
A Novel Approach to Maintain Traceability
between Safety Requirements and Model Design

Qian Wang†, Jing Liu†∗, John Zhang‡∗, Hui Dou‡, Haiying Sun†, HongTao Chen‡, Xiaohong Chen†, Jifeng He†
†Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

‡Huawei Technology, Shanghai, China
∗Corresponding authors: Jing Liu (Email: jliu@sei.ecnu.edu.cn), John Zhang (Email: john.zhangyh@huawei.com)

Abstract—One of the major challenges confronting System
Modeling Language(SysML) is that it cannot always provide
verifiable guarantees of formalization and rigorousness. To verify
model designs, the research of transformation from SysML to
ontology emerges because of ontology’s formal standards and
verifiability obtained by ontology reasoners. However, existing
transformation approaches are mostly limited to a single view
without traceability or lack a clear process so that it can’t
be automated. In this paper, we propose a novel approach to
maintain precious traceability between requirements and model
multi-views design based on ontology. In addition, our approach
contains a normative process of ontology building in support of
an automated implementation. We use this approach to obtain
the ontology of a safety-critical system and carry out the ontology
evaluation experiment, whose results demonstrate the feasibility
and efficiency of our approach.

Index Terms—Knowledge Engineering, Traceability, SysML,
Description Logic, Ontology, Model Transformation

I. INTRODUCTION

As a knowledge representation tool, System Modeling Lan-
guage (SysML) has been used in many safety-critical systems.
In the most common SysML usage mode, i.e., SysML-as-
Pretty-Pictures, it uses various diagrams to express the require-
ments, structure, and behavior of the system. Unfortunately,
this mode lacks complete formalization and rigorousness, and
users pay relatively little attention to the well-formedness
of SysML and its underlying simulatable and executable
semantics [1]. Hence, the generated models are difficult to
drive dynamic behavior simulations to confirm that the system
behavior satisfies the safety requirements. The challenge will
bring in more time and labor costs [2].

To address the aforementioned challenge, the research of
transformation from SysML to ontology and verification based
on ontology emerged. Ontology is extended based on descrip-
tion logic which has formal standards; therefore, ontology
reasoners can find errors in ontology rules and facts while
drawing inferences [4]. If a SysML model is transformed
into an ontology with the same semantics, we can conduct
inferences to verify the design of models.

In this paper, to address the problem, we propose a novel
approach to maintain precious traceability between require-
ment and model design based on ontology. The establishment

DOI reference number: 10.18293/SEKE2022-140

of maintaining traceability from risk to overall safety require-
ments, to safety-critical system component design, is of great
significance for behavior simulations [7]. Specifically, we first
construct the high-level ontology to formally represent con-
cept elements and semantics of SysML using Web Ontology
Language 2(OWL 2) [8]. Then, models’ instances are added
into the high-level ontology to generate low-level ontology,
which can be applied to verify and query using well-developed
OWL reasoners. Finally, we conduct experiments on a real-
world safety-critical system. The experimental results show
that the ontology generated by the proposed approach is of
good overall quality, and there are no pitfalls that affect the
consistency, reasoning, and applicability of ontology.

The contributions of this paper are threefold: (1)an inno-
vative approach to maintaining traceability using a phased
transformation, (2)a normative process of ontology building in
support of an automated implementation, (3)an experimental
evaluation of a real-world safety-critical system with 23 re-
quirements showing feasibility and efficiency of our approach.

II. TRANSFORMATION APPROACH

A. Ontology Generation
Transformation in this paper concentrates on SysML’s

four semantic dimensions: (1) requirements, (2) structure, (3)
behavior, and (4) state. After the reference to [9] where
shows a normative ontology building process to guarantee
efficiency, the transformation consists of six steps. The first
four steps create the upper-level ontology(written Ō for ease
of understanding), and the last two steps derive the lower-
level ontology(written o) of a specific model m from Ō. The
following are the detailed steps.

Step 1. Determine the domain and scope of the ontology.
The way of starting the development of an ontology is to
answer several questions:

• What is the domain? SysML’s four semantic dimensions.
• For what we are going to use? Complete and correct

expression of the domain’s semantics, and then the users
can query and infer about m from o.

• What types of information can the ontology provides?
Models’ basic and traceability information.

