
An Information Flow Security Logic for
Permission-Based Declassification Strategy

Zhenheng Dong1, Yongxin Zhao1⇤ and Qiang Wang2
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 Chinese Academy of Military Science, Beijing, China

Abstract—With the increasing popularity of smartphones and

the rapid development of mobile network, ensuring the security of

mobile applications becomes more and more important, which has

received substantial attention from both academia and industry.

Information flow security, as a prominent approach to system and

network security, aims at ensuring high security level information

would not be accessed by analyzing the information with lower

security levels. In this paper, we design a novel information flow

security logic to reason about the security of mobile applications,

leveraging on the idea of permission based declassification. Firstly,

we propose a formal language with permission check branches,

through which the access to the confidential information can be

controlled. Then we present our novel information flow security

logic based on the permission based declassification strategy,

which can make the reasoning more precise by degrading the

security level of the specific information. Finally, we demonstrate

the usability of our logic via examples.

Index Terms—Information Flow Security, Formal Language

and Logic, Permission-Based Declassification, Mobile Applications

I. INTRODUCTION

Information flow security is a prominent approach to system
and network security. Given the fact that system components
can be classified into different security levels, among which
confidential information (e.g., private data resource) is marked
as high security level, whereas public information (e.g., public
program variable) is marked as low security level, the basic
idea of information flow security is to ensure confidential
information with high security level can not be obtained
by analyzing the observable information with lower security
levels. In the past decades, information flow security has
been investigated and applied to various fields, e.g., operating
systems [1], Web services [2] and cloud computing [3].

Among all the approaches to guarantee the information
flow security, formal methods have been widely used and can
be roughly divided into three categories, i.e., process algebra
based methods, type system based methods and semantic based
methods [4]. The work in [5] described four approaches to
verifying security protocols based on process algebra. In [6] the
authors used type system to check semantic errors in programs
and to catch errors in code before program execution. In [7]
the authors implemented a secure type system implementing
integrity information flow control. The basic idea of semantic

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2022-134

based methods is to bind a security level to program variables,
and to adjust the security level according to the semantics of
program operations dynamically. If there is no information
leakage from the high security level to the low security level,
the program access to the system is considered to be secure.
The work in [8] proposed a secure semantic web service model
by analyzing the web service security. In [9] the COVERN logic
was proposed based on the lock mechanism for the security
analysis of shared memory in concurrent programs. In [10]
a non-blocking algorithm was proposed to avoid the use of
locks on shared variables and data structures. Inspired by these
previous work, we adopt the semantic based method to solve
the information flow security in mobile applications.

In this paper, we propose a semantic-based approach to the
information flow security among sequential mobile applications.
Particularly, inspired by the literature [11] and [12], our ap-
proach introduces a permission-based declassification strategy
to ensure that information will only be legally accessed by
applications who have been granted the permissions. Throught
the approach, the information can be downgraded from the
origianl high security level to make the logical reasoning more
accurate. The contributions of this work are as follows:

• Permission-based formal language for information flow

security: The language abstracts application programs into
functions, and uses function calls to represent information
interactions among applications. Permissions are the basis
for whether messages can be obtained in information
interaction. In addition, the operational semantics of the
language are strictly formulated, which is helpful for the
formulation of reasoning logic.

• Logic rules supporting declassification strategy: This
is the first semantic-based permission-dependent infor-
mation flow security method, which adds the content of
permission into the traditional information flow logic. In
addition, the logic also adds a declassification strategy to
make the reasoning more precise.

The rest of this paper is organised as follows. In Section II,
we provide some running examples to illustrate the intuitive
idea of our approach. A permission-based formal language is
presented in Section III and its semantics is given in Section IV.
In Section V, we discuss our novel informal flow security logic.
Section VI illustrates the usability of our logic via examples
and Section VII concludes the paper.

II. RUNNING EXAMPLES

Before introducing the language and logic, we informally
describe its core ideas and practical problems that can be solved
through some examples.

