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Abstract—Context: Code readability plays a critical role in soft-
ware maintenance and evolvement, where a metric for classifying
code readability levels is both applicable and desired. However,
most prior research has treated code readability classification
as a binary classification task due to the lack of labeled data.
Objective: To support the training of multi-class code readability
classification models, we propose an enhanced data augmentation
approach. Method: The approach includes the use of domain-
specific data transformation and GAN-based data augmentation.
By virtue of this augmentation approach, we could generate
sufficient readability data and well train a multi-class code
readability model. Result: A series of experiments are conducted
to evaluate our augmentation approach. The experimental re-
sults show that a state-of-the-art multi-class code readability
classification accuracy of 68.0% is reached with a significant
improvement of 6.3% compared to only using the original data.
Conclusion: As an innovative work of proposing multi-class code
readability classification and an enhanced code readability data
augmentation approach, our method is proved to be effective.

Index Terms—code readability classification; data augmenta-
tion; generative adversarial networks; program comprehension;
software analysis

I. INTRODUCTION

Being a critical factor affecting the maintainability and
reusability of the software, source code readability, defined
as the ease of understanding the source code [5], is growing
crucial in modern software development with a higher demand
for rapid deliveries. Specifically, recent research reveals that
software developers spend nearly 59% of their development
time on reading and understanding the source code before they
start coding [23]. Thus, it is worthwhile to provide a tool that
constantly monitors the readability of source code and urges
developers to write code with high readability to shorten the
time wasted [21].

Buse and Weimer opened up the code readability classifica-
tion research in early 2008 using machine learning algorithms
with critical factors mainly affecting code readability [5].
Later, many effective classification models are built including
the use of deep learning techniques [13][14]. However, code
readability classification is still far from practical use. Because
most prior researches treat code readability classification as bi-
nary classification [6][13][14][19], that is identifying a piece of
code as either readable or unreadable. It is not precise enough
and too extreme to be applied for practical use. Therefore, this
paper is a pioneering work to propose a deep learning-based
multi-class code readability classification model.
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However, the problem is that the size of the labeled read-
ability dataset is merely acceptable for training a binary code
readability classification model and far from being adequate
for supporting a multi-class one. On top of that, using conven-
tional methods to manually label data, such as conducting a
large-scale survey to invite a number of programmers for data
annotation, has always been too costly and inefficient [15].
Thus, we propose a data augmentation approach including a
domain-specific data transformation method and a GAN-based
(i.e. Generative Adversarial Network-based) data augmenta-
tion method to support the training of our deep learning-based
multi-class code readability classification model.

The contributions of this paper are:

• To the best of our knowledge, we are the first to attempt
multi-class code readability classification which classifies
a code snippet as readable, neutral, and unreadable. This
multi-class model is more suitable for practical use than
existing ones.

• We propose a code readability data augmentation ap-
proach including domain-specific data transformation and
GAN-based data augmentation. By utilizing the approach,
labeled data could be generated from existing datasets
along with a higher data diversity which could ultimately
improve the performance of code readability classification
models.

• We conduct a series of experiments to verify our proposed
approach and gained a state-of-the-art multi-class code
readability classification accuracy of 68.0%, f-measure
of 67.3%.

• We publish all our data and source code online to benefit
future researchers.1

This research is an extension of a short communication
[15] which first proposed the use of data augmentation in
code readability classification. There are several improvements
made over the prior work:

• For the sake of enlarging the usable dataset to support
multi-class classification, we refine the domain-specific
data transformation method in a more systematic man-
ner. Besides, WGAN rather than ACGAN is adopted in
the GAN-based data augmentation method to get better
stability.

• Apart from separately using two data augmentation meth-
ods, we propose a parallel augmentation method and a
sequential augmentation method to combine the merits

1https://github.com/swy0601/Code-Augmentation



of them and further explore the best data augmentation
method in the field of code readability classification.

• A series of experiments are conducted with more evalua-
tion metrics and classification models to comprehensively
evaluate our data augmentation approach and make the
results more cogent.

II. RELATED WORK

In general, past code readability classification researches fall
into two categories: machine learning-based and deep learning-
based. Although they both produce a classifier, deep learning-
based models could automatically extract readability features
whereas machine learning-based models rely on handcrafted
features pre-specified by researchers.