• Who are the ontology’s users? Software engineers.
Step 2. Enumerate important terms. This step focuses on

writing down important terms. The semantics of a dimension

Mapping OWL:Thing
SysMLNode

SysMLDiagram

SysMLOther
Item

SysMLEdge

Requirement
Diagram

Act ivityDiagram
ActPart it ion

BlockDefineDiagram

StateMachineDiagram

Block
Funct ion

Block
Para

Do

Guard

Act ion

SpecialNode

Block

Event

Region

Requirement

Int raDiagram
Edge

Transit ion

ObjectFlow

Genaralizat ion

CommonRelat ion

owl:subClassOf

Fig. 1. Main parts of class hierarchy

RequirementD
iagram

Requirement

BlockSubReqt

DeriveRequirement

StakeholderMission

hasRequirement

St ring St ring St ring

hasReqt ID
hasReqtValue

hasReqtName

deriveReqt

dempose

owl:subClassOf

ObjectProperty

DataProperty

Fig. 2. Semantic representation of req

are usually visualized as a kind of diagram. Each diagram
contains nodes and edges which represent various components
of SysML and relationships between components. In addition
to the vertical semantics of each diagram, there are the
horizontal semantics between diagrams expressed through the
cross-cutting mechanism. [7] extends cross-cutting mechanism
with a data structure called Mapping for a more detailed
traceability information model(TIM). To sum up, important
terms include SysML diagram, node in diagram, edge in
diagram, mapping, and other item of SysML component.

Step 3. Define the classes and their hierarchy This step
first defines the most common concepts in the domain, and
then specializes those concepts, i.e., a top-down development
process [9]. As shown in Fig. 1, upper-level ontology Ō
contains five main classes: SysMLDiagram, SysMLEdge,
SysMLNode, SysMLOtherItem, and Mapping that im-
plements traceability.

Step 4. Define the properties of classes. The classes
alone can’t provide enough information to answer the
competency questions in Step 1. ObjectProperty and
DataProperty are required to describe the internal struc-

SysMLDiagram

BlockDefineDiagram

SysMLEdge Int raDiagram
Edge

Genaralizat ion

CommonR
elat ion

BlockFunct ion BlockPara

SysMLNode
Block

hasBlock hasGenaralizat ion

nest

hasCommonRelat ion

hasFunct ion
hasPara

isPartOf

hasTarget

hasSource

owl:subClassOf

ObjectProperty

hasNode

hasEdge

Tuple

hasCardinality

Fig. 3. Semantic representation of bdd

SysMLNode

SysMLEdge

Act ivityDiagram

Guard

Act ion

Begin

Special
Node

Int raDiagram
Edge ObjectFlow

Event

InEvent

OutEvent

ActPart it ion

haveActPart it ion

hasAct ion
hasEvent

hasGuard

hasObjectFlowEnd

MergeNode

SplitNode

hasTarget hasSource

owl:subClassOf

ObjectProperty

Fig. 4. Semantic representation of act

ture of concepts. Fig. 2, 3, 4, 5 show the classes and properties
that enable the semantics of requirement diagram(req), block
definition diagram(bdd), activity diagram(act), and state ma-
chine diagram(stm), respectively.

We use ObjectProperty to represent edges with simple
semantics e.g., isPartOf indicates edges in bdd that repre-
sent combination or aggregation. If using such a restriction on
edges with complex semantics, such as transitions, we would
need OWL Full. To keep the ontology as an OWL 2 DL
ontology, transition is defined as a subclass of SysMLEdge,
as shown in Fig. 1. Then transitions’ extra semantics are
represented by subclasses of SysMLOtherItem, then use
the corresponding properties to connect them as shown in Fig.
5.

We need the second phase to complete the transformation
from m to o.

Step 5. Enrich the class and class hierarchy. In a system,
each block will have several particular instances; consequently,
all blocks are modeled as children of Block.

Step 6. Create individuals. The final step is to create

StateMachineDiagram

Do

Guard

RegionState

Transit ion

BlockPara

Block

hasDoPara

Act ion

hasState hasRegion

hasState

hasCondPara

hasCondBlockhasDoBlock
hasGurad

hasCondValue

St ring

hasCondValue

St ring

hasDo

hasAct ion

hasTransit ion

hasTransit ionhasExitDo

hasEnt ryDo

hasEnt ryAct ion

hasExitAct ion hasExitAt ion

hasEnt ryAct ion

ObjectProperty

DataProperty

Join

Fig. 5. Semantic representation of stm

individuals for the remaining instances in m. Creating an
individual of a class requires (1) selecting a class, (2) creating
an individual of that class, and (3) adding property values to
that individual.

