
WBS: Weighted Backtracking Strategy for
Symbolic Testing of Embedded Software

Varsha P Suresh1, Sujit Kumar Chakrabarti1, Athul Suresh1, and Raoul Jetley2

1International Institute of Information Technology Bangalore, Bengaluru, India
2ABB Corporate Research, Bengaluru, India

Abstract

Symbolic execution is an important program analysis
technique that has found a number of applications in the
last fifteen years or so. Popular symbolic execution ap-
proaches use backtracking when faced with infeasibility
along a path being explored. A simple backtracking strat-
egy (i.e. backtracking by a single decision node) may suf-
fice when the goal is to cover the entire control flow graph
(CFG). However, if the goal is to cover specific parts of the
CFG through a single path, simple backtracking may lead
to non-optimality or even non-termination. In this paper, we
present weighted backtracking strategy (WBS) that exploits
previous knowledge about the program behaviour to com-
pute ‘good’ candidates as destinations of backtracking. We
have integrated our heuristic to SymTest, a symbolic testing
framework for embedded systems. Experiments with case-
studies have demonstrated that WBS improves SymTest’s
performance both in its ability to achieve termination as
well as in computing shorter test sequences compared to
the original approach. SymTest with WBS generates shorter
test sequences compared to several other existing test gen-
eration approaches based on symbolic execution.

1 Introduction
Large amount of time and effort of software develop-

ment is spend in testing of the software. In automated test
case generation the software under test is analysed and then
test data are generated. The generated test data is used for
test execution. Test execution can be simulation of the soft-
ware or target testing, where the software is executed in the
deployment environment. In case of real time embedded
software the cost of testing goes up dramatically because
such reactive systems requires interaction with other phys-
ical subsystems, human interfaces etc. Thus cost of testing
has a direct impact on cost of software quality, which ne-
cessitates the optimization of software testing. In embed-
ded systems and systems involving interactions with other

DOI reference number: 10.18293/SEKE2022-147

physical subsystems, the test sequence length (defined in
Section 2) plays a vital role in the cost of testing. As the
test sequence length increases the interaction between phys-
ical subsystems increases which in turn increases the cost
of testing. Even though there has been significant advance-
ment in symbolic execution in recent years, there has not
been much effort put towards obtaining short test sequences.

SymTest[1] is a symbolic execution framework used to
generate short test sequences for embedded software. The
main idea in SymTest is to explore only one path that cov-
ers the target edges. If the first path computed is feasible,
SymTest indeed provides very good results in terms of the
length of the test sequence (path) generated. However, if
the path chosen is infeasible, the guarantee of the shortness
of the generated test sequence is severely curtailed. Back-
tracking by one decision is the backtracking approach of
SymTest which provides no assurance that the alternative
path thus explored even terminates. We present a heuristic,
Weighted Backtracking Strategy (WBS) which computes a
candidate backtracking destination which may be more than
one decision edge behind the last decision edge. This ap-
proach is based on weight calculations obtained from ear-
lier runs of the system. We have implemented WBS as
a part of SymTest and tested it against a number of case
studies which reflects the path exploration problem. WBS
aided in generating test sequences in multiple cases where
SymTest fails to terminate, and generates shorter test se-
quences compared to SymTest and several other existing
testing approaches based on symbolic execution.

The rest of this paper is organized as follows: A mo-
tivating example and an overview of the related works is
discussed in Section 2. Section 3 explains the WBS and
the integration of WBS in SymTest. Section 4 presents the
experiment details and the obtained results. Section 5 con-
cludes the paper.