The current popular definition of information flow security
is non-interference [13], that is, if only the input changes, the
attacker cannot observe the difference in execution results [14].
However, for mobile applications, traditional information flow
security is not applicable due to the need for nested calls of
programs, as shown in the example in Table I.

TABLE I: An example of traditional information flows

String getInformation(String name){
String information;
if(verifyPass(READ PASSWORD))

information=name.information;
else

information=“”;
return information;

}

We can think of this example as a login service for social
APPs, such as WeChat, instagram, etc., where the parameter
name is the username, and the function verifyPass() is
for authorization verification. If the password verification is
passed, then the information name.information of the user
is returned. Otherwise, an empty string is returned. It is obvious
that the user information is confidential and its security level
should be high, while the security level of an empty string
should be low. Because the traditional information flow security
requires the two branches of the conditional statement to
have the same security level, the non-interference can be
guaranteed. At this time, if the information level is high, then
the information can be used by other applications as the return
value, and there will be a great security risk. Conversely, if the
information level is low, either the application cannot obtain
useful information, or there is an information leakage problem
of assigning a high security level to a variable with a low
security level. Therefore, a new strategy is needed to solve the
resource acquisition problem of the application.

To solve this problem, the work in [15] proposed a type
system that incorporates permissions in function types. And
another work in [16] also proposed a type system that solves
the problem of typing non-monotonic policies without resorting
to downgrading or declassifying the information. Inspired
by the above research, we define a statement that supports
declassification assignment, as shown in Table II.

TABLE II: An example of our method

A.funA(name){
init information=0;
in{

check(p){
then information:=# name.information;
else information:=0;

}
return information;

}
}

We introduce a permission access control mechanism,
and use the Check statement to replace the If-condition in
the traditional information flow. If the application contains
the permission p, then we can lower the security level by
declassifying the assignment statement of the high security
level name.information, and assignthe declassified variable
to information. This can ensure that the return value of each
function is a low security level, which ensures the security of
the information flow of the system, and also solves the problem
of application resource acquisition.

III. THE FORMAL LANGUAGE

In this section, we present a formal language for a permission-
based approach to information flow security.

The syntax of expressions is given below:

e ::= v | x | e op e | e

Where v represents an integer value, x represents a vari-
able, op is a binary operator defined on two expressions,
e = [e1, e2, ..., en] represents an expression tuple, and each
element in the tuple is an expression respectively.

The syntax of the command statement is given in the
following:

c ::= skip | x := e | c1; c2 | if e then c1 else c2
| while e do c | init x = e in c | x := call A.f(e)
| x := # e | check(p) then c1 else c2

Where skip means the empty statement does nothing.
init x := e in c is the definition statement of a local variable
x, and the program block c represents the scope of the local
variable x. x := call A.f(e) means to call the function f(e) of
the application A, the expression e is the incoming parameter
of the function, and uses the variable x receives the return value
of the function call. x :=# e represents the declassification
assignment statement, which means that the expression e with
high security level is allowed to downgrade the security level
and assign it to the variable x. check(p) then c1 else c2

represents the permission check statement, check whether the
atomic permission p is included in the permission context, if
it does, execute the statement c1, otherwise execute c2. Also,
other statements are not much different from those of other
programming languages.

A function definition is in the following:

F ::= A.f(input){init output = 0 in {c ; return output}}

Where A.f denotes the function of application A whose
function name is f . input is the formal parameter of the
function, c is the execution statement of the function body,
output is the local variable and the return value of the function,
and {c; return output} is its scope. We only consider the
closed function in this language, that is the variables that appear
in c will only be variables introduced into the parameter input
or local variables within the function.

IV. OPERATIONAL SEMANTICS

A. Semantic Model

In the semantic model, we define a system state µ as a tuple
hmem, tri, where mem represents memory and tr represents
event trace.

The memory memµ denotes a set of assignments for all
variables in the state µ, that is memµ = [x1 7! v1, x2 7!
v2, . . . , xn 7! vn], where x1, x2, . . . , xn represents a finite set
of all variables in the system, and memµ(x1) represents the
value of the variable x1 under the state of the system µ.

