web4

as the AUT. The applications are quite popular, adequately
mature, and accumulate a considerable number of software
iterations.

To create automated UI test cases and run tests, we utilize
the test automation tool Katalon Studio5. After executing the
test suite, the results of test execution will be stored in reports.
The report contains the name of test cases, the test steps that
each test case includes, the verdict of each test case, and the
step that causes failure for test cases. We use these reports as
the data sets for validation.

We establish a test suite and tweak its test cases and the
AUT’s source code to produce mutations across numerous it-
erations to replicate a realistic software development situation.
The specific is described as follows:

• Iteration 1: Initialize the original suite by creating UI test
cases based on the original AUT version. The number of
test cases in the original suite is at least 20, and some
test cases may fail.

• Iteration 2: Test suite will be added at least 10 test cases.
Newly added test cases may fail. Test cases that failed in
the previous iteration may have been fixed.

• Iteration 3: The suite contains at least 40 test cases. Some
components can be added, removed or modified to the
AUT to simulate real software development. Some test
cases may fail due to these modifications.

• Iteration 4 and after: The number of test cases in each test
suite varies, but no test suite has less than 20. The AUT
continues to be tweaked with each iteration to simulate
software development. Test cases that fail in an iteration
can be debugged to ensure that a test case does not
repeatedly fail in successive iterations. The last iteration
may contain no failing test case.

The details for each data set is represented in Table I.
No.test, No.step, No.fail are the number of total test cases,
test steps in all test cases, and failing tests respectively that
are accumulated across all test suites.

In general, the number of iterations of data sets ranges from
10 to 15. Sixteen groups of senior computer science students
correspond to 16 data sets. Each of the four student groups
worked independently of one another. This procedure reflects
the nature of software development, where functionality and
test cases may be added or updated after each release.

1https://github.com/mattermost/mattermost-webapp
2https://github.com/moodle/moodle
3https://github.com/withspectrum/spectrum
4https://github.com/vector-im/element-web
5https://katalon.com

TABLE I: Number of iterations, test cases, test steps and
failing tests in sixteen data sets.

Datasets No.iteration No.fail No.step No.test
Elementary01 10 104 10,740 690
Spectrum01 10 46 2,041 240
Spectrum02 14 316 3,295 638
Spectrum03 15 80 1,948 431
Moodle01 15 84 9,623 690
Moodle02 15 79 11,796 690
Moodle03 15 96 9,996 690
Moodle04 15 88 7,739 690
Moodle05 15 81 13,368 690
Moodle06 15 92 5,225 675
Moodle07 15 216 11,276 684
Moodle08 15 98 13,995 690
Moodle09 14 161 8,574 640

Mattermost01 11 198 4,631 451
Mattermost02 10 61 8,336 440
Mattermost03 14 183 6,708 637

Fig. 2: APFD of the methods over each iteration for some
datasets

V. RESULTS

Table II describes our experimental results of the ensemble
methods and single methods across all data sets. Each cell
in the table represents the average APFD value of a method
on the corresponding data set. The two last rows are the
standard deviation and mean values of the APFD scores for
each method over 16 data sets.

While EnCov gives a second-worst result at both standard
deviation and APFD score with the value of 9.1 and 63.9,
respectively. The other two ensemble methods have the highest
APFD score and a relatively small variance when compared
to individual methods.

Among the based models, StepGreedy is the most stable
one with a standard deviation of 4.3. LengthBased has the
lowest APFD score of 56.0 and the biggest variance when its
standard deviation is significantly higher than other methods
(9.1 while the others vary from 4.3 to 6.9). RLTCP often has
the highest APFD score among individual methods, and its
results are sometimes comparable or even bigger than EnHis



TABLE II: Average APFD over iterations of each method on considered dataset

Datasets StepGreedy LengthBased RLTCP HBRL EnCov EnHis EnCovHis
Elementary01 69.3 43.2 68.1 66.1 51.7 73.1 74.4
Spectrum01 66.8 49.6 67.2 67.7 57.8 70.8 71.2
Spectrum02 67.4 44.5 70.2 62.0 55.0 70.3 74.5
Spectrum03 63.8 65.0 77.6 70.6 68.0 77.7 76.1
Moodle01 63.8 58.5 59.9 54.4 61.5 61.3 64.4
Moodle02 64.2 53.5 63.3 54.1 60.2 63.1 68.5
Moodle03 64.3 56.7 66.4 65.8 64.4 70.3 70.5
Moodle04 64.9 58.9 75.2 59.0 67.6 70.9 74.1
Moodle05 66.2 59.9 79.7 57.7 71.3 74.2 80.5
Moodle06 66.6 45.2 67.2 60.8 51.2 70.4 72.4
Moodle07 67.7 68.3 73.4 65.0 72.2 75.8 77.5
Moodle08 68.8 58.5 73.1 62.9 66.6 75.6 75.8
Moodle09 73.0 51.0 73.0 61.9 62.8 74.2 77.6

