
A framework for Requirements specification of
machine-learning systems

Xi Wang∗† and Weikai Miao‡�
∗School of Computer Engineering and Science, Shanghai University, China

†Shanghai Key Laboratory of Computer Software Testing and Evaluating, Shanghai 201114, China
‡Software Engineering Institute, East China Normal University, China

Abstract—The rapid development of machine learning (ML)
systems has raised many concerns over their quality. Due to
the inherent complexity and uncertainty, most of the traditional
quality assurance techniques have been challenged, including
requirements specification. Current strategies mainly focus on
model extraction from existing neural networks to improve in-
terpretability and facilitate system analysis, but failing to include
user expectations on the system. To handle the problem, this
paper proposes a specification framework for ML requirements
where each ML system is regarded as a set of snapshot systems
along the evolvement process. There are 3 layers in the frame-
work and the hierarchy indicates that higher-level models need
to be built based on lower-level ones. The bottom layer consists
of meta snapshot model and meta data model serving as the meta
models for snapshot systems and data requirements respectively.
The middle layer is for snapshot models each describing a
snapshot system through relations between its outputs produced
with different inputs. The top layer is a learning model capturing
the evolvement process by transitions among snapshot models.
These transitions are activated by data models instantiated from
meta data model. We adopt the specification of a self-driving
system to illustrate the framework.

I. INTRODUCTION

Machine-learning (ML) system has gained much attention
recent years not only for its thrilling achievement on training
intelligent machines but also for the challenging difficulties on
quality assurance [1]. These difficulties mainly come from the
complexity and uncertainty of ML systems since these systems
would adjust their functions themselves through mechanisms
difficult to be understood by human. Challenges are proposed
to all kinds of traditional software quality assurance methods
including requirements modeling [2].

As the key activity in the early stage of software develop-
ment, requirements modeling intends to clarify and describe
expected behaviors in a requirements specification which
serves as guidance for implementation and basis for verifica-
tion. Traditional methods are suitable for deterministic func-
tionalities but can hardly tackle ML systems that constantly
evolve and produce unpredictable results [3]. Some solutions
have been proposed and most of them focus on extraction
algorithms for constructing system model from ML models
[4]. Since their major goal is to facilitate human understanding
and semantic analysis of existing ML systems by interpreting
their learning behaviors with easy-to-digest notations, user
expectation on the ML systems is not involved in the derived
model and the system requirements remains unclear.

Several attempts were made to deal with user requirements
for ML systems. Their most concerned issue is the perfor-
mance of the trained ML models and how it can be defined
and measured [5]. Once these non-functional requirements are
specified, adversarial examples can be accordingly designed
and used as training data to re-train the ML models and
improve their performance. Data set has also gained much
attention as it serves as the key element for distinguishing
ML systems from traditional ones. Researchers are pursuing
standards for evaluating data set quality and guidelines for
deriving high-qualified data set. Besides, there are a few works
on supporting decision making during the requirement stage,
such as the selection of ML models and activation functions.
Necessary requirement information is captured through do-
main analysis and suggested decisions will be accordingly
provided. All these attempts made significant progress in
requirements modeling for ML systems from different aspects,
but there is still lack of systematic method for specifying
system behaviors and their relation with data sets.

To this end, this paper proposes a systematic framework for
requirements specification of ML systems. It adopts feature-
oriented analysis method to specify the included models based
on features and explains the evolvement process of the ML
system as a set of snapshot systems each representing a state
of the ML system during the process. Requirements on data
sets are also included as triggers for snapshot system behaviors
and the transitions among them.

Specifically, the framework is composed of 3 layers and
lower-level models are the basis for higher-level models. The
bottom layer includes 2 meta models. One is meta snapshot
model with environment and system elements for describing
the environment and internal states of the ML system respec-
tively. The other is meta data model with built-in and learning-
relative elements for describing data attributes independent
from and dependent on the ML system respectively. These
elements are organized in feature models that illustrate their
hierarchical relations.