A. Machine Learning-Based Code Readability Classification

Buse and Weimer collected 100 code snippets and invited
120 online human annotators to label them based on a five-
point Likert scale ranging from one (i.e., very unreadable) to
five (i.e., very readable). By analyzing the dataset collected,
a set of handcrafted code features that correlates with code
readability (e.g., average number of identifiers) was produced.
Then, those features are fed into machine learning algorithms
to make code readability predictions. This preliminary code
readability model successfully outperformed human judgments
on average [5].

Subsequently, Posnett et al. [18] proposed a readability
classification model based on two factors: code size and
entropy, which outperforms Buse’s model on the same dataset.
However, Dorn argues that both of those models have a bad
generalization ability because they only take surface features
into consideration [6]. Therefore, Dorn incorporated geomet-
ric, pattern-based, and linguistic features and built another
machine learning-based readability model.

Scalabrino et al. [19] enrich Dorn’s model metrics by com-
plementing textual aspects and achieved a better performance
than all prior models. Apart from a better model, Scalabrino
also manually labeled and added 200 pieces of readability
data which constitute our ground-truth code readability dataset
along with data from Buse and Dorn.

B. Deep Learning-Based Code Readability Classification

While machine learning-based models have gained rela-
tively high accuracy, they remain using handcrafted metrics
which require a large amount of manual work. More critically,
models with handcrafted features have a poor generalization
ability to cope with more complex and realistic data. Con-
cerning this issue, Mi et al. [14] put forward deep learning
techniques which enable neural networks to directly learn fea-
tures correlated to code readability from the source code and
achieved a state-of-the-art classification accuracy of 82.8%.

Though binary classification reaches a high performance,
the practicability is still not strong. Because it is too rough
to judge a code snippet as either readable or unreadable in
practice especially for some snippets that are just neutral
in readability. Thus, we propose to explore multi-class code

readability classification which has better practicability in
realistic scenarios. On top of that, considering the effectiveness
of deep learning techniques and the limited dataset, our re-
search extends the use of data augmentation and deep learning
techniques onto multi-class classification.

III. PROPOSED APPROACH

We treat code readability classification as a multi-class
classification task with three categories: readable, unreadable,
and neutral. As shown in Figure 1, our proposed approach
consists of three main steps.

A. Dataset Construction and Code Representation

1) Dataset Construction: Collected by conducting a large-
scale survey to invite annotators for labeling code snippets,
open-source datasets from Buse [5], Dorn [6] and Scalabrino
[19] are usually used as ground-truth data by most code
readability studies. The final readability score is the average of
every annotator’s rank. Different from the previous binary clas-
sification [5][6][13][14][15][19], we partition dataset into three
readability categories based on the readability score assigned
(five-point Likert scale) to support multi-class classification.
In addition, we remove code snippets in other languages and
use only code snippets in JAVA which is consistent with
prior researches [14][15]. In total, there are 420 labeled JAVA
code snippets that make up our dataset. The top 25% code
snippets with the highest readable score are considered as
readable whereas the bottom 25% is considered as unreadable
[15]. Therefore, the middle 50% is treated as the neutral
readability data. We belive this partition conforms to reality
because highly readable or unreadable code is less common
than neutral ones. We finally split the gathered dataset into a
training dataset and a test dataset in the ratio of 8:2.

2) Code Representation: A proper code representation
method is important for deep learning-based code readability
classification. Mi et al. proposed and deeply discussed three
representation methods that could effectively capture code
readability-related information [13]. A series of experiments
were conducted to evaluate which code representation method
is the most effective. Whereas results reveal that character-
level representation has an outstanding capability surpass-
ing the other two methods (with classification accuracy of
88.0%, 81.0%, and 75.5% respectively). Therefore, we adopt
character-level representation in this paper. Specifically, code
snippets are treated as two-dimension character matrices in
which every letter, number, mark, and whitespace is converted
into its corresponding ASCII value.

B. Code Augmentation

Considering conducting a large-scale survey to label new
code snippets is too costly, we decide to apply advanced data
augmentation techniques to enlarge our dataset.

1) Domain-Specific Data Transformation Method : The
feasibility of using domain-specific data transformation in bi-
nary code readability classification was preliminarily disclosed
in a previous research [15]. Thus, we propose to transform and



Fig. 1. Approach Overview

use it in multi-class classification. To adopt it in multi-class
classification, we formulate three sets of operations as shown
in Figure 1 that could generate new code snippets from the
original ones without changing their label (which is the most
secure way of augmentation because we cannot guarantee a
correct output label after intentionally changing the original
label). Specifically, we could perform increasing readability
operations on readable data, decreasing readability operations
on unreadable data, and remaining readability operations on
neutral data to generate artificial data with the correct label.

