
Access-Pattern-Aware Personalized Buffer
Management for Database Systems

Yigui Yuan, Zhaole Chu, Peiquan Jin, Shouhong Wan
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.cn

Abstract—Buffer management is an essential technology for
database management systems. Traditional buffer management
employs an empirical approach based on access recency or
frequency which fails to adapt to access-pattern changes in
various database applications. In this paper, we present a new
access-pattern-aware buffer manager called PBM (Personalized
Buffer Manager), which can detect the access patterns for each
database file and use a specific buffering policy for each database
file. In particular, we propose a workload classifier to detect the
access pattern of a database file. Then, we partition the buffer into
various zones, set different sizes for each zone, and select the most
suitable buffering scheme for each zone. With such a mechanism,
each zone is responsible for caching a specific database file,
and we can realize a personalized buffer manager for different
database files, which can improve the buffer efficiency and reduce
the page I/Os of the buffer manager. We compare PBM with three
existing buffering algorithms, including LRU, LFU, and LeCaR,
on two workloads, namely a regular workload and a shifting
workload, which are composed of different access patterns. The
results show that PBM outperforms the three competitors in
terms of hit ratio and page I/Os. As a consequence, PBM achieves
1.66x, 2.03x, and 1.39x hit-ratio improvements compared to LRU,
LFU, and LeCaR, respectively, on the regular workload. While
on the shifting workload, PBM achieves 1.90x, 1.55x, and 1.49x
higher hit ratios than LRU, LFU, and LeCaR, respectively.

Keywords—Access pattern, Buffer management, Personalized
buffer manager, Classification

I. INTRODUCTION

Buffer management is a key module in database systems to
improve query performance [1]. The optimal buffer manager
can always maintain the pages that will be requested in the
future in the buffer so that future requests can hit in the
buffer. Generally, as the buffer size is usually limited, we
need to use a replacement algorithm to evict some pages out
of the buffer when the buffer is full. Therefore, most of the
previous works on buffer management focus on the study
of buffer replacement schemes, which highly determine the
performance of buffer management in database management
systems (DBMSs).

A buffer replacement policy aims to evict the most useless
pages out of the buffer by predicting the future usage of
pages. As future accesses are hard to be predicted, traditional
DBMSs employ some empirical algorithms to perform buffer
replacement. The most well-known algorithm is LRU (Least

DOI reference number: 10.18293/SEKE2022-141

Recently Used) [1]. It assumes that the least recently used
page is least likely to be requested in the future. Thus, it
always selects the least recently used page for a replacement.
In one word, traditional buffer replacement algorithms use an
empirical way to select the victim for replacement. However,
a critical problem of such a mechanism is that they cannot
adapt to workload changes. As a result, they may perform well
under some kinds of workloads but show poor performance
under other workloads. For example, the LRU policy works
well under the workloads with high time locality, but has
poor performance when the workload involves periodical scans
(known as the scan nonresistance problem of LRU). Although
a few works studied the adaptivity of LRU, such as AD-
LRU [2] and LeCaR [3], their performance relies on the
empirical setting of parameters, which are still empirical
solutions.

This paper proposes a new idea to improve the efficiency
of buffer management in database systems. Differing from the
traditional empirical approaches, we present an access-pattern-
aware personalized buffer manager called PBM (Personalized
Buffer Manager). The main contributions of PBM can be
summarized as follows.

(1) PBM proposes to use multiple sub-buffers (called
zones), each of which is responsible for caching a specific
database file. Such a design enables us to use different
buffering policies for different database files. As a result, PBM
is equipped with multiple buffering policies rather than a single
policy in traditional buffer management.

(2) PBM can detect the access pattern of each database
file according to the access sequence. A workload classifier is
proposed for the detection of the access pattern. Based on the
detected pattern, PBM sets different zone sizes and enables
different buffering policies for database files.