2 Motivation and Related Works
In structural testing, the goal is to execute the system so

as to cover certain parts of the system. In first-time testing,
we may want to cover the entire system. But in regression

int y = 0

int x = input()

x>50

y = x + 2 y = x * 2

((y>100)&&(y<180))

((y>60)&&(y<70))x = x + 2

x = x + 15 y>65

x = x + 1 x = x + 5

((x < 50)&&(x>44))

x = x + 65 x = x + 20

true

e1

e2

e3

e4

e

e

e

ENTRY

EXIT

e2’

e4’

e

e

e

5 e6

e7 7’

e8

e9 9’

10e

11 11’

e12 e13

14
e14’

e15
e16

e17

Figure 1: CFG

testing, depending on the requirement, certain parts of the
system may need to be covered. In our work, we consider
edge coverage as the coverage criterion. Our testing aims to
cover a set T of edges, called as target edges which may be
the set of all edges in the control flow graph of the system,
or a proper subset thereof. A test sequence is a sequence of
unit interactions between the system and the environment
that completely covers a given target edge set T . During
test execution, often the most time consuming (or resource
intensive) process is the interaction with the environment
which may involve network delays, mechanical movements
and human actions. Hence, test sequence length, measured
as the number of unit interactions of the system with the en-
vironment, may have a direct implication on cost of testing.

SymTest ensures generating shorter test sequences if the
initial path obtained from the control flow graph is sat-
isfiable. If backtracking occurs, then due to path explo-
sion problem the shorter test sequences are not guaran-
teed. Consider the control flow graph (CFG) shown in
Fig. 1. The edges marked in red in the CFG are the tar-
get edges we want to cover during testing. The path,
e1e2e3e4e5e7′e9′e11e12e14e15e17e2′ is computed and on
performing symbolic execution on the obtained path, it is
found to be unsatisfiable. Next step is to figure out the alter-
native optimal feasible path which covers the target edge.
Optimal path here means syntactically shortest path that
covers the target edges. Search strategy in SymTest fol-
lows backtracking by one decision edge to find the next
path. In the example given, the new path obtained is also
found to be unsatisfiable by the SMT solver. Backtracking
proceeds further to search the feasible path and SymTest
fails to terminate as it repeatedly takes the edge e4 on
each iteration in its search. Therefore this strategy does

not ensure finding optimal path after backtracking. Con-
trary to this when we use WBS in SymTest it redirects
the execution along the edge of e4′ , the resulting path is :
e1e2e3e4′e6e7′e9′e11e12e14e15e17e2′ . This turns out to be
feasible, thus resulting in a successful generation of test se-
quence of short length.

Classical search strategies - depth first search (DFS) have
been used in tools DART [2], CUTE [3]. JPF [4] [5]
has the capability to choose the search strategy DFS or
BFS. JPF also comprises structural heuristics for path ex-
ploration. CREST and KLEE are two concolic testing
tools which have been adopted for testing in industrial
applications [6][7]. CREST uses control flow directed
search, where static structure of the program is consid-
ered to explore program’s path space. The other search
strategies devised for concolic testing in CREST includes
bounded depth-first search, uniform random search, random
branch search [8]. The commonly used search strategies
in KLEE[9] are - Coverage-Optimized Search, Depth First
Search, Random Path Select, Random State Search. Fit-
nex [10] is a search strategy used to guide path exploration
in dynamic symbolic execution to achieve test target cov-
erage. Program-derived fitness functions were used to cal-
culate the fitness values for the explored paths. The fitness
function measures how close an explored path is in achiev-
ing test target coverage. For effective exploration, the core
Fitnex strategy has been integrated with other search strate-
gies.

Search strategies used in the symbolic execution tools
like KLEE, CREST focus on achieving high code coverage.
They do not ensure target edge coverage in least number
of iterations. On the other hand the integration of WBS in
original SymTest focuses on target edge coverage in fewest
number of iterations.

3 Proposed Approach
Before explaining the WBS in detail in Section 3.2, no-

tations used in the paper are introduced here and Section 3.1
illustrates how WBS is used in SymTest to improve the gen-
eration of test sequences.
Notations Some of the notational conventions followed in
the sequel is given here.