B. Traceability Information Model

The model in Fig. 6 specifies the well-formedness criteria
for the potential traceability links between requirements and
components. In practice, the ontology-based implementation
of TIM provides at least two benefits [10]:

1) As tracing is a complex task, but the approach provides
a guideline that simplifies its building and allows for
flexible changes.

2) As traceability is implemented in a way that is friendly
to people who did not create it and who only need to
know some of the semantics of ObjectProperty.

The class hierarchy in Requirement Concepts demonstrates
a process of modeling the analysis of requirements for safety-
critical systems. trace establishes the traceability link be-
tween Mapping and Block, which is also the link point
between Requirement Concepts and Design Concepts. If there
exists a block b that satisfies the following axioms, then b is
said to be a system component that satisfies the functional
requirement q.

Block(?b) ∧ Mapping(?map) ∧DeriveRequirement(?q)

∧ hasMapping(?q, ?map) ∧ trace(?map, ?b)

Of course, it is possible that several b meet q. map have
mapTo series of object properties to concretize the satisfac-
tion. The details include that: (1)a block satisfies a requirement
by a block function concretized by mapToBF; (2)a block
satisfies a requirement by modifying its parameter concretized
by mapToBP; (3)a block satisfies a requirement before or after
an activity is performed in its activity partition concretized by
mapToAE. allocate links a block to its activity partition,
while mapToBF links a block function and an activity. These

Design Concepts

Requirement Concepts

mapToAE

Stakeholder
Mission

Derive
Requirement

Block
SubReqt

deriveReqt dempose

Block
allocate

ActPart it ion

hasMapping

Mapping

mapToBF

mapToBF

mapToBP

hasCondPara

Guard Transit ion

hasAct ion

Block
Para Act ion

Object
Flow

BlockFunct ion

t race

StateMachineDiagram

Do

hasDoPara

Fig. 6. Ontology based TIM

mean that the function of a block can be performed as an
activity in its activity partition. Conversely, functions that the
block does not have cannot be performed. The final has series
of object properties pass the link to the design of state machine
diagrams.

III. EVALUATION

A. Experiment Design

We first select a safety-critical system, Production Cell
System (PCS) [11], and use the approach described above to
obtain its lower-level ontology oPCS as the experimental ob-
ject. Production Cell System (PCS) is a well-known paradigm
for embedded systems and was previously used as a baseline
to evaluate the capabilities of various specification methods
for safety analysis and verification. From the complete SysML
requirements and design specification given in [11], it is known
that PCS consists of 23 safety-related requirements and 6 main
blocks, each with corresponding activity partitions and state
machine diagrams.

We chose a comprehensive quantitative ontology evaluation
method in [12], which has a study of metrics implemented in
the popular quality frameworks. There are 8 sub-characteristics
RROnto, ANOnto, LCOMOnto, INROnto, CROnto,
NOMOnto, and CBOnto which count the proportion of
classes, properties, and individuals from different perspectives
to measure the rationality of ontology design. Each sub-
characteristic has a calculated value and a score out of five,
based on each value. Based on the eight sub-characteristics,
four more metrics are summarized to measure overall quality:

TABLE I
QUANTITATIVE EVALUATION RESULTS

Sub-characteristics
Name Value Score

RROnto 0.64 4
ANOnto 1.00 5
LCOMOnto 2.44 4
INROnto 1.80 5
CROnto 14.80 5
NOMOnto 0.31 5
CBOnto 1.13 5

Metrics
Name Avg(scores)

SEv 4.33
FAEv 4.67
MEv 4.67
Glov 4.50

TABLE II
QUALITATIVE EVALUATION RESULTS

Dimension Desription Importance

Completeness
Missing domain or range in properties Important

Creating unconnected ontology elements Minor
Inverse relationships not explicitly

declared Minor

Compliance No license declared Important
Accuracy Using a Miscellaneous Class Minor

structural metric SEv , functional adequacy metric FAEv ,
maintainability metric MEv , and global metric Glov . For
details, see the framework presented in [12]. The qualitative
evaluation tool we chose in [13] extends previous work on
modeling errors and 41 pitfalls are identified with importance
levels(critical, important, or minor). Experimental documents
can be found at https://github.com/ch-wq81404/Experimental-
documents.