(3) We compare PBM with three existing buffering algo-
rithms, including LRU, LFU, and LeCaR, on two workloads,
namely a regular workload and a shifting workload, which are
composed of five access patterns. The results show that PBM
outperforms the three competitors in terms of hit ratio and
page I/Os.

The remainder of the paper is structured as follows. Sec-
tion II summarizes the related work. Section III details the
structure and key technologies of PBM. Section IV reports
the experimental results, and finally, Section V concludes the
whole paper.



II. RELATED WORK

In the past two decades, many well-known buffering policies
have been proposed, e.g., LRU [1], LFU [1], ARC [4], 2Q [5],
and LeCaR [3]. Most of these algorithms have been well
explained in textbooks. The literature [1] presents a good
survey on traditional buffer management policies.

LRU (Least Recently Used) [1] always evicts the least-
recently-used page from an LRU queue used to organize
the buffer pages, which are ordered by time of their last
reference. It always selects as a victim the page found at
the LRU position. The most important advantage of LRU is
its constant runtime complexity. Furthermore, LRU is known
for its good performance on workloads having high temporal
locality. However, LRU does not exploit the frequency of
references. Also, LRU is not scan-resistant.

LFU (Least Frequently Used) [1] removes the least fre-
quently used page whenever the buffer is overflowed. The
simplest method to employ an LFU algorithm is to assign
a counter to every page that is loaded into the buffer. Each
time a reference is made to that page, the counter is increased
by one. When the buffer reaches the maximum capacity and
a new page is waiting to be inserted, the buffer will search
for the page with the lowest counter and remove it from the
buffer.

ARC (Adaptive Replacement Cache) [4] is an adaptive
caching algorithm that is designed to recognize both recency
and frequency of access. ARC divides the cache into two
LRU lists, T1 and T2. T1 holds items accessed once while T2
keeps items accessed more than once since admission. Since
ARC uses an LRU list for T2, it is unable to capture the
full frequency distribution of the workload and perform well
for LFU-friendly workloads. For a scan workload, new items
go through T1, protecting frequent items previously inserted
into T2. However, for churn workloads, ARC’s inability to
distinguish between items that are equally important leads to
continuous cache replacement.

The recent LeCaR algorithm [3] is an outstanding cache
replacement algorithm that is based on reinforcement learning
and regret minimization. The algorithm accepts a stream of
requests for memory pages and decides which page to evict
from a cache when a new item is to be stored in the cache
following a “cache miss”. LeCaR has been shown to be
among the best performing cache replacement algorithms in
practice [3]. Experiments have shown that it is competitive
with the best cache replacement algorithms for large cache
sizes and is significantly better than its nearest competitor for
small cache sizes like ARC [4].

III. PBM: PERSONALIZED BUFFER MANAGER

In this section, we detail the design of PBM. We first
analyze the different access patterns and demonstrate that
different buffering schemes are suitable for different access
patterns, which motivates this study. Then, in Section III-B
we present the workload classifier. Finally, in Section III-C
we discuss the architecture and algorithms of PBM.

A. Analysis of Access Patterns

In the literature [6], the Turing Prize Winner, Michael Stone-
braker, has summarized four types of common workloads:
sequential accesses to blocks that are not seen nor re-visited,
sequential accesses to blocks repeatedly visited, random ac-
cesses to blocks not seen nor re-visited, and random accesses
to blocks where some blocks have a non-zero probability of
reference. However, this definition of types is not quite fit for
the purpose of choosing a replacement policy. For example,
it makes no difference for LRU or LFU if the accesses are
sequential or random. Therefore, in this paper, based on Stone-
braker’s definition, we define five access patterns, including
random, scan, skewed, cyclic, and vary. The random pattern
corresponds to the third type in Stonebraker’s definition, where
all pages in the file follow uniform distribution. The scan
pattern corresponds to the first type. In the skewed pattern,
some pages are accessed with a larger probability than the
others, and in the cyclic patterns, a certain set of pages are
cyclically accessed. The last pattern is a supplement to the
former four patterns. It represents the access pattern where
the hot region of the file varies over time.