• P: Program under test
• G: Control flow graph of P
• V (G): Node set of G
• E(G): Edge set of G
• Nodes in V (G): represented by names like n, n′, ni, , where
i ∈ N

• Edges in E(G): represented by names like e, e′, ei, where
i ∈ N

• Each decision node in G has two outgoing decision edges e
and e′. We say that e = flip(e′) and e′ = flip(e).

• T : Target edge set
• T : Computational tree
• V (T): Node set of T

• E(T): Edge set of T
• Nodes in V (T) are represented by names like n, n′, n1, ni,

where i ∈ N
• →G is a relation between two decision edges ei, ej ∈ E(G)

such that ei is an immediately preceding decision edge to ej
in at least one run of the program.

3.1 SymTest-WBS
A revised version of the SymTest algorithm using WBS

is presented in Algorithm 1. We use FINDCFPATH [1]
to find an optimal syntactic path through the control flow
graph that covers all members in the target edge set T . The
path thus computed is pushed into the stack as a sequence
of decision edges. We symbolically execute along this path

Algorithm 1 SymTest-WBS
1: procedure SYMTEST(G, T , W)
2: stack ←<>
3: while true do
4: stack ← FINDCFPATH(G, T , stack)
5: sympath← SYMEX(G, stack)
6: pc← PC(sympath)
7: tf,M ← SOLVE(pc)
8: if tf then
9: return M

10: else
11: b← BTP(G, stack, W , T)
12: stack ← BACKTRACK(stack, flip(b))
13: PUSH(stack, b)

giving us the symbolic trace along that path (sympath). We
convert this into a logic formula and input it to an SMT
solver (SOLVE). If the formula is found satisfiable (indi-
cated by true value of the true or false (tf) component of
the value returned by SOLVE), our search was successful;
the test input can be directly extracted from the model M
returned by the solver. However, if the solver fails to solve
the formula, it indicates that the path computed by FIND-
CFPATH is infeasible. We need to backtrack (BACKTRACK)
and explore an alternative path.

On meeting infeasibility this version of SymTest back-
tracks by potentially multiple decision edges in stack. The
decision edge b to which this backtracking takes place is
computed by BTP. BTP function takes as a parameter
W : E(G) × E(G) → R. W is a map which takes takes
two edges e1 and e2 in E(G) as inputs and returns a weight
that is related with the probability of computing a short test
path that reaches e2 through e1. The BTP function itself is
presented in Algorithm 2, after introducing the prerequisite
matter about the preprocessing steps.
3.2 Weighted Backtracking Strategy

An overview of WBS architecture is given in Fig 2. The
preprocessing and computing backtrack point are the major
steps of WBS. In preprocessing, the experience about the

program under test is collected through previous runs. Note
that once this preprocessing step is done, its output is usable
by any number of runs of SymTest. After preprocessing,
backtracking point is computed using the pending targets to
be covered and edge ordering.

Program Trace
Generation

Computation
Tree

Generation

Weight
Calculation

Computing
Backtrack

Point

Backtrack Point

Preprocessing

Traces Comp Tree

Weights

Figure 2: WBS Architecture
3.2.1 Trace Generation
We define a trace π as a list of decision edges
{e1, e2, ..., en} which are traversed during a particular run
of the program. To generate traces, we instrument the pro-
gram under test such that every time a edge is traversed dur-
ing its execution, its corresponding edge id is printed into
a file. Let D be the pre-assigned maximum depth of exe-
cution. This instrumented program is executed N number
of times to generate the set of traces Π = {π1, π2, ..., πN}.
These are used to generate the computation tree.
3.2.2 Computation Tree Generation
A computation tree is the compressed representation of set
of all the traces (Π). The computation tree is a suffix tree de-
fined over the collected traces Π. Let (treepath(πi)) be the
path in computation tree (T) which corresponds to the trace
πi in Π. If two traces π1 and π2 have a common prefix, this
will result in their corresponding paths (treepath(π1) and
treepath(π2) respectively) in the computation tree to be
merged from the root till the point where π1 and π2 diverge.
The computation tree CT has a unique root node denoted
by CT.root. Each node n in a tree is a triple (e, C, np)
where n.e corresponds to the decision edge in the control
flow graph (G) of the program (P), n.C is the set of child
nodes of n and n.np is the number of individual tree paths
in which n occurs.