We use a sequence trµ to save all the assignment events
from the initial state to the current state of the system. In
this study, the event event consists of two kinds of events:
First, the ordinary assignment event ASGhlvl, x, ei, which
means to assign the value of the expression e to the variable x

whose security level lvl. Second, the classification assignment
event DCF hlvl, x, ei means that the value of the expression
e is declassified and assigned to the variable x, and after
declassification, the security level of variable x is lvl. The
sequence of each historical event is called a trace, which is a
finite collection of events.

B. Operational Semantics

We refer to [17] and [18] for our semantics. Our semantics
is divided into two levels: expressions and statements.

The evaluation of the expressions are given in Table III.
The semantic judgment of the expression has the form of
µ ` e) v, where µ represents the system state, e is the
expression, and v is the value of the expression, which can be
interpreted as in the state µ, the value of the expression e is v.

TABLE III: Evaluation of Expressions

(Value)
µ ` v) v

(Variable)
µ ` x) memµ(x)

(Tuple)
µ ` ei) vi (1 i n)

µ ` e) v

(BiOp)
µ ` e1) v1 µ ` e2) v2 v1 op v2 = v3

µ ` e1 op e2) v3

(Value) indicates that in the system state µ, the value of the
numerical expression v is v.

(Variable) indicates that in the system state µ, the value
of the variable x is the value of x in the memory under the
system state, which can be expressed as memµ(x1).

(Tuple) indicates that in the system state µ, when 1 i n,
the value of the expression ei is vi respectively, then the value
of the tuple expression e is expressed as v.

(BiOp) indicates that in the system state µ, if the value of
e1 is v1, the value of e2 is v2, and the value of v1 and v2

calculated by the binary operator is v3. Then in this state, the
result of the binary operation between e1 and e2 is v3.

The operational semantics of command statements are
given in Table IV. The operational semantic judgment of the

command statement has the form of A,P ` (hmem, tri, c) !
hmem

0
, tr

0i. Where A represents the application, and the
permission set P denotes the permission context, that is the set
of permissions of the application which invokes the function
of A. hmem, tri represents a system state µ, tr represents the
event execution sequence. This judgment means that in the
environment of the application A with the permission context P ,
the system state before executing the statement c is hmem, tri,
and after executing, it becomes hmem

0
, tr

0i.
(Skip) and (Seq) are relatively simple, and they are not very

different from the operational semantics of general sequential
languages, so we will not go into details here. (If) and (While)

use the expression e to determine whether the condition is true.
For simplicity, we use TRUE and FALSE as the distinguishing
criterion.

Two assignment statements correspond to two kinds of events
in the system, that are ASG and DCF . When executing a
normal assignment statement (AssignN), we should add ASG

event after the current trace tr. However, when executing the
declassification assignment statement (AssignD), we add DCF

event after tr. Depending on the trace of the event history, we
can distinguish which type of assignment statement is currently
executing.

The local variable definition statement (DefL) means to
define a local variable x whose initial value is the value v of
the expression e. The scope of the variable x is only within
the statement block c. Its operational semantics are to assign
the value v of the expression e to the variable x, and execute
the statement c under this premise. After execution ends, local
variables should be removed from the memory. mem

0 � x

means to delete the local variable x from memory mem
0.

The permission check statement (Check) is similar to an
(If) statement. Where p is an atomic permission in the system
permission set. Which branch of the statement is executed
depends on the relationship of the atomic permission p to
the permission context P . If P contains permission p, that is,
p 2 P , execute the statement c1, otherwise execute c2.

(Call) is more complex than the operational semantics of
other statements. When application A calls function f of
application B, first we need to find function f in all functions
of application B. Then we use PA to present the permission
set of the application A, after that we give permission set PA

to application B, and execute function body in application
B. Finally, assign the return value to the variable x. In
short, application A calls the function of application B, we
should check whether the corresponding permission exists in
application A during the process of executing the function of
B. This means that the permission set of application cannot
be passed in recursive calls to functions.