The middle layer consists of the snapshot systems necessary
to be specified. Due to the difficulty in obtaining expected
outputs from a snapshot system, we turn to the output relation
strategy inspired by metamorphic testing [6]. Instead of mod-
eling system behaviors through relations between input and
output, this strategy pays attention to the change of outputs
caused by the change of inputs. It describes a snapshot system

DOI reference number: 10.18293/SEKE2022-0143



as a set of relations based on meta models where each relation
connects two outputs produced with a input data model and
its variant respectively.

The top layer is a learning model describing the learning
behavior by transitions among the snapshot systems. Each
transition is labeled with a data model instantiated from its
meta model, indicating that the original system will be evolved
into the destination system by learning from the data model.
Each snapshot system can either be modeled using output
relation strategy or via its relation with the original system
it evolves from.

Our framework covers the important aspects of ML re-
quirements and deals with their complicated relations with
hierarchy. An example self-driving system is introduced to
illustrate the technical details within each layer.

The remainder of this article is organized as follows. Section
II summarizes the related work. Section III explicitly describes
the requirements modeling framework for ML systems with an
example self-driving system. Section IV concludes the paper
and discusses some future works.

II. RELATED WORK

There are mainly 2 kinds of modeling strategies for ML
systems. The first kind extracts simpler models from ML
models to enable human understanding and the application
of existing analysis methods, since ML models are usually
complex and difficult to be understood and analyzed. In [7],
guidance from RNN’s step-wise predictive decisions and con-
text information is provided for extracting weighted automata
from neural network. In [8], a method for learning an FSA
from a trained RNN model is given where the RNN is first
trained and an FSA is learned based on the clustering result
of all hidden states. In [4], probabilistic automata is extracted
from RNN in a request-specific way and the experiment shows
the accuracy and scalability of the method. In [9], the knowl-
edge hidden in pre-trained CNN is interpreted by explanatory
graph where different part patterns are disentangled from each
filter of CNN in an unsupervised manner. Since the above
works are conducted on already implemented ML systems
for revealing their behaviors from black-box, they paid little
attention to user requirements on the system and lack effective
mechanisms for requirements specification. By contrast, our
approach focuses on requirements modeling for ML systems
and provides description framework from various aspects.

The other kind aims at modeling ML requirements from
certain perspectives. In [10], goal-oriented requirements anal-
ysis method is extended as evidence-driven method where
many aspects of decision making remain as hypotheses until
being validated or invalidated by experiments, field tests and
operation. It is conducted at goal level without touching
concrete functions of ML systems. In [11], a logical approach
is given for specifying statistical properties of ML systems
based on a Kripke model. It includes formal notations for
robustness and fairness of classifiers, as well as relations
among properties of classifiers. In [12], definition of fairness
is provided for an effective and scalable automatic testing

method of ML systems in the domain of text classification.
In [13], conventional quality characteristics is extended for
ML systems with its measuring method and a method for
requirements identification is proposed to derive quality char-
acteristics and measurement method. In [14], a data-driven
engineering process is proposed to link the operational design
domain with the requirements on data sets at different levels.
These researches mainly concentrate on non-functional and
data requirements of ML systems, but are still incapable of
specifying their overall expected behaviors. Our framework
intends to bridge the gap by specifying ML systems at 3
different layers in a systematic way to cover both snapshot
and learning behaviors.

III. FRAMEWORK FOR MODELING ML SYSTEMS

Comparing to traditional software which determines its
behavior with programs, ML systems learn from training
data set and evolve themselves towards the target goals.
This fact makes it impossible to adopt traditional modeling
method in specifying ML systems as it is only suitable for
predictable behaviors. Customized modeling method can only
be established when differences between two kinds of software
systems are fully identified. If we take snapshots for a ML
system along its evolving process, a set of simpler systems
can be captured each representing one state of the ML system
reached by learning. The transitions among these states are
triggered by training data, indicating the learning path of the
ML system. According to the above analysis, there are 3
aspects to be included in the requirements of ML systems:
snapshot systems for solving the target problem at different
time points, learning behaviors for transiting among different
snapshot systems and training data for activating the learning
behaviors. To enable the specification of all these 3 aspects
for ML systems, a requirements modeling framework with 3
layers is given as shown in Fig. 1.