3.2.3 Weight Calculation
The selection of backtracking point is based on the prefer-
ability of a decision edge as a backtracking destination.
If the current path traversed is defined by the sequence
{e1, e2, ..., en} where we meet unsatisfiability at en
then the set of candidate backtracking points (CBP) are
{e′1, e′2, ..., e′n} where for a decision edge ei, e′i = flip(ei)
is the complimentary decision edge of ei. Selection of the
candidate backtracking points yielding the best result (i.e.
the shortest test sequence covering all target edges) is un-
decidable. Hence, we have devised a heuristic to determine
the probably best backtracking point and is computed by
calculating a preferability index called weight (W) of each
CBP. Weight for a CBP is calculated taking into account
two metrics: probability of covering all the pending target

edges and length of the resulting test sequence.

Probability Weight (WP): The probability of reach-
ing a target edge represents how often the target edge is
covered by the paths obtained. Let e be the current decision
edge, P be the total number of all explored paths passing
through e, T = {et1 , et2 , ...etn} be the set of all target
edges, P(e,eti)

be the total number of paths that cover
the edge e and the target edge eti in that order. Then,
we estimate the probability to reach target edge eti from
current decision edge e, which we call the probability
weight (WP (e, eti)), is given by:

WP (e, eti) =
P(e,eti)

P
(1)

Length Weight (WL) : Shortness of the test sequence is
indicated by the length weight (WL). Shorter the test se-
quence larger will be the value of WL. WL is calculated
using individual length weight wL, (wL : V (T)×E(G)→
R). For any treenode n ∈ V (T), and target edge eti ∈ T ,
the individual length weight is given as:

wL(n, et2) =
∑

n′∈N2

n′.np

L(n,n′) + 1
(2)

where, N2 = {n′ ∈ V (T)|n′.e = et2}, n′ is reachable
from n, np is defined in Section 3.2.2, L(n,n′) is the length
of the path from n and n′ measured as the number of occur-
rences of the true branch of the branching node representing
the outer loop.

Length weight, WL of a decision edge e ∈ E(G) is the
sum of the individual length weights of each treenode n ∈
V (T).

WL(e1, et2) =
∑
n∈N1

wL(n, et2) (3)

where, N1 = {n ∈ V (T)|n.e = e1}

Individual Weight (WI): Individual weight WI(e
′, eti) is

defined as the weighted sum of the probability weight and
length weight between edges e′ in CBP and eti in target
edge set. Thus:

WI(e
′, eti) = WP (e

′, eti) +WL(e
′, eti) (4)

Composite Weight (W): Composite weight W (e′) of a de-
cision edge e′ is the cumulative weight of e′ for all target
edges given by:

W (e′) =
∑

eti∈T ′

WI(e
′, eti) (5)

where T ′ is the pending target edge set(defined in Sec-
tion 3.2.4) for e′ with program control state defined by
stack.

3.2.4 Computing Backtracking Point

At any point during the symbolic execution, the control state
of the execution is captured by the state of stack. Some
of the edges in the target edge set T may be included in
this stack. These target edges do not need to be covered in
the further part of the test sequence. The remainder of the
target edges are the pending targets (T ′), which need to be
covered in the further part of the generated test sequence.
T ′(ei

′) denotes the pending target edges to be covered from
ei

′.
Consider CBPs e′1 and e′2 such that W (e′1) > W (e′2).