2) GAN-Based Data Augmentation Method: Being able
to generate artificial data out of a given dataset, GANs (i.e.,
Generative Adversarial Networks) have been proven to be a
potent and efficient data augmentation method to compensate
for the lack of data [3][7]. Specifically, we propose the use of
the Wasserstein Generative Adversarial Network (i.e., WGAN)
[2] for our task, because it could generate artificial data with
a high diversity without the mode collapse and vanishing
gradient problems [1].

Following the typical WGAN architecture, we construct our
network as shown in Figure 1. The network is comprised of
a generator and a discriminator. The generator could gener-
ate a character matrix from a given random noise, whereas
the discriminator will determine if a given character matrix
represents a real code snippet or a fake one generated by the
generator. After adequate training, the generator should be able
to generate verisimilar character matrices that could fool the
discriminator and be treated as reliable artificially labeled data.
To adopt it in our task, we put data with each readability label
into training and generate new data with that label respectively.
The detailed structures of the generator and the discriminator
are introduced as follows.

• The generator starts with a fully-connected layer fol-

lowed by two pairs of convolutional layers and batch-
normalization layers. A convolutional layer is placed
at the end. ReLU is set to be the activation function
for all but not the last layer which uses Tanh as the
activation. Furthermore, all convolutional layers use the
same padding with the kernel size of 4 and all batch-
normalization layers use the momentum of 0.8.

• The discriminator starts with a convolutional layer fol-
lowed by three groups of dropout layers, convolutional
layers, and batch-normalization layers. A dropout layer,
a flatten layer, and a fully-connected layer are placed
at the end of the discriminator. All convolutional layers
use the same padding and the kernel size of 3 and all
batch-normalization layers use the momentum of 0.8. The
dropout ratio is set as 0.25. LeakyReLU with 0.2 as the
alpha is used to be the activation function in this network.

During training the network, the loss function is Wasserstein
Distance and the optimizer is RMSProp with the learning rate
of 0.00005. We use the loss value to decide when to stop
training. The output is scaled to integers in the range of -1 to
128 to get the same format as character matrices (see Section
3.1.2).

3) Parallel Augmentation Method: In this method, we
use the two aforementioned methods, domain-specific data
transformation and GAN-based data augmentation, to generate
synthetic data separately, and then mix them to improve data
diversity for training the classifier.

4) Sequential Augmentation Method: In this method, we
first use domain-specific data transformation to generate syn-
thetic data which is then used in the process of GAN-based
data augmentation. After that, another batch of synthetic
data is generated by GAN. Then, augmented data from both
methods is mixed and used to train the classifier.



C. Multi-Class Classification Network

Considering the limited sample size, we propose a simple
convolutional neural network [10]. The network starts with
three pairs of convolutional layers and max-pooling layers.
Then, there is a flatten layer followed by three fully-connected
layers and a dropout layer as shown in Figure 1. RMS is used
as the optimizer with a learning rate of 0.0015. Categorical
cross-entropy is proposed to be the loss function [8].

IV. EXPERIMENT SETUP

In this section, we present evaluation metrics and three
research questions.

A. Evaluation Metrics

Considering that the number of code snippets varies in
three readability levels, we propose to use the macro-accuracy
and macro-f-measure, which are the most commonly used
evaluation metrics in multi-class classification researches,
to verify our experiment results. The evaluation metrics
(Accuracy/Precision/Recall/F-measure) of different readability
levels are directly added up for average, and all readability
levels are given the same weight.

In addition, Brunner-Munzel test [4] is adopted as another
evaluation metric to examine if there is a statistically signifi-
cant difference between the results obtained with and without
data augmentation. Furthermore, Cliff’s δ effect size is used
to quantify the magnitude of the measured difference.

B. Research Questions

Aiming to validate the effectiveness of our proposed ap-
proach, we formulate three research questions that will be
answered through corresponding experiments. To improve
generality, all experiments will be carried out in ten rounds.

RQ1: Which code augmentation method is the most
effective for multi-class code readability classification?