Fig. 1. The requirements modeling framework for ML systems

The hierarchy indicates that upper-level models need to be
built based on lower-level ones. The bottom level consists of
two meta models: meta snapshot model as meta model for

DOI reference number: 10.18293/SEKE2022-0143



describing snapshot systems and meta data model as meta
model for describing training or testing data set. They provide
general patterns to build various concrete snapshot and data
models for the higher layers.

The middle level adopts the idea of metamorphic relation to
describe concrete snapshot systems since the expected output
is almost impossible to determine. In stead of modeling the
relation between input and output data as in tradition method,
we turn to the relation R(o, o′) between expected output o and
o′ produced by the snapshot system with input data D and D′

respectively. For each pair of different input data D and D′,
either corresponding concrete data models or their relations
need to be established based on meta data model. With the
common elements from meta snapshot model, relation R(o, o′)
can be described as properties of relevant elements.

The top level deals with learning behaviors by describing the
evolvement of the ML system based on training data sets. Al-
though learning process is continuous, expected requirements
can be reflected by important transitions each representing a
measurable change of the ML system made by learning from
certain kind of data set. A transition connects two snapshot
models m and m′ before and after the corresponding change
and is labeled with a data model D instantiated from its meta
model. It indicates the learning process where the ML system
will be transited from snapshot system m to m′ if being trained
with data set D. The change made by D can also be described
as a relation R(m,m′) between m and m′ if necessary.

We will present the details of each layer with an example
of self-driving system which fully controls the movement of
vehicles and evolves by learning from animation on labeled
route and driving scenarios.

Meta model

The bottom-level meta snapshot model and meta data model
aim at capturing the basic elements for composing concrete
snapshot model and data model. We adopt Feature-oriented
Analysis Method to specify these elements with feature model
illustrated as tree structure [15]. Each node of the tree repre-
sents an element and its children nodes decompose the element
into lower-level elements. There are 4 kinds of children nodes:
mandatory element, optional element, alternative elements
where only one element can be included and or elements
where at least one element must be included. There are 2 kinds
of dependency relations among elements: requires indicating
the inclusion of certain element requires for the inclusion of
another one and excludes indicating that only one of the two
elements can be included.

Meta snapshot model consists of environment and system
elements. The former indicates the factors that would affect
system behaviors from outside of the system and the latter
indicates system variables determining the state of the system.
Fig.2 gives the partial feature model of the environment
elements for the example self-driving system. It shows 4
of the mandatory environment elements with some of their
children elements: the weather condition, the local policy such
as driving on left side and other governmental policies, the

brightness, the road scenes such as the traffic signs erected
above roads to give instructions, jam or intersection scenarios
and various obstacles.

Fig. 2. The feature model for environment elements of the self-driving system

Fig.3 shows the partial feature model of the system elements
for the self-driving system. To specify the system behavior, its
steering angle, velocity and route are 3 of the elements that
must be clarified. Two of the optional elements performance
and windshield-wiper will be specified as various metrics and
wiping intervals respectively. Two example metrics are given:
latency of the behavior and the accuracy of object detection
and trajectory prediction. The element detect is defined as a
mapping obj → a denoting the accuracy a of detecting object
obj.

Fig. 3. The feature model for system elements of the self-driving system

Dependency relations can also be established among the
above elements. For example, elements rainy requires for
wiper since the windshield-wiper needs to be turned on for
rainy days.

Meta data model includes built-in and learning-relative
elements which represent data attributes independent from
or depending on the specific learning system respectively. A
concrete data model can be obtained by specifying the values
of or properties on these elements. For built-in elements, one
unified feature model is sufficient since they are shared by
concrete data models fed to different ML systems. But for
learning-relative elements, different feature models need to be
built for different learning systems since their definitions are
given based on the specific ML systems.