We may want to select e′1 as the final backtracking point.
However, this may turn out to be a mistake. Let T ′(e′1) =
{e1t1 , e

1
t2} and T ′(e′2) = {e2t1 , e

2
t2} denote the set of pending

target edges for e′1 and e′2 respectively. The test sequence to
be computed for e′1 would have a suffix ts11 = ⟨e′1, e1t1 , e

1
t2⟩

or ts12 = ⟨e′1, e1t2 , e
1
t1⟩; likewise, for e′2, they will be ts21 =

⟨e′2, e2t1 , e
2
t2⟩ or ts22 = ⟨e′2, e2t2 , e

2
t1⟩. Whether e′1 should be

finally chosen as the backtracking point, or e′2, depends on
which of ts11, ts12, ts21 and ts22 turn out to be the best path.
For example, if the weights of the path suffixes ts11, ts12,ts21,
ts22 (path weight will be defined below) turn out to be related
in the following manner: W (ts21) > W (ts22) > W (ts11) >
W (ts12), it is then better to select e′2 as the backtracking
point inspite of the fact that W (e′1) > W (e′2). In summary,
to make a decision on the backtracking point, we must not
just consider the weight of a CBP, but also the weight of
the path that will be followed thereafter. In order to achieve
this, edge ordering of targets edges is performed.

Unfortunately, for a given CBP e′i, problem of comput-
ing the best test sequence suffix ⟨e′i, tsi1, tsi2, ..., tsin⟩ is akin
to vehicle routing problem (VRP) A brute force approach
would compute the path weights corresponding to all per-
mutations of the pending target edges T ′ which is exponen-
tial in |T ′|. For an arbitrarily large T ′, this would be too
expensive.

Algorithm 2 Computing Backtracking Point
1: function BTP(G, stack, W , T)
2: s←< flip(e)∀(e, tf) ∈ stack >
3: D′ ← the subset of s such that it consists of upto

N elements of s whose composed weights are the max-
imum.

4: for all d ∈ D′ do
5: T ′ ← PENDINGTARGETS(d, T , stack)
6: EO[d]← EDGEORDERING(d, T ′)
7: return argmin

d∈D′
EO[d]

In order to perform target edge ordering, initially a
weighted graph(GW) is created using a given set of pend-
ing target edges T ′ in E(G). GW is a complete weighted
digraph such that:

• The node set V (GW) corresponds to the edge of pend-
ing target edge set T ′. ∀n ∈ V (GW), n.e denotes the
target edge corresponding to it.

• ∀ni, nj ∈ V (GW),

ni →GW
nj if W (ni.e, nj .e) ≥W (nj .e, ni.e)

ni →GW
nj otherwise

where ni →GW
nj means that there exists an edge

between ni and nj .
• An edge e(ni, nj) from a node ni to nj is annotated

by a number e(ni, nj).w given by:

e(ni, nj).w =
1

W (ni.e, nj .e)

Augmented Weighted Graph (G′W) The weighted
graph is augmented with the candidate backtracking point
to get G′W . The edge ordering is performed on G′W . For
a given CBP e and weighted graph GW , We define an aug-
mented weighted graph G′W as follows:

• G′W has all the nodes and edges of GW .
• V (G′W) = V (GW) ∪ {n} such that n.e = e.
• For all nodes n′ ∈ V (G′W) \ {n}, there exists an edge
e(n, n′) such that e(n, n′).w = 1

W (n.e,n′.e) .

Algorithm 2 presents BTP function that selects a deci-
sion edge from the candidate backtrack points (CBP) after
performing edge ordering on the pending targets edges.

4 Experimental Evaluation
In this section we first describe the experimental set up.

We then explain the benchmarks used to evaluate the imple-
mentation followed by a discussion of the results.
4.1 Set up

We have implemented WBS and integrated it with
SymTest. The weight is calculated using 500 previous runs
of the program under test. To evaluate the effectiveness of
SymTest-WBS, we considered the following factors:

• time taken for test sequence generation
• test sequence length i.e., the number of iterations taken

to cover the target edges
• number of execution paths processed to generate the

test sequence covering the target edges
A large number of execution paths processed for test

sequence generation will result in an increase in the time
for test sequence generation. More number of iterations to
cover the target edge increases interaction with the exter-
nal environment. Both these facts contribute to the cost of
testing of an embedded software.