V. THE LOGIC

A. Access Control Model

In traditional information flow security, we introduce permis-
sions for access control. We use P to denote a finite set of all
permissions in the entire system, that is, P = {p1, p2, . . . , pn}.
P represents the permission context, and P ✓ P . We require

TABLE IV: Operational Semantics of Command Statements

(Skip)
A,P ` (hmem, tri, skip) ! hmem, tri

(AssignN)
µ ` e) v tr0 = tr ·ASG

A,P ` (hmem, tri, x := e) ! hmem[x 7! v], tr0i

(Seq)
A,P ` (hmem, tri, c1) ! hmem0, tr0i A,P ` (hmem0, tr0i, c2) ! hmem00, tr00i

A,P ` (hmem, tri, c1; c2) ! hmem00, tr00i

(IfF)
µ ` e) FALSE A,P ` (hmem, tri, c2) ! hmem0, tr0i
A,P ` (hmem, tri, if e then c1 else c2) ! hmem0, tr0i

(IfT)
µ ` e) TRUE A,P ` (hmem, tri, c1) ! hmem0, tr0i
A,P ` (hmem, tri, if e then c1 else c2) ! hmem0, tr0i

(WhileF)
µ ` e) FALSE

A,P ` (hmem, tri, while e do c) ! hmem, tri

(WhileT)
µ ` e) TRUE A,P ` (hmem, tri, c) ! hmem0, tr0i A,P ` (hmem0, tr0i, while e do c) ! hmem00, tr00i

A,P ` (hmem, tri, while e do c) ! hmem00, tr00i

(DefL)
µ ` e) v A, P ` (hmem[x 7! v], tri, c) ! hmem0, tr0i
A,P ` (hmem, tri, init x = e in c) ! hmem0 � x, tr0i

(AssignD)
µ ` e) v tr0 = tr ·DCF

A,P ` (hmem, tri, x :=# e) ! hmem[x 7! v], tr0i

(CheckF)
p /2 P A,P ` (hmem, tri, c2) ! hmem0, tr0i

A,P ` (hmem, tri, check(p) then c1 else c2) ! hmem0, tr0i
(CheckT)

p 2 P A,P ` (hmem, tri, c1) ! hmem0, tr0i
A,P ` (hmem, tri, check(p) then c1 else c2) ! hmem0, tr0i

(Call) Find(B.f)=B.f(input){init output=0 in {c ; return output}} µ `e) v B,PA`(hmem[input 7!v,output 7!0],tri,c)!hmem0,tr0i
A,P `(hmem,tri,x:=call B.f(e))!hmem[x 7!mem(output)],tr0i

that the permission set of each application is statically allocated
in the initial state and cannot be modified dynamically.

We divide variables into two categories, one is the variable
that requires permission to access, and the other is the variable
that can be accessed without permission. For variables that
require permission to access, we use the function �(x) to
represent the permission required to access the variable x. For
example, when �(x) = p, it means permission p corresponds
to the access to the variable x, then when the permission set P
contains the permission p, the currently executing application
can get access to the variable x through check(p), otherwise
the application cannot access the variable x. For variables that
do not require permission access, it is not necessary to read
the variables through permission control.

We assume that the application running at this time is A. In
the case of no function call, the context permission set P is
the permission set PA of the application A. The application A

can access all variables that do not require permission access
and the variables corresponding to the permissions possessed
by its permission set PA. When making a function call, if
the application A calls the function of the application B, the
context permission set P is the permission set PA, and then
we use P to execute application B.

B. Information Flow Model

We define the security level lvl for all expressions on the
grid Low lvl High. First, we define the security level
for the expression e. We stipulate that the numeric type v has
no specific security level, and its security level depends on the
security level of the variable it is assigned to. For the variable
x that has defined the permission function �(x), we require
its security level to be the highest High. For some variables,
we use the function L(x) to define the security level, and use
L(x) to represent the highest security level of the data that
the variable x can hold at any time. This means that, in all
assignments, the security level of the variable x cannot exceed
the upper limit of L(x). For the variable x that does not define

L(x), we default its security level to any level. When we
assign the value of the expression e to the variable x through
x := e, x automatically has the security level of expression
e. The current security level of the variable x depends on the
security level of the last assigned expression. For the binary
operation expression e := e1 op e2, the security level of the
expression e is the one with the higher security level among
the two expressions involved in the operation. Similarly, in
the expression tuple e = {e1, e2, e3, . . . , en}, the security level
of the expression e is the highest security level held by all
expressions in the tuple. And we use lvle to denote the current
security level of expression e.