B. Evaluation Results

Results of quantitative and qualitative evaluation are shown
in Tab. I and Tab. II respectively. Tab. II shows the pitfalls and
their importance in oPCS . This will allow the user to correct
the ontology and transform it into a better ontology.

From the results, almost all sub-characteristics get the
highest score of 5, except for RROnto and LCOMOnto.
Anyway, the high scores of other metrics indicate the follow-
ing:

• Rationalization of class richness portrayed by CROnto.
• Vertical and horizontal coordination of the class hierarchy

portrayed by LCOMOnto and CBOOnto.
• Quantitatively sufficient properties portrayed by

NOMOnto, INROnto, and ANOnto.
It can be seen from Tab. II that oPCS does not have problems
of critical importance, which will affect the usage of ontology.
All of these demonstrate the feasibility and efficiency of our
approach.

IV. RELATED WORK

Existing transformation approaches are mostly limited to
a single view [2], [5], [6] without traceability. [2] proposed

the idea of using ontology to verify the dynamic behavior for
complex systems. The work of [3] is closest to ours, and its
ontology is used to analyze system change propagation. But
they does not share the file so that our approach cannot be
compared to theirs. All of them lack an automated tool.

V. CONCLUSION

We have presented a novel approach to maintain precious
traceability between requirements and model multi-views de-
sign based on ontology. And the experimental results can be
used by other relevant researchers to compare different trans-
formation approaches or for other purposes. In future work,
we will implement an automated tool to derive ontology model
from SysML model, and select a different type of system as a
case to explore the universality of our transformation method.
In addition, we can use semantic inference tools of ontology
to perform verification.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Research and Development under Project 2019YFA0706404,
the NSFC under Project 61972150, and the Fundamental
Research Funds for Central Universities.

REFERENCES

[1] O. M. Group, “How should SysML be applied to a MBSE project?
How is SysML commonly abused?,” https://sysml.org/sysml-faq/sysml-
applied-mbse.html.

[2] C. Ruirui, Y. Liu, and X. Ye, “Ontology based behavior verification for
complex systems.” International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, vol.
51739, 2018.

[3] H. Wang, V. Thomson, and C. Tang, “Change propagation analysis for
system modeling using semantic web technology,” Advanced Engineer-
ing Informatics(AEI), vol. 35, pp. 17–29, 2018.

[4] S. Jenkins and N. Rouquette, “Progress on integrating owl and sysml,”,
NASA, 2012.

[5] H. Wardhana, A. Ashari, and A. Sari, “Transformation of sysml require-
ment diagram into owl ontologies,” Int J Adv Comp Sci Appl, pp. 11,
2020.

[6] H. Graves, “Integrating sysml and owl,” Proceedings of OWL: Experi-
ences and Directions, 2009.

[7] B. Lionel, F. Davide, N. Shiva, S. Mehrdad and Y. Tao, “Traceability and
sysML design slices to support safety inspections: a controlled experi-
ment,” in ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 23, no. 1, pp. 1–43, 2014.

[8] W. W. W. Consortium(W3C), “Owl 2 web ontology language: Direct
semantics (second edition),” https://www.w3.org/TR/2012/REC-owl2-
direct-semantics-20121211/, 2012.

[9] N. F. Noy, D. L. McGuinness, “Ontology development 101: A guide to
creating your first ontology,”, 2001.

[10] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” In Workshop on
Traceability in Emerging Forms of Software Engineering(ICSE), pp. 21–
25, 2013.

[11] T. E. Klykken, “A case study using sysml for safety-critical systems,”
Master’s thesis, 2009.

[12] G. R. Rold an-Molina, D. Ruano-Ord as, V. Basto-Fernandes, and
J. R. M endez, “An ontology knowledge inspection methodology for
quality assessment and continuous improvement,” Data Knowledge
Engineering(DKE), vol. 133, pp. 101889, 2021.

[13] P. Marı́a, A. Gómez-Pérez, and M. C. Suárez-Figueroa, ”Oops!(ontology
pitfall scanner!): An online tool for ontology evaluation.” International
Journal on Semantic Web and Information Systems(IJSWIS), vol. 10, no.
2, pp. 7–34, 2014.

https://github.com/ch-wq81404/Experimental-documents
https://github.com/ch-wq81404/Experimental-documents

	Introduction
	Transformation Approach
	Ontology Generation
	Traceability Information Model

	Evaluation
	Experiment Design
	Evaluation Results

	Related Work
	Conclusion
	References