We compared SymTest-WBS with following tools on the
basis of above parameters:

• SymTest [1]: SymTest framework where backtracking
proceeds by a single node.

• KLEE [9]: Symbolic execution tool build over LLVM,
that generates test cases with high code coverage.

Each of the above mentioned tools is evaluated against
different test programs. We ran our tool on the benchmark
programs on an Intel Quad Core i7-3770 3.40GHz machine
running Ubuntu 18.04.4.

The number of iterations of the main loop is considered
as the performance metric for measuring the effectiveness
of symbolic execution search strategies[10]. For all our ex-
periments we have set the maximum depth of execution (i.e.
number of iterations of the main loop) as 5.
4.2 Benchmarks

TABLE 1 shows the list of benchmark programs that we
used in our experiments and the results obtained. We used
the benchmark programs which are used by other symbolic
execution tools [11] [12] [1]. As we are concentrating on
embedded software, apart from available benchmarks, we
have converted a set of single task programmable logic con-
trol programs [13] into its equivalent C program. The other
test programs are from SVCOMP test suite [14], CREST
test programs [12], RERS challenge [15].
4.3 Results

TABLE 1 shows the results of experiments. The “#iter”
column gives the number of iterations taken by the gener-
ated test case to cover the target edges,“#path” column gives
the number of explored paths, “Target Cov” gives the per-
centage of the target edges covered. The “Time (ms)” col-
umn gives the time taken by the tool in milliseconds. The
total number of iterations is calculated by taking the sum of
iterations taken by each test data. A time out (TO) happens
at a time limit of 600000ms. A time out means that the tool
could not generate a test sequence that covers all the target
edges within the stipulated time-out period.

On comparing the proposed approach with SymTest, It
is observed that in test program, cfg1 SymTest-WBS pro-
duces shorter test sequence length in less time compared
to SymTest. In problem1M, cfg2 SymTest timed out, but
SymTest-WBS succeeded to cover target edges. On com-

Figure 3: Result for path exploration

Sl No. Program SymTest-WBS SymTest KLEE

#iter #path
Target
Cov Time(ms) #iter #path

Target
Cov Time(ms) #iter #path

Target
Cov Time(ms)

1 cfg1 1 2 100 2081.27 2 3 100 2357.11 7 18 100 9126.10
2 cfg2 1 2 100 1040.38 - - - TO 4 14 100 9018.61
3 cfg3 1 1 100 124.10 1 1 100 245.50 3 17 100 8094.71
4 cfg4 1 1 100 337.14 1 2 100 175.77 4 44 100 5804.59
5 test program 1 2 100 513.50 4 7 100 1001.21 4 84 100 12095.66
6 timer 1 3 100 126.96 1 6 100 234.60 5 22 100 72.26
7 car parking 1 1 100 117.89 1 1 100 192.36 4 2 100 78.81
8 burglar alarm 3 2 100 1173.94 3 9 100 5542.12 - - - T0
9 g4ltl1 1 2 100 923.90 1 2 100 1594.23 5 8 100 159.56

10 g4ltl2 1 2 100 923.90 1 2 100 1594.23 5 7 100 163.30
11 trex03 1 1 100 231.54 1 1 100 240.01 1 102 100 1346.62
12 cfg test 2 3 100 292.42 2 11 100 271.34 2 7 100 380.27
13 problem1M 2 4 100 3819.30 - - - TO - - - TO
14 problem2M 2 3 100 399.79 2 10 100 8586.02 - - - TO
15 problem11M 2 2 100 510.04 2 9 100 1795.25 2 2 100 73.15
16 problem1 - - - TO - - - TO - - - TO
17 problem11 - - - TO - - - TO - - - TO