We first generate workloads following the five access pat-
terns and test the performance of several existing buffering
policies on these access patterns. The results are shown in
Fig. 1. We can see that no buffering scheme can maintain the
highest hit ratio on all workloads. Also, different algorithms
are suitable for different patterns. For example, LFU achieves
the best hit ratio on the cyclic pattern but gets the worst
performance on the vary workload. Therefore, a better way
is to choose the best policy for a specific access pattern.
Moreover, as the objects within a database may have different
access patterns, it is better to use different policies for different
database objects, which motivates the design of PBM.

B. Workload Classifier

We use two statistical features to distinguish the access
pattern, namely Correlation List and Page Coverage. Both
features are calculated based on the frequency histogram of
the access. Let H = {a1, a2, ..., an} be an access sequence,
where ak is an access, and F = {p1, p2, ..., pm} is the file it
accesses. We first cut the sequence into segments, each with
length S. Then, we calculate the frequency histogram for each
segment. The frequency histogram is an m-length vector. The
ith element of the vector is the frequency of page pi in the
segment. This vector conveys the page distribution information
of the access. The reason why we segment the sequence is to
recognize the change of distribution. Type A and B have stable
distribution, while Type C’s distribution varies.

(1) Correlation List. By comparing between segment his-
togram, we can figure out if the distribution has changed or
not. This brings out our first feature: Correlation List. We use
cosine correlation as the metric of the similarity between seg-
ments. Suppose the sequence has been cut into subsequences
{s1, s2, ..., st}, where si is a segment, and {h1, h2, ..., ht}
is the corresponding histogram list. Then the correlation list
is {corr(h1, h2), corr(h2, h3), ..., corr(hn−1, hn)}. Figure 2



Fig. 1. The Performance Varying of Different Buffering Schemes on Various Access Patterns

shows the correlation list of the five access patterns. We
can see that the correlation lists of cyclic and skewed are
close to 1, showing that strong consistency exists between
adjacent segments. Though the random and the scan pattern
has a constant distribution, their correlation lists are close to
or even below 0. For the vary pattern, the case is a little
more complicated. Figure 2 shows when the segment length
is 2000 and the phase changing period for vary is 5000, the
correlation between two adjacent segments drops sharply every
five segments.

Fig. 2. The Correlation of the Five Access Patterns

(2) Page Coverage. For a segment of the workload, the Page
Coverage is calculated as:

#pages visited twice or more

#pages visited once or more

The access in vary is concentrated on hot pages, while a
random access is dispersed. Thus, there would be much more
pages visited in random than in vary. However, most pages
visited in vary will be visited twice or more. In random, on
the contrary, only a small fraction of pages will be visited
more than once. Suppose we have a file of size F , and
two workloads with the random pattern and the vary pattern,
respectively. The vary workload has a hot zone of size αF ,
and the probability of visiting its hot zone is β. If we pick a
segment length larger than 2αF but smaller than F , then the
average visiting number of the pages in the hot zone of vary
is:

average visiting number of the hot zone

#pages in the hot zone
≥ 2β,

while the average visiting number of the pages in random is:

#visits in the segment

#pages in the file
≤ 1.

Fig. 3. The Structure of PBM.

As a result, the workload classifier based on Correlation
List and Page Coverage is shown in Algorithm 1.