We introduce the attacker role to prove the security of the
system, we assume that the attacker is a passive attacker who
can only get information by observing the execution of the
program. Specifically, we assume that the attacker has an attack
level of lvla, then for all variables with a security level of
lvl lvla, the attacker can observe them. At the same time,
if the assignment operation is declassification assignment, the
variable after declassification which security level is lvl lvla

can also be observed by the attacker.
Our logic has judgements of the form µ,A, P, lvla ` c,

where µ represents the current system state, A represents the
name of the application, P represents the permission context,
lvla represents the security level of the attacker, and c represents
a program statement. This judgment is true if and only if the
system state is µ, and we execute application A on permission
context P , the program text c will not leak information to the
lvla level.

C. Declassification Model

In order to make the declassification assignment statement
be executed safely, we define a declassification predicate:

D(lvlsrc, lvldes, µ, c, P).

In the definition of the predicate, lvlsrc represents the
security level of the expression before declassification, lvldes

TABLE V: Rules of the logic

(R-Skip)
µ,A, P, lvla ` skip

(R-UAsgN)
L(x) is undefined

µ,A, P, lvla ` x := e

(R-LAsgN)
lvle L(x)

µ,A, P, lvla ` x := e
(R-Seq)

µ,A, P, lvla ` c1 A,P ` (µ, c1) ! µ0 µ0, A, P, lvla ` c2
µ,A, P, lvla ` c1; c2

(R-IfF)
µ ` e) FALSE µ,A, P, lvla ` c2 lvle lvla

µ,A, P, lvla ` if e then c1 else c2
(R-IfT)

µ ` e) TRUE µ,A, P, lvla ` c1 lvle lvla
µ,A, P, lvla ` if e then c1 else c2

(R-WhileF)
µ ` e) FALSE lvle lvla
µ,A, P, lvla ` while e do c

(R-WhileT)
µ ` e) TRUE µ,A, P, lvla ` c ; while e do c lvle lvla

µ,A, P, lvla ` while e do c

(R-DefL)
µ ` e) v hmem[x 7! v], tri, A, P, lvla ` c

µ,A, P, lvla ` init x = e in c
(R-AssignD)

D(lvle, L(x), µ, x :=# e, P)

µ,A, P, lvla ` x :=# e

(R-CheckF)
p /2 P µ,A, P, lvla ` c2

µ,A, P, lvla ` check(p) then c1 else c2
(R-CheckT)

p 2 P µ,A, P, lvla ` c1
µ,A, P, lvla ` check(p) then c1 else c2

(R-Call) Find(B.f)=B.f(input){init output=0 in {c ; return output}} µ `e) v hmem[input 7!v,output 7!0],tri,B,PA,lvla`c lvloutputL(x)
µ,A,P,lvla` x:=call B.f(e)

represents the security level of the expression after declas-
sification, µ represents the current system state, c represents
program statement and P represents the permission context. For
example, when the system state is µ, a declassification statement
x :=# e is executed on the permission context P . At this time,
its declassification predicate is D(lvle, L(x), µ, x :=# e, P).

Whether declassification predicate is hold depends on the
permission function �(e) of the declassification expression e.
If the permission function �(e) of the expression e is defined
and �(e) ✓ P , then the declassification predicate holds, and
the declassification operation is secure at this time. Otherwise,
either when the permission function �(e) of the expression
e is not defined, or the permission function is defined, but
�(e) 6✓ P , the declassification predicate does not hold, and the
declassification operation is insecure at this time.