The partial feature model of built-in elements is given in
Fig.4 with one of the optional elements and three of the
mandatory elements. For each data set, we can decide whether
to specify its collection and expire date but must at least
clarify the representation of the involved data, the source of

DOI reference number: 10.18293/SEKE2022-0143



the data and its labeling method. Four example representations
are given and each representation is attached with its own at-
tributes, such as the size and resolution of image data. With the
rapid development of Multi Modal Machine Learning, more
and more data sets are provided in multiple representations.
Our feature model allows for multiple representations through
or children elements of representation where relation denotes
the correspondence between data in different representations.
For example, multi-modal data set nuScenes includes images
from camera, pointclouds from Lidar, the returns from Radar
sensors and human annotated semantic map for the same
obstacles to train self-driving systems with complementary
data [16].

Fig. 4. The feature model of meta data model built-in elements

Learning-relative elements are created for each specific
ML system since learning-relative requirements on data sets
depends on what to be learned from them. Involving essential
environment and system elements of functions to be learned
for solving the target problem, meta snapshot model serves
as the basis for achieving learning-relative elements. Fig. 5
provides a feature model template for learning-relative ele-
ments of specific ML systems. The semantic of a data set
must be specified by a set of pairs es− pair1, ..., es− pairn
each es − pairi = (Propenv, P ropsystem) representing an
environment-system pair where Propenv indicates an instan-
tiated environment model and Propsystem indicates a concrete
system model. With well-defined environment and system
state, each pair corresponds to a kind of scenarios and the
universal set of pairs is able to capture all the behaviors to be
learned from the data set by the ML system. Optional element
metrics represents measurements on the data set including one
or more of its attributes.

Fig. 5. A template for the feature model of meta data model learning-relative
elements

For the example self-driving system, the semantic of its
data sets is interpreted through property pairs on its own envi-
ronment and system elements. Domain-specific attributes are

attached to element metrics: diversity measuring dissimilarity
among closest and furthest samples, distribution measuring the
distribution of data samples in the context of certain features,
complexity measuring the complexity of objects within the
traffic scenes.

It should be noted that the presented example meta models
are only partially given and new domain-dependent elements
may need to be introduced as the relevant domain develops.
These meta models should be maintained by analyst and
domain experts to provide advanced information for concrete
model construction.

Snapshot model

A snapshot system can be regarded as one of the states
of the ML system. It takes a data set as input and transfers
itself to a new system state. Since the input data provides
specific settings on environment and system initialization, its
data model contains only one environment-system pair.

Theoretically, the behavior of a snapshot system is determin-
istic because of the pause of the evolvement at that time point.
However, instead of executing under man-made instructions,
the snapshot system leads its own complicated implementation
process with the given training data, making itself a black-box
difficult to be understood and analyzed. Even at requirements
stage, expected functions remain unclear because they are
hidden in the training data. In most cases, we found ourselves
trapped in a dilemma where solutions achieved by ML systems
cannot be interpreted but need to be modeled and verified.
Although we could simply define the relation between inputs
and outputs in some cases, such as correctly recognizing or
never crashing on a pedestrian, but such requirement contains
little effective information and can hardly contribute to system
verification.

Inspired by metamorphic testing, we revealed users’ expec-
tation on system behaviors when making certain change to
input data and thus define snapshot model as follows.

Definition 1. Given a snapshot system S with its input domain
DMS consisting of data models, the snapshot model of S
is a set RT1

1 , ..., RTn
n and each RTi

i represents a relation
formulation ∀D∈DMS

· S(DTi) = [S(D)]T
′
i where Ti denotes

a kind of transformational relation between data models, DT

denotes the data model obtained by performing transformation
T to data model D, S(D) denotes the system state of S after
receiving data model D, and [s]T denotes the state achieved
by conducting transformation T on the original state s.