Mattermost01 73.6 68.2 74.0 70.6 65.6 74.4 77.2
Mattermost02 79.7 70.5 85.3 76.7 74.4 87.6 88.0
Mattermost03 68.9 45.3 72.5 66.8 62.5 71.8 75.0

Stdev 4.3 9.1 6.3 6.1 6.9 5.9 5.3
Avarage 68.1 56.0 71.6 63.9 63.3 72.6 74.9

and EnCovHis.
Table III is the p-value of the Mann–Whitney U test

mentioned in section IV when comparing EnCovHis with
other methods being experimented with within this paper.
The bold value indicates the statistically significant difference
in APFD between the EnCovHis and the others (p-value
≤ 0.05). The table suggests rejecting the null hypothesis
for most of the dataset. The results show that EnCovHis is
better than RLTCP on twelve datasets. Even in Elementary01,
Moodle07, Mattermost01, their p-values are less than 0.01. On
Spectrum01, Spectrum03, Moodle04, Moodle05, p-values are
greater than 0.05, although only two of them have average
APFDs smaller.

Figure.2 illustrates the APFD score of each algorithm
throughout cycles for six data sets. It can be seen that
EnCovHis and EnHis may perform badly during some first
iterations because of lacking historical information, which is
crucial for RLTCP and HBRL to give a good prioritize order,
but they get better and become more stable in the latter cycles.
Meanwhile, since StepGreedy does not use the execution
history, it maintains a small variance during iterations of the
data sets.

VI. DISCUSSION

This section focuses on answering the research questions in
Section IV using the experimental results from Section V.

RQ1: How do the ensemble models perform in comparison
with individual models in UI test case prioritization?

As mentioned above, it can be seen that EnCov does not
have good results. This may be because the performance of
the LengthBased method is too low compared to StepGreedy.
Therefore, instead of combining with each other to get a higher
result, LengthBased drags the StepGreedy method down, so
the APFD scores of EnCov usually lie somewhere between
these two methods.

While EvCovHis and EnHis both have promı́sing results,
EnCovHis has a slightly better performance with a more
significant average APFD score and a smaller standard de-
viation. The difference between standard deviations can be

TABLE III: p-value results of Mann-Whitney U tests between
EnCovHis and four single methods

Dataset StepGreedy LengthBased RLTCP HBRL
Elementary01 0.004 0.001 0.001 0.005
Spectrum01 0.016 0.004 0.131 0.049
Spectrum02 0.007 0.001 0.015 0.002
Spectrum03 0.029 0.054 0.736 0.021
Moodle01 0.472 0.242 0.046 0.025
Moodle02 0.145 0.035 0.032 0.013
Moodle03 0.047 0.006 0.040 0.117
Moodle04 0.007 0.009 0.712 0.001
Moodle05 0.001 0.003 0.484 0.001
Moodle06 0.076 0.002 0.030 0.009
Moodle07 0.002 0.021 0.005 0.003
Moodle08 0.013 0.003 0.040 0.001
Moodle09 0.033 0.001 0.033 0.002

Mattermost01 0.120 0.007 0.002 0.034
Mattermost02 0.038 0.038 0.038 0.021
Mattermost03 0.001 0.001 0.035 0.007

explained when examining the standard deviations of every
single model. EnHis, which uses two methods with similar
standard deviation values, gives a smaller deviation compared
to every single method. However, because EnCovHis has
StepGreedy, which is the most stable method acting as one
of its base models, it has a better standard deviation than that
of EnHis.

The Mann-Whitney U test results from Table III suggest that
EnCovHis outperforms the four considered existing methods in
most of the dataset with the confidence of 95%. However, there
are some exceptions, such as Moodle01, Moodle02 where the
performance of history-based methods is extremely unstable.
The variance of ensemble methods for these datasets is there-
fore affected, while the Coverage-based method can still keep
a good standard deviation, so there is not enough evidence
to reject the null hypothesis. RLTCP has a higher overall
performance when compared to StepGreedy, LengthBase, and
HBRL. Therefore, in some datasets, the APFD score of the
ensemble methods only varies around RLTCP’s score, and the
improvements are not significant.

Examining more closely at the Table II in each dataset,



we can see that the ensemble model will be more likely to
have higher results than each of its base models if these base
models have a similar performance. Therefore, EnCovHis may
perform better than EnHis since its two single models have
a closer average APFD score than the two base methods of
EnHis.

To sum up, the ensemble method can be used in prioritizing
UI test cases to get a higher result if the base models are
suitable. The experiment result suggests using methods with
similar performances and small variances in order to get higher
ensemble performance. The APFD score of the ensemble
method throughout cycles depends on its based methods.

RQ2: How does the performance of the ensemble models
change over test iterations?