D. Rules

Our proposed logic rules are shown in the table V.
Some of these rules, such as R-Skip and R-Seq statements

are relatively simple, and we can be easily analogized to Hoare
logic. For assignment statements, we can divide them into
two cases R-UAsgN and R-LAsgN according to whether the
variable defines the security level function L. If a variable
x does not define the security level function L(x), it means
that the variable can receive the value of the expression of all
security levels, that is, its security level is the highest. Therefore,
in this case, it is secure to assign any expression to the variable
x. When the security level function L(x) of the variable x is
defined, it means that the variable x can contain a security
level that cannot exceed L(x). At this time, the assignment
statement needs to guarantee lvle L(x), otherwise we think
that the information flow is insecure.

The conditional statement R-If is similar to the loop
statement R-While. In order to prevent the attacker from
obtaining information of high security level in the condition
through different running results, we require that the security

level of the attacker is not lower than the security level of the
condition, that is lvle lvla.

Local variable definition statement R-DefL, since this state-
ment is not an assignment statement, we have no requirements
for the definition of the variable, we only need to ensure that
the variable is secure for information flow within its scope. The
permission check statement R-Check, we divide the statement
into two cases according to whether the atomic permission p

belongs to the permission set P . Each situation corresponds
to two different permission sets P . In addition, we also need
to ensure that the information flow of the program is secure
in each branch of the permission check.

Because we defined the declassification predicate D in the
previous section, the declassification assignment statement
R-AsgD is secure only if the declassification predicate holds,
otherwise it is not. For the function call statement R-Call, we
need to satisfy the information flow security inside the function
body and the function return value respectively.

VI. VERIFICATION

In this section we illustrate the usefulness of our proposed
logic through an example. The example code is shown in Table
VI below.

We can think of this example as a mobile banking login
application. When we log into the mobile banking, we must
first perform mobile code verification on our mobile phone,
and then we need to identify the person before we can enter the
bank account. We can assume that the above code simulates this
function, where the permission p1 indicates whether the user
has the permission to verify the mobile phone code verification,
and the permission p indicates the permission of the identity
verification. Obviously, these two permissions are indispensable,
otherwise we will not be able to login in normally.

TABLE VI: An application example

B.funB(){
init y=0;
in{

check(p1){
then y:=call A.fun();

hmem[y 7! 0], tri, B, PB , lvla ` y := callA.fun()
else y:=0;

}
hmem[y 7! 0], tri, B, PB , lvla ` check(p1) then c1 else c2

return y;
}

µ,B, PB , lvla ` init y = 0 in c
}
A.fun(){

init x=0;
in{

check(p){
then x:=# information;

hmem[y 7! 0, x 7! 0], tri, A, PB , lvla ` x :=# information
else x:=0;

}
hmem[y 7! 0, x 7! 0], tri, A, PB , lvla ` check(p) then c1 else c2

return x;
}

hmem[y 7! 0], tri, A, PB , lvla ` init x = 0 in c
}

In this example, we assume that the permission set PB of
the application B contains the permissions p and p1, then in
the process of executing the application B, the permission
context P is PB . First we define a local variable y. Then
execute the check(p1) statement. Because the permission set
of the application B contains the permission p1, the then

branch is executed to enter the function call statement. In
the function call statement, we should use the permission set
PB of the application B as the permission context into the
application A for execution. After defining the local variable
x in A, enter the check(p) statement. At this time, because
the permission set PB also contains the permission p, we use
declassification assignment statement assigns the high security
level information to the variable x with the reduced security
level, and returns it through the return value. After returning
to the application B, we use the variable y to receive the
return value of the function call, and get the final bank account
information, and the login is successful.

In information flow security, the use of local variables needs
to ensure that the information flow is secure in its scope,
and the function call needs to ensure that the information
flow is secure in the function body. Therefore, if and only
if the security level of the return value of the function is
less than or equal to L(y) and the classification predicate
D(lvlinformation, L(x), µ, x :=# information, P) holds, the
information flow is secure, otherwise it is insecure.

VII. CONCLUSION AND FUTURE WORK

In this work, We present a formal language and the
corresponding logical rules for proving the information flow
security of mobile applications. Our approach has well defined
semantics and makes use of a permission based declassification
strategy, which makes the reasoning more accurate.