According to the definition, each snapshot system is mod-
eled as a set of behavior relations between different system
states caused by transformations on the original input data
models. For each behavior relation, the change of any input
data model by the given transformation should result in
system state reached from its original state with the same
transformation. Transformation on data model is described
based on the built-in and learning-relative elements from meta
data model while transformation on system state is described
based on system elements from meta snapshot model.

DOI reference number: 10.18293/SEKE2022-0143



We will take the self-driving system as an example to
illustrate the definition. Assume the system has evolved to
certain snapshot version S, the following are some example
relations established for the corresponding snapshot model.
Note that we use τ(m,< e >) to denote the value of element e
within model m and σ(m,< e >) to denote a model different
from m in the way they specify element e.

Exchange of start and end point: As one of the key
functions in self-driving system, navigation component guides
the vehicle from start to the end point with the generated
route. It is difficult to specify our requirement on the resultant
route, but we expect the fact that exchanging the start and end
point should result in a new route similar to the original one
under the same traffic condition. The corresponding relation
formulation is given as follows.
∀D,DT∈DMS

· τ(D,< start >) = τ(DT , < end >)
∧τ(D,< start >) = τ(DT , < end >)

⇒ dist(τ(S(D), < map >), τ(S(DT ), < map >)) < ε
The difference between route map and map′ is measured

by function dist(map,map′) and the threshold ε needs to be
given by domain expert.

Change of weather : This relation can be established for
driving scenarios under different weather conditions. Although
some system elements maybe specified in different ways under
different weather conditions such as wiper, but there should
not exist long distance between steering angles since steering
angle largely depends on road scenes rather than weather
conditions. The relation formulation is given as follows.
∀D∈DMS

·| τ(S(D), < steer >)−
τ(S(σ(D,< weather >), < steer >) |< ε

The threshold ε measures the distance between steering
angles in the systems states led by different data models and
needs to be given by domain expert.

Perturbations to traffic signs: Correct recognition of traffic
signs is crucial to the safety of self-driving vehicles and
perturbations to them should not affect the recognition result.
This is also an important and verifiable property for the
detection of pedestrians and other obstacles, we will take
traffic signs as an example for illustration. The corresponding
formulation is given as follows.
∀D,DT∈DMS

·dist(τ(D,< sign >), τ(DT , < sign >)) < ε
⇒ S(D) = S(DT )

If the distance between the original sign and the perturbed
one is less than the given threshold ε, the behavior of the
snapshot system should be consistent.

Learning model

Based on the definition of snapshot models, the top-level
learning model can be regarded as a state transition diagram
where each state represents a snapshot system and each tran-
sition represents the evolvement of the ML system activated
by training data. The formal definition is given as follows.

Definition 2. The learning model of a ML system is a 4-
tuple (M, s0, DM, δ) where M is a non-empty set of snapshot
models, s0 ∈ M is the model of the initialized ML system,

DM is the universal set of involved data models and δ :M ×
DM → M is the transition function relating two snapshot
models by a data model.

Connecting the identified snapshot models by transitions
labeled with data models, the learning model traces the ex-
pected learning process of the corresponding ML system. Each
snapshot model can either be defined as a set of relations
between outputs produced by different inputs or a relation to
its original model. Each data model is specified as a set of
properties on its meta data model.

Fig. 6 gives a partial learning model for the self-driving
system. It includes 4 snapshot models as critical learning
points and 3 data models as learning materials contributing to
the evolvement. The self-driving system is initially a snapshot
system m0 with all parameters of the neural network set as
random values. After we train m0 with data sets as described
in D1 or D2, the ML system will be evolved into snapshot
system m1 or m2. These two different transitions come from
user expectation on customizing the self-driving system for
specific customers and markets. Snapshot system m1 and m2

intend to serve the countries or areas driving on left and right
respectively and their corresponding training data D1 and D2

should provide videos and images under different policies.