Table 1: Comparison Results

paring the proposed approach with KLEE, it is observed
that for programs having majority of statements which are
reachable, KLEE takes more time in test sequence genera-
tion compared to SymTest and SymTest-WBS for cfg test,
test program. KLEE focuses on code coverage. If we are
interested in complete code coverage (as in first-time test-
ing), KLEE is one of the best choices for test data genera-
tion. But if we want to compute test data to reach specific
program points which are deep in the code (as often seen
in regression testing), then SymTest-WBS performs better.
The number of iterations to cover the same target edges
is more in KLEE. This can be observed in g4ltl1, timer,
car parking. In problem1M, problem2M KLEE timed out,
but SymTest-WBS was successful in generating test se-
quence.

In problem1, problem11 it is observed that all the three
tools timed out. Fig. 3 shows the results of path exploration
for those programs which was successful in generating test
sequence by all the three tools. SymTest-WBS requires
less number of paths to attain target edge coverage com-
pared to SymTest and KLEE. It is worthwhile observing
that the number of TO by SymTest-WBS is less compared
to SymTest and KLEE. Both SymTest and KLEE explore
more number of execution paths to cover target edges. This
explains the timeout observed in SymTest and KLEE.

5 Conclusions and Future Work
In this paper we proposed a backtracking heuristic

named Weighted Backtracking Strategy. The knowledge
about system behaviour through previous runs is exploited
to create a computation tree. Using the computation tree
the optimal backtracking point is selected. WBS is im-
plemented in SymTest. Experiments shows that the WBS
is effective in increasing the set of cases where SymTest
achieves termination and has further shortened the test se-
quence length with respect to those achieved by SymTest

with simple backtracking. Our future work involves us-
ing machine learning techniques for selecting backtracking
point.

References
[1] S. Chakrabarti and R. S, “Symtest a framework for symbolic testing of embed-

ded software,” in SymTest. ISEC, 2016.
[2] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed au-

tomated random testing,” in PLDI, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[3] CUTE: a concolic unit testing engine for C. 13th ACM SIGSOFT international
symposium on Foundations of software engineering, ESEC/FSE-13, 2005.

[4] S. Anand, C. S. Păsăreanu, and W. Visser, “Jpf-se: A symbolic execution
extension to java pathfinder,” in Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, ser. TACAS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 134–
138. [Online]. Available: http://dl.acm.org/citation.cfm?id=1763507.1763523

[5] Symbolic PathFinder: integrating symbolic execution with model checking for
Java bytecode analysis. Automated Software Engineering, 2013.

[6] M. Kim, Y. Kim, and Y. Jang, “Industrial application of concolic testing on em-
bedded software: Case studies,” in 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, April 2012, pp. 390–399.

[7] Y. Kim, M. Kim, Y. J. Kim, and Y. Jang, “Industrial application of concolic test-
ing approach: A case study on libexif by using crest-bv and klee,” 2012 34th In-
ternational Conference on Software Engineering (ICSE), pp. 1143–1152, 2012.

[8] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 443–446. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2008.69

[9] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–224.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855756

[10] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided path ex-
ploration in dynamic symbolic execution,” in 2009 IEEE/IFIP International
Conference on Dependable Systems Networks, June 2009, pp. 359–368.

[11] J. Jaffar, R. Maghareh, S. Godboley, and X.-L. Ha, “Tracerx: Dynamic sym-
bolic execution with interpolation (competition contribution),” in Fundamental
Approaches to Software Engineering, H. Wehrheim and J. Cabot, Eds. Cham:
Springer International Publishing, 2020, pp. 530–534.

[12] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in
2008 23rd IEEE/ACM International Conference on Automated Software Engi-
neering, 2008, pp. 443–446.

[13] https://www.sanfoundry.com, [Online; accessed 19-September-2020].
[14] https://sv-comp.sosy-lab.org/2021/benchmarks.php, [Online; accessed 19-

September-2021].
[15] http://rers-challenge.org/2017/index.php, [Online; accessed 10-September-

2021].