Approach: We set the augmentation level2 as N and 2N
in this RQ because they are verified to be the most effective
levels by the previous research [15]. Thus, we will compare
the following four data augmentation methods with the aug-
mentation levels of N and 2N:

• Domain-specific data transformation method
• GAN-based data augmentation method
• Parallel data augmentation method
• Sequential data augmentation method

RQ2: Which augmentation level is the best for multi-class
code readability classification?

Approach: According to the result of RQ1, we would use
the best data augmentation method to further probe the effect
of different augmentation levels. Specifically, augmentation
levels including 0N (no synthetic data), 1N, 2N, 3N, 4N, and
5N will be adopted and compared.

2Augmentation level stands for the ratio of augmented data to the original
data, where N is defined as the total number of the original data

Fig. 2. Results of RQ2

RQ3: To what extent does data augmentation improve
multi-class code readability classification?

Approach: Both the optimal augmentation method and
level are used in this research question according to the results
of RQ1 and RQ2. Instead of merely using the simple CNN
(see Section 3.3) as the classification network, three other
deep learning-based classifiers and two machine learning-
based classifiers are chosen in order to explore the amount of
improvement augmented data brought on different networks.
In addition to accuracy and f-measure, the Brunner-Munzel
test and Cliff’s δ effect size [9] are also used in this RQ to
provide a more intuitive and quantified evaluation revealing
the improvement brought after the use of data augmentation.

V. RESULTS

In this section, we present experimental results with respect
to each RQ we proposed.

RQ1: Which code augmentation method is the most
effective for multi-class code readability classification?

Based on the approach of RQ1, we repeat our experiments
for ten rounds. The results are visualized in Table 1. It
can be seen that the GAN-based data augmentation method
outperforms the other three on both accuracy and f-measure.
In contrast, the domain-specific data transformation method is
comparatively inferior. We conjecture that snippets generated
by the domain-specific data transformation method could not
generalize beyond the original snippets which severely limits
its performance. Whereas GAN could capture the readabil-
ity features more accurately, thus improving the classifier
performance. Besides, the two combined methods do not
perform well. It might be due to data augmented by domain-
specific transformation distracting the training of GAN which
misinterprets the repeated parts as important and finally lower
the quality of data generated by GAN. Considering that the
GAN-based data augmentation method achieves a relatively
better result in both evaluation metrics, we propose it to be
the augmentation method used in RQ2 and RQ3.

RQ2: Which augmentation level is the best for multi-class
code readability classification?

In this RQ, we evaluate the effect of different augmentation
levels from 0N (i.e., only original data) to 5N. We conduct
ten rounds of control experiments for each augmentation level.



TABLE I
RESULTS OF RQ1

Evaluation Without Domain-Specific GAN-Based Parallel Sequential
Metric Augmentation Data Transformation Data Augmentation Data Augmentation Data Augmentation

Accuracy 0.617 0.636 (1N) / 0.638 (2N) 0.675 (1N) / 0.680 (2N) 0.632 (1N) / 0.616 (2N) 0.623 (1N) / 0.658 (2N)
F-Measure 0.634 0.644 (1N) / 0.643 (2N) 0.653 (1N) / 0.673 (2N) 0.639 (1N) / 0.638 (2N) 0.625 (1N) / 0.659 (2N)

(a) Accuracy (b) F-Measure
Fig. 3. Results of RQ3

TABLE II
BRUNNER-MUNZEL TEST AND CLIFF’S δ EFFECT SIZE OBTAINED IN RQ3

Evaluation Metric Simple CNN KNN Random Forest DenseNet121 MobileNetV2 ResNet50
Brunner-Munzel test 0.00 (<0.05) 0.02 (<0.05) 0.00 (<0.05) 0.01 (<0.05) 0.15 0.00 (<0.05)
Cliff’s δ effect size 0.68 (Large) 0.56 (Large) 0.84 (Large) 0.62 (Large) 0.38 (Medium) 0.83 (Large)

The results for accuracy and f-measure are shown in Figure 2.
It can be observed that the optimal augmentation level is 2N
in which the accuracy is 68.0% and the f-measure is 67.3%.
Compared to the results where no augmented data is used, the
improvements on accuracy and f-measure are significant with
6.3% and 3.9% respectively. However, a performance degra-
dation appears when we increase the proportion of synthetic
data over 2N. Thus, overusing artificially generated data is
unhelpful and gives no further improvement. This conclusion
falls in line with the prior paper [15], in which 1N and 2N
are the best augmentation levels and there is also a decline in
performance with too more synthetic data.