Fig. 6. An example learning model for the self-driving system

Specifically, data models D1 and D2 are described as a set
of properties based on the pre-defined meta data model. Table
I lists some example properties where parent.child denotes
the value of the children element child of element parent.

TABLE I
THE PROPERTIES FOR DATA MODEL D1 AND D2

D1

∀es−pairi∈τ(D1,<semantic>)·
es− pairi.env.policy.side = L

τ(D1, < representation >) = {video}∧
τ(D1, < video.size >) > 10000h

τ(D1, < distribution >) =

P (τ(D1, < scenario >) = jam) > 0.7

D2

∀es−pairi∈τ(D2,<semantic>)·
es− pairi.env.policy.side = R

τ(D2, < representation >) = {image}∧
τ(D2, < image.resolution >) > 600ppi

τ(D2, < distribution >) =

P (τ(D2, < light >) = dark) > 0.9

Training data in D1 satisfies at least 3 properties: all traffic
scenarios are under the policy of driving on the left, video is
the only format and the size should be more than 10000 hours,
more than 70% of environment settings involve traffic jam.

DOI reference number: 10.18293/SEKE2022-0143



Large portion of the videos are required to capture scenarios
of traffic jam and the resultant system m1 is supposed to
be applied for metropolitan areas. There are also 3 example
properties for D2: all traffic scenarios are under the policy
of driving on the right, image is the only format and the
resolution should be more than 600 ppi, more than 90% of
environment settings are in dark. Most of the training images
are in dark environment and system m2 is expected to support
truck drivers.

The more properties we specify, the more effective training
data we can collect for achieving expected snapshot systems.
As the basis for property description, element structures in
meta models need to be enriched through the cooperation of
software and domain experts.

Snapshot model m1 and m2 can be built by establishing
relations between output from different input, as we have men-
tioned in the middle layer. They are not explicitly described
due to the sake of space.

Learning from data model D3, m1 will be further evolved
into m3. Training data in D3 should be collected with signs
satisfying the following property.
∀es−pairi∈τ(D3,<semantic>) ·∀sign∈es−pairi.env.traffic.sign·
∃obj→a∈τ(m1,<detect>) · a > 0.9 ∧ dis(sign, obj) < ε

According to the property, all the driving scenarios in
D3 involve adversarial samples for sign recognition. After
conducting the transition from m1 to m3, the robustness of the
system will be improved in terms of the following accuracy
relation between m1 to m3.
∀obj→a∈τ(m3,<detect>) · a > [τ(m1, < detect >)](obj)
It formally states that the accuracy in object detection will

be increased after the evolvement from snapshot system m1

to m3.
At requirement stage, learning model serves as a study plan

for guiding the implementation of learning strategy. Mean-
while, it’s detailed description on transitions among snapshot
systems facilitates system traceability and maintenance.

IV. CONCLUSIONS

This paper intends to take our first step towards systematic
requirements modeling method for ML systems. A framework
with 3 layers is proposed where lower-level models serve as
basis for high-level models. The bottom-level provides meta
models for describing environment, system state and data. The
middle level consists of snapshot models for describing the be-
haviors of the ML system at certain learning point and the top
level is a learning model that describes learning behavior by
transitions among snapshot models. This framework enables us
to understand and analyze ML systems at requirements stage
and bridges the gap between system modeling and validation.

Our case study demonstrates the framework with a partial
model for simplicity. Its performance on large-scale systems
needs to be evaluated by applying it in real settings. As the
number of elements in meta models increases, the establish-
ment of relevant properties will be much more difficult. How
to facilitate model construction for each layer is one of our
future works. Furthermore, a supporting tool also needs to

be developed in the future to alleviate the burden of model
construction, analysis and management.

ACKNOWLEDGMENT

This work is supported by the NSFCs of China (No.
61872144, No. 61902234 and No. 61872146) and National
Social Science Foundation (No. 17AZX003).