Algorithm 1: Workload Classifier
Input : seg len: the segment length; ϵ: the threshold for

correlation; γ: the threshold for page coverage; k:
the threshold for number of correlations below the
threshold; H: the access sequence to be classified;

Output: the type of H

1 segment list = segment(H, seg len);
2 page coverage = the average page-coverage of all segments;
3 count = 0;
4 for si in segment list do
5 if correlation(si, si+1) < ϵ then
6 count += 1;
7 end
8 end
9 if count > k then

10 if page coverage > γ then
11 return C;
12 else
13 return A;
14 end
15 else
16 return B;
17 end

C. Architecture and Algorithms of PBM

Figure 3 shows the architecture of PBM. First, we divide
the buffer into zones. Each zone is responsible for a database
file in the disk and is governed by its own buffer replacement
policy. The choice of a replacement policy depends on the



access pattern of the file. During the run time, the size
allocated to each zone is variable. We group the five access
patterns into three types. Type A includes random and scan.
Type B consists of cyclic and skewed. Type C contains only
the vary pattern. For a database file with Type A, since it will
not contribute to the hit ratio under any policy, we shrink the
size of its buffer zone. Thus, it will not pollute the buffer zone
for other files. In our implementation, we make the zones for
Type B managed by LFU and the Type C zones governed by
ARC. The size of zones with Type B and C is dynamic. We
use an evicting queue for each file to assess the buffer size it
needs. The detailed PBM algorithm is as in Algorithm 2.

Algorithm 2: PBM
Input: B: the buffer; p: a page request;

1 adding zone = B.find zone(p);
2 if p ̸∈ adding zone then
3 if p ∈ adding zone.evict list then
4 if adding zone is not Type A then
5 adding zone.evict list.remove(p);
6 adjust size = True;
7 end
8 end
9 if B is full then

10 if adding zone is full then
11 adding zone.evict();
12 else
13 evicting zone = find full zone();
14 evicting zone.evict();
15 end
16 end
17 end
18 adding zone.request(p);
19 if adjust size then
20 B.adjust size(adding zone);
21 end

Each zone with Type B or C has an evict list and a weight.
The evict list keeps the metadata of the page evicted from
the zone, and the total number of pages contained in the zone
and its evict list is the total buffer size. At lines 11 and 14
of Algorithm 2, the evict() function evicts the page from the
zone, records it at the head of the evict list, and evicts the
tail element in the evict list if the total size exceeds the upper
bound. When a missing page is in the evict list, we increase
the weight of the zone, thus increasing its size. This is a better
way to allocate space than only considering the file size or the
number of visits. Because even though a file is large and more
frequently accessed, the working set of it may be small, which
means it requires less buffer space. But finding the missing
page in the evict list shows that it is possible for the added
space to be used for working set. Also, when we generate a
new size allocation, we simply reset the size of each zone but
do not make eviction immediately. When a miss occurs, and
the buffer is full, we find a zone that is full or has overflowed to
make eviction. The function findfullzone returns a zone with
Type A first. The AdjustSize function invoked by Algorithm 2
is shown in Algorithm 3.

Algorithm 3: AdjustSize
Input: B: the buffer; fk: the size of file k; F : the total size

of the database; wk: the weight of the zone k; S: the
available size for zones of Type B and C; sk: the size
of zone k; i: the id of the adding zone;

1 for every zone k with Type B or C do
2 wk *=

∑
wj /(

∑
wj + 1);

3 end
4 wi +=

∑
wk/(

∑
wk + 1);

5 for every zone k of Type B or C and k ̸=i do
6 sk = (wk * S) /

∑
wk;

7 end
8 si = S -

∑
sk(k ̸=i);

IV. PERFORMANCE EVALUATION

In this section, we compare PBM to several replacement
policies, including LRU, LFU, and LeCaR. We mainly focus
on two metrics: hit ratios and page I/Os.

A. Setting

We run all experiments on a database consisting of ten
files, each of which contains pages whose page number ranges
from 0 to 100,000 (100k). Therefore, the database consists of
100k pages totally. To simulate the different access patterns
of the files, we manually make each file have different access
patterns. Each file contains 5k or 15k pages. Table I shows
the details of each file used in the experiment. Note that
each access pattern is associated with two files, with one file
containing 15k pages and another file containing 5k pages.
The default buffer size is set to 1,024 pages.