RQ3: To what extent does data augmentation improve
multi-class code readability classification?

To comprehensively measure the improvement data aug-
mentation brings, we select three other widely used deep
learning-based classifiers, namely, RestNet50, DenseNet121,
and MobileNetV2, and two machine learning-based classifiers,
namely, random forest classifier and k-neighbors classifier.
In terms of evaluation metrics, the Brunner-Munzel test and
Cliff’s δ effect size are also deployed to quantify the improve-
ment along with accuracy and f-measure. Based on RQ1 and
RQ2, we adopt the GAN-based data augmentation method
with the augmentation level of 2N. Therefore, there are 1008
code snippets in the final training set and 84 code snippests in
the final test set whereas the ratio of three readability labels
remains 1:2:1 in both sets. The results are shown in Figure 3.

It is noticeable that data augmentation helps improve the
performance of all classifiers. Because we did not fine-tune
off-the-shelf deep learning-based models, they do not perform
well than the simple CNN. The results of the p-value and
the Brunner-Munzel test are shown in Table 2. It can be
seen that all classifiers but MobileNetV2 have a p-value lower
than 0.05 for the Brunner-Munzel test and a large d-value for
Cliff’s δ effect size. Both of them imply statistically significant
improvements in classification accuracy.

VI. DISCUSSION

In this section, we discuss three worth noting aspects of our
experiments.

Augmentation Effort. By adopting the data augmentation
approach, the cost is largely reduced. The process of generat-
ing 5N (2100) artificial snippets by using the domain-specific
data transformation was completed in two man-months. The
process of generating data using GAN even saved more time
and effort where it only took a day. Therefore, the data
augmentation approach we proposed is both effective and
efficient compared to the traditional way of conducting a large-
scale survey to collect new data. However, such a survey is
still necessary because all augmentation methods rely on the
availability of ground-truth data.

Readability and Understandability. It is noticeable that
the domain-specific data transformation does not perform
well. We conjecture that it is due to the subjectivity code
readability owns [5]. Because the entire transformation process
is done by merely two people who might have a different



perspective on readability from the general people. Thus,
data generated might have an inferior generality and limit
the classifier’s performance. Besides, manual manipulations
might affect code understandability as well. Understandability
is defined as to what extent the code allows developers to
understand its purpose [11][20][22]. Readable code is not
meant to be understood more easily. Thus, the domain-specific
data transformation is only suitable for augmenting code
readability data at the present stage.

Readability Data. The original dataset sourced from dif-
ferent prior researches [5][6][19] might be prone to errors
and weaken our conclusions to a certain extent because three
datasets are labeled by different groups of human annotators
and differ remarkably in terms of code length, code com-
pleteness. For instance, the dataset collected by Scalabrino
et al. is comprised of complete code snippets, whereas the
other two datasets contain only partial snippets. Furthermore,
the sample size might not be sufficient to train deep learning
networks such as WGAN we used. As a result, GAN-based
data augmentation could not be fully utilized and therefore
produce ordinary performance. We believe that if the original
dataset could be larger, the effectiveness of GAN-based data
augmentation will be further improved. The shortage of data
is also reflected in RQ3 where the simple CNN outperforms
other complex networks due to over-fitting.

VII. CONCLUSIONS AND FUTURE WORK

To enable multi-class code readability classification, we
propose a data augmentation approach that could be used
to effectively enlarge the dataset and well train a multi-class
classifier. A series of experiments are conducted to evaluate
the effectiveness of our proposed method. The results reveal
that adopting the data augmentation approach could improve
the classification performance to a considerable extent with the
accuracy improved by 1.8% to 10.7%. The classifier produced
by our proposed method could reach a state-of-the-art multi-
class code readability classification accuracy of 68.0%, as well
as 67.3% f-measure.

Our future work is mainly about improving the performance
of the code readability classifier. We will try to utilize other
code representation methods to capture more readability-
related features such as code semantics. We will also improve
the practicability of the code readability model. In fact, most
text readability classification researches include more than
three readability levels [12][16][17]. Therefore, we plan to
increase the number of readability levels to be more realistic.
Lastly, although considering data augmentation, the final size
of the dataset is still too small for practical application
because data augmentation highly relies on the original dataset.
Therefore, labeling more data is still unavoidable to produce
a high-performance code readability classifier.
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