REFERENCES

[1] M. Chechik, “Uncertain requirements, assurance and machine learning,”
Proceedings of the IEEE International Conference on Requirements
Engineering, vol. 2019-Septe, pp. 2–3, 2019.

[2] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?” IEEE Transactions
on Software Engineering, vol. 47, no. 9, pp. 1857–1871, 2021.

[3] K. Ahmad, M. Bano, M. Abdelrazek, C. Arora, and J. Grundy, “What’s
up with Requirements Engineering for Artificial Intelligence Systems?”
Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 1–12, 2021.

[4] G. Dong, J. Wang, J. Sun, Y. Zhang, X. Wang, T. Dai, J. S. Dong, and
X. Wang, “Towards Interpreting Recurrent Neural Networks through
Probabilistic Abstraction,” Proceedings - 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020,
pp. 499–510, 2020.

[5] K. M. Habibullah and J. Horkoff, “Non-functional Requirements for
Machine Learning: Understanding Current Use and Challenges in Indus-
try,” Proceedings of the IEEE International Conference on Requirements
Engineering, pp. 13–23, 2021.

[6] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, vol. 46, no. 10, pp. 1120–1154, 2020.

[7] X. Zhang, X. Du, X. Xie, L. Ma, Y. Liu, and M. Sun,
“Decision-Guided Weighted Automata Extraction from Recurrent
Neural Networks,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 13, pp. 11 699–11 707, 2021. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/17391

[8] B. J. Hou and Z. H. Zhou, “Learning with Interpretable Structure from
Gated RNN,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 7, pp. 2267–2279, 2020.

[9] Q. Zhang, R. Cao, F. Shi, Y. N. Wu, and S. C. Zhu, “Interpreting
CNN knowledge via an explanatory graph,” 32nd AAAI Conference on
Artificial Intelligence, AAAI 2018, pp. 4454–4463, 2018.

[10] F. Ishikawa and Y. Matsuno, “Evidence-driven Requirements Engineer-
ing for Uncertainty of Machine Learning-based Systems,” Proceedings
of the IEEE International Conference on Requirements Engineering, vol.
2020-Augus, pp. 346–351, 2020.

[11] Y. Kawamoto, Towards Logical Specification of Statistical Machine
Learning. Springer International Publishing, 2019, vol. 11724 LNCS.
[Online]. Available: http://dx.doi.org/10.1007/978-3-030-30446-1_16

[12] P. Zhang, J. Wang, J. Sun, X. Wang, G. Dong, X. Wang, T. Dai, and
J. S. Dong, “Automatic Fairness Testing of Neural Classifiers through
Adversarial Sampling,” IEEE Transactions on Software Engineering,
vol. 5589, no. c, pp. 1–20, 2021.

[13] K. Nakamichi, K. Ohashi, I. Namba, R. Yamamoto, M. Aoyama,
L. Joeckel, J. Siebert, and J. Heidrich, “Requirements-driven method to
determine quality characteristics and measurements for machine learning
software and its evaluation,” Proceedings of the IEEE International
Conference on Requirements Engineering, vol. 2020-Augus, pp. 260–
270, 2020.

[14] R. Zhang, A. Albrecht, J. Kausch, H. J. Putzer, T. Geipel, and P. Hal-
ady, “DDE process: A requirements engineering approach for machine
learning in automated driving,” Proceedings of the IEEE International
Conference on Requirements Engineering, pp. 269–279, 2021.

[15] P. Höfner, R. Khedri, and B. Möller, “An algebra of product families,”
Software and Systems Modeling, vol. 10, no. 2, pp. 161–182, 2011.

[16] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal
dataset for autonomous driving,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, no.
March, pp. 11 618–11 628, 2020.

DOI reference number: 10.18293/SEKE2022-0143

https://ojs.aaai.org/index.php/AAAI/article/view/17391
http://dx.doi.org/10.1007/978-3-030-30446-1_16

	I Introduction
	II Related Work
	III Framework for modeling ML systems
	IV Conclusions
	References