In the future, we would like to extend the access control
policy to consider solutions to the branching problem that
relies on secrets. In addition, we will also extend the semantics
and the logic to handle the problem of non-monotonic of
permissions.

ACKNOWLEDGEMENTS

This work is supported by Shanghai Science and Technology
Commission Program under Grant 20511106002, Shanghai
Trusted Industry Internet Software Collaborative Innovation
Center and the Fundamental Research Funds for the Central
Universities.

REFERENCES

[1] M.Krohn and E.Tromer, “Noninterference for a practical difc-based
operating system,” in Proceedings of the 2009 IEEE Symposium on

Security and Privacy, 2009, pp. 61–76.
[2] N. B. Said and L. Cristescu, “End-to-end information flow secu-

rity for web services orchestration,” Science of Computer Program-

ming,187:102376, 2020.
[3] J. Bacon, D. Eyers, T. Pasquier, J. Singh, L. Papagiannis, and P. Piezuch,

“Information flow control for secure cloud computing,” in IEEE Trans-

actions on Network and Service Management, vol. 11, no. 1, 2014, pp.
76–89.

[4] “Review and prospect for information flow security technology,” in
Journal of Nanjing University of Posts and Telecommunications, vol. 31,
no. 5, 2011.

[5] L. Mengjjun, L. Zhoujun, and C. Huowang, “A survey of security protocol
verification base on process algebras,” in Journal of Computer Reserach

and Development, vol. 41, no. 7, 2004, pp. 1097–1103.
[6] D. Zhiyi, S. Guoxin, and S. Zhiqing, “Type system and the correctness

of program,” in Computer Science, vol. 33, no. 1, 2006, pp. 141–143.
[7] W. Libin, “Information flow control for integrity based on type system,”

in Journal of South China Normal University, vol. 3, 2006, pp. 42–47.
[8] L. Chengcheng, Z. Yongsheng, and L. Guangyu, “Research on a secure

semantic web services mode,” in Computer Technology and Development,
vol. 20, no. 2, 2010, pp. 170–174.

[9] T. Murray, R. Sison, and K. Engelhardt, “Covern: A logic for composi-
tional verification of information flow control,” in 2018 IEEE European

Symposium on Security and Privacy, 2018, pp. 16–30.
[10] N. Coughlin and G. Smith, “Rely/guarantee reasoning for noninterference

in non-blocking algorithms,” in 2020 IEEE 33rd Computer Security

Foundations Symposium(CSF), 2020, pp. 16–30.
[11] L. Hao, L. Qiang, Y. Jiwen, and Q. Peide, “A security system model

based on mandatory access control and information flow,” in Computer

Engineering and Science, vol. 27, no. 3, 2005, pp. 16–20.
[12] D. Schoepe, T. Murray, and A. Sabelfeld, “Veronica:expressive and

precise concurrent information flow security,” in IEEE 33rd Computer

Security Foundation Symposium(CSF), 2020.
[13] J.Goguen and J.Mesegue, “Security policies and security models,” in

Proceedings of the 1982 IEEE Symposium on Security and Privacy, 1982.
[14] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: A unifying

framework for weakening information-flow,” in ACM Transactions on

Privacy and Security, vol. 21, no. 2, 2018.
[15] A.Banerjee and D.A.Naumann, “Stack-based access control and secure

information flow,” in Journal of Functional Prpgramming, vol. 15, no. 2,
2005, pp. 131–177.

[16] H. Chen, A. Tiu, Z. Xu, and Y. Liu, “A permission-dependent type
system for secure information flow analysis,” in IEEE 31st Computer

Security Foundations Symposium, 2018, pp. 218–232.
[17] Y. Zhao, X. Wu, J. Liu, and Y. Yang, “Formal modeling and security

analysis for openflow-based networks,” in International Conference on

Engineering of Complex Computer Systems, 2018, pp. 201–204.
[18] Y. Zhao, X. Zhang, L. Shi, G. Zeng, F. Sheng, and S. Liu, “Towards a

formal approach to defining and computing the complexity of component
based software,” in Asia-Pacific Software Engineering Conference, 2019,
pp. 331–338.