We generate 2500k page accesses for all the files. Further,
we prepare two workloads based on the 2500k requests,
namely a regular workload and a shifting workload.

(1) Regular Workload. In this workload, we distribute the
page accesses to each file uniformly, i.e., each file receives
250k page requests. The requests to each file follow the access
pattern of the file. For example, the 250k requests to file 1
satisfy the cyclic access pattern.

(2) Shifting Workload. In this workload, the page accesses to
each file are skewed. To be more specific, we first participate
the total 250k page requests into two parts, each of which
contains 125k requests. Then, we let the 80% of the first half
accesses focus on files 1 to 5 and the remaining 20% on files
6 to 10. Thus, in the first half requests, files 1 to 5 will be
heavily accessed, but files 6 to 10 are not. For the second half
125k requests, we use the opposite setting, which is to make
the 80% of the second half accesses focus on files 6 to 10 and
the remaining 20% on files 1 to 5.

B. Performance on the Regular Workload

In this experiment, we compare the proposed PBM with
existing buffering policies on the regular workload. Figure 4(a)
shows the comparison of the hit ratios of PBM and other
three existing buffering algorithms, including LRU, LFU, and
LeCaR. Figure 4(b) shows the I/O comparison among all the



TABLE I
DESCRIPTION OF THE SYNTHETIC WORKLOAD.

Page-ID Range File Size (pages) Access Pattern
File 1 0-15k 15k cyclic
File 2 15k-20k 5k cyclic
File 3 20k-35K 15k scan
File 4 35k-40k 5k scan
File 5 40k-55k 15k skewed
File 6 55k-60k 5k skewed
File 7 60k-75k 15k random
File 8 75k-80k 5k random
File 9 80k-95k 15k vary
File 10 95k-100k 5k vary

Fig. 4. Performance Comparison on the Regular Workload

compared buffering schemes. We can see that our proposed
PBM achieves the highest hit ratio and the lowest page I/Os,
owing to its dynamical algorithm selection according to access
patterns. Particularly, PBM achieves 1.66x, 2.03x, and 1.39x
hit-ratio improvements compared to LRU, LFU, and LeCaR,
respectively. In addition, PBM reduces up to 11% page I/Os
compared to its competitors. Note that LeCaR also shows good
performance because it can adapt to access patterns. However,
it only considers the recency and frequency of accesses and
cannot detect other access patterns like cyclic and vary.

C. Performance on the Shifting Workload

In this experiment, we compare the proposed PBM with ex-
isting buffering policies on the shifting workload. Figure 5(a)
shows the comparison of the hit ratios of PBM and other three
buffering algorithms. Figure 5(b) shows the I/O comparison
among all the compared buffering schemes. Compared with
the experimental results on the regular workload, we can see
that PBM achieves much more improvements over the three
existing schemes. In particular, PBM achieves 1.90x, 1.55x,
and 1.49x hit-ratio improvements compared to LRU, LFU,

Fig. 5. Performance Comparison on the Shifting Workload

Fig. 6. The Change of the Buffered Pages When the Workload Shifts.

and LeCaR, respectively. Also, PBM reduces up to 14% page
I/Os compared to its competitors. The higher performance of
PBM on the shifting workload than on the regular workload is
owing to its adaptivity, which can change the buffering scheme
of each file according to the workload change.

To demonstrate the adaptivity of PBM more clearly, we
calculate the average number of buffered pages for each file
when performing the 250k page requests. As the first 125k
requests in the shifting workload are focused on files 1 to 5,
we expect that PBM can cache more pages of files 1 to 5
in the buffer. On the other hand, when running the second
125k requests that are focused on files 6 to 10, we expect that
PBM can quickly adapt to the change of the access pattern
and maintain more pages of files 6 to 10 in the buffer. As
shown in Fig. 6, we can see that PBM can always keep more
hot pages in the buffer when the workload changes with time.