The Fig.2 shows the APFD score of each method for all
iterations of a dataset. For most of the cases, the pattern
would look similar to that in Spectrum03 and Elementary01.
The historical data in the first cycles are not adequate for
history-based approaches to make a good decision, so they
perform badly at the beginning, then become more stable and
exceed coverage-based approaches. Meanwhile, since Step-
Greedy does not use the execution history, it maintains a
small variance during iterations of the datasets but cannot
improve the result after each iteration. EnCovHis and EnHis
can neutralize the pros and cons of both History-based and
Coverage-based approaches. They suffer less from the lacking
of execution data in the first iterations, improve faster for the
next cycles while giving a stable and high APFD score in the
latter ones.

VII. CONCLUSION

In this paper, we proposed a test case prioritization tech-
nique in regression UI testing by ensembling multiple sin-
gle models into a single one. We design three ensemble
models, which are history-based, coverage-based, and history
coverage-based ensembles. These three models were evaluated
using 16 data sets with the source code of four different AUT,
including Elementary, Spectrum, Moodle, and Mattermost.
The evaluating result shows that the history coverage-based
model is the best one which achieves the average APFD of
74.9%. This indicates that with suitable based models, the
ensemble method can outperform its own base algorithms.

Though ensemble learning is a popular machine learning
technique, this is the first time it is applied in UI test case
prioritization. Thus, it is a promising direction and can be
further explored in the future. Not only in UI testing, but
the ensemble method can also be applied in other testing
problems. Furthermore, due to the limitation of our data sets,
we only conduct experiments based on the idea of the parallel
ensemble method, i.e., bagging ensemble. However, other
ensemble approaches are still applicable and worth investing
in when having larger data and suitable base models.

ACKNOWLEDGEMENTS
This research is funded by Katalon LLC. We would also

like to thank students at the University of Science, Vietnam

National University, Ho Chi Minh city for participating in our
experiments.

REFERENCES

[1] H. Vocke. (2018) The practical test pyramid.
[Online]. Available: https://martinfowler.com/articles/practical-
test-pyramid.html?fbclid=IwAR31q-GxAE7fx-
8rLO8ayUmeFXsSy6fs1vcqylLmZVtnL2VuWVKWR0I4dboUiTests

[2] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction
coverage,” in Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting, 2007,
pp. 1–7.

[3] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization: A
case study on an industrial system,” Software Testing, Verification and
Reliability, vol. 25, no. 4, pp. 371–396, 2015.

[4] V. Nguyen and B. Le, “Rltcp: A reinforcement learning approach to
prioritizing automated user interface tests,” Information and Software
Technology, vol. 136, p. 106574, 2021.

[5] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing
manual test cases in rapid release environments,” Software Testing,
Verification and Reliability, vol. 27, no. 6, p. e1609, 2017.

[6] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test suite
prioritization by cost-based combinatorial interaction coverage,” Inter-
national Journal of System Assurance Engineering and Management,
vol. 2, no. 2, pp. 126–134, 2011.

[7] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[8] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proceed-
ings of the 24th international conference on software engineering, 2002,
pp. 119–129.

[9] A. Khalilian, M. A. Azgomi, and Y. Fazlalizadeh, “An improved method
for test case prioritization by incorporating historical test case data,”
Science of Computer Programming, vol. 78, no. 1, pp. 93–116, 2012.

[10] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of
regression testing,” in 2008 Second International Conference on Secure
System Integration and Reliability Improvement. IEEE, 2008, pp. 39–
46.

[11] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in 2013 IEEE
International Conference on Software Maintenance. IEEE, 2013, pp.
540–543.

[12] Z. Wu, Y. Yang, Z. Li, and R. Zhao, “A time window based rein-
forcement learning reward for test case prioritization in continuous
integration,” in Proceedings of the 11th Asia-Pacific Symposium on
Internetware, 2019, pp. 1–6.

[13] Y. Huang, T. Shu, and Z. Ding, “A learn-to-rank method for model-based
regression test case prioritization,” IEEE Access, vol. 9, pp. 16 365–
16 382, 2021.

[14] M. M. Sharma and A. Agrawal, “Test case design and test case priori-
tization using machine learning,” International Journal of Engineering
and Advanced Technology, vol. 9, no. 1, pp. 2742–2748, 2019.

[15] P. Kaur, P. Bansal, and R. Sibal, “Prioritization of test scenarios derived
from uml activity diagram using path complexity,” in Proceedings of
the CUBE International Information Technology Conference, 2012, pp.
355–359.

[16] R. Lachmann, “Machine learning-driven test case prioritization ap-
proaches for black-box software testing,” in The European Test and
Telemetry Conference, Nuremberg, Germany, 2018.

[17] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits
and systems magazine, vol. 6, no. 3, pp. 21–45, 2006.

[18] P. Bühlmann, “Bagging, boosting and ensemble methods,” in Handbook
of computational statistics. Springer, 2012, pp. 985–1022.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360). IEEE, 1999, pp.
179–188.