D. Impact of the Segment Length

Segment length is a very important parameter for the classi-
fier. The longer the segment is, the closer the histogram vector
is to the distribution of the workload. However, a long segment
can be bad for detecting the vary pattern, because when we
calculate the histogram of several phases, the frequency of the
hot zone is amortized, and the overall distribution resembles
the random pattern. In this experiment, we test the influence of
the segment length on the classifier. As shown in Fig 7, when
we choose a long segment length, the gap between Type A
and Type B is widened, meaning that the histogram of a long
segment length can reflect the distribution better. In addition,
a long segment length does not impede the separation of Type
C, because both the vary pattern and the random pattern have
a small correlation.

E. Comparison of Similarity Measures

The page classifier used in PBM employs the correlation-
based approach. In this experiment, we consider other possible



Fig. 7. The Impact of the Segment Length

Fig. 8. Comparison of Different Similarity Measures

classifying metrics, aiming to show the superiority of the
correlation-based classifier.

In addition to the correlation approach, we implement other
three methods, which as listed as follows:

(1) 1-Norm Distance. This refers to the distance based on
the 1-norm in a linear space.

(2) Euclidean Distance. This is the Euclidean distance
between two vectors.

(3) Intersection. Given two vectors, the intersection between
the vectors is defined as the sum of the smaller value for each
element in the vectors, as shown in Equation 1.

Intersection(h1, h2) =

n∑
i

min(h1i, h2i) (1)

Figure 8 shows the similarity of each metric when used for
classifying the five access patterns. We can see that the 1-
Norm Distance, Euclidean Distance, and Intersection all fail
to classify the five access patterns clearly. Compared to the
Correlation method, all the three methods cannot distinguish
the cyclic from the other four patterns, which shows the
superiority of the correlation approach proposed in PBM.

V. CONCLUSIONS

In this paper, we presented a new access-pattern-aware
buffer manager called PBM (Personalized Buffer Manager).
PBM can detect the access patterns for each database file
and use different buffering policies for database files. We
proposed a workload classifier to detect the access pattern and
partitioned the buffer into different zones for different files.
Each zone uses its own buffering policy for a database file,
yielding a personalized buffer manager. We implemented PBM
and compared it with three existing buffering algorithms on

two workloads, including LRU, LFU, and LeCaR. The results
suggested the efficiency of PBM.

In the future, we will investigate personalized buffer man-
agement for flash memory [7], [8] and use machine learning
models to optimize the buffer management [9], [10].

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (62072419). Peiquan Jin is the corresponding
author.

REFERENCES

[1] W. Effelsberg and T. Härder, “Principles of database buffer manage-
ment,” ACM Transactions on Database Systems, vol. 9, no. 4, pp. 560–
595, 1984.

[2] P. Jin, Y. Ou, T. Härder, and Z. Li, “AD-LRU: an efficient buffer
replacement algorithm for flash-based databases,” Data & Knowledge
Engineering, vol. 72, pp. 83–102, 2012.

[3] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ML-based LeCaR,” in HotStorage, 2018.

[4] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in FAST, 2003.

[5] T. Johnson and D. E. Shasha, “2q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of VLDB,
1994, pp. 439–450.

[6] M. Stonebraker, “Operating system support for database management,”
Communications of ACM, vol. 24, no. 7, pp. 412–418, 1981.

[7] Y. Ou, T. Härder, and P. Jin, “CFDC: a flash-aware replacement policy
for database buffer management,” in DaMoN, 2009, pp. 15–20.

[8] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: a new buffer
replacement algorithm for flash memory,” IEEE Trans. Consumer Elec-
tron., vol. 55, no. 3, pp. 1351–1359, 2009.

[9] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective
cache replacement policy using machine learning,” in HPCA, 2021, pp.
291–303.

[10] Y. Yuan and P. Jin, “Learned buffer management: a new frontier: work-
in-progress,” in CODES/ISSS, 2021, pp. 25–26.


