
SMIFIER: A Smart Contract Verifier for Composite
Transactions

Yu Dong∗, Yue Li∗, Dongqi Cui†, Jianbo Gao∗, Zhi Guan‡, and Zhong Chen∗
∗School of Computer Science, Peking University, China

†National Engineering Research Center for Software Engineering, Peking University, China
Email: ∗{dongyu1101, liyue cs, gaojianbo, zhongchen}@pku.edu.cn, †cdq@stu.pku.edu.cn, ‡guan@pku.edu.cn,

Abstract—Ensuring functional correctness of smart contracts
is a pressing security concern to blockchain-based systems. With
the development of blockchain application, the trading scenarios
and function implementation of smart contracts have become
increasing complex, containing several interacted contracts or
related functions. However, the existing contracts verifiers for
proving functional correctness focus on verifying isolated contract
or function but ignore the interactions between them, which
makes it difficult to verify correctness of composite transactions,
i.e., complex transaction scenarios that invoke multiple contracts
or trigger a set of transactions. In this paper, we present
SMIFIER, a formal verification tool for smart contracts to
prove functional properties in composite transactions. SMIFIER
defines a set of specifications for composite transactions and
can automatically specify properties in these multiple complex
transactions. Based on states extraction and mapping, SMIFIER
translates annotated Solidity program into Boogie program and
verifies relations between functions and properties for interacted
contracts. Our experimental evaluation on 12 real-world projects
and 65 properties, demonstrates that SMIFIER is practically
effective in ensuring functional correctness of properties in
composite transactions.

Index Terms—Smart Contract, Formal Verification, Composite
Transaction

I. INTRODUCTION

Ensuring correctness of smart contracts, programs that
stored and executed on the blockchain, is an urgent security
concern. Smart contracts always store and manage millions of
monetary assets, making their security highly sensitive. The
pressing need for contract correctness has gained via several
recent high-value incidents resulting in massive losses [1].
Unfortunately, most existing security analyzers [2]–[4] focus
on universal security vulnerabilities such as contract reen-
trancy and integer overflow, but ignore functional correctness
of contracts, i.e., the functional obligations that the program
is intended to implement. In practice, the functionality of
smart contracts implies transaction logic and supports a va-
riety of blockchain applications. If developers make mistakes
and implement functionality incompletely, the contracts will
not behave as intended and will expose vulnerabilities with
potentially devastating financial effects. Therefore, it is critical
to prove functional correctness of smart contracts.

With the development of blockchain applications, the func-
tion implementation of smart contracts has become increasing
complex, containing the combination of interacted contracts
or transactions. The implementation of a trading scenario al-
ways means exploiting a transaction sequence, which involves

several interacted contracts externally calling each other, or
successive transactions sent to related functions of a contract.
As for the contracts in such composite transactions, code
might appear secure, yet expose vulnerabilities when it inter-
acts with other code. Existing security analyzers always ensure
functional correctness of code in isolation such as single
contract or function, but cannot verify an entire transaction
sequence executing as intended.

Checking for functional correctness of smart contracts in
composite transactions should overcome these challenges: 1)
composite transactions contain multiple transaction rules and
specific contract functionality, thus it is difficult to give a
general and explicit definition of composite transactions. Also,
to specify properties in these transactions, it is essential to
design multiple specifications to describe relations of functions
and interactions of contracts. 2) to verify the interaction of
contracts, we must check the behaviors of called contracts after
invocation. Unfortunately, it is difficult to trace and explore
states of called contracts.

In this work, we introduce SMIFIER, an automated formal
verifier for proving functional correctness of smart contracts
in composite transactions. To achieve this, we give an explicit
definition of composite transaction and define multiple kinds
of specifications for it. Based on translating Solidity [5]
program into an intermediate verification language Boogie
[6], SMIFIER can specify function relations and interacted
contract properties. In particular, SMIFIER takes advantage of
well-engineered pipeline and automated verification conditions
generator of Boogie. We describe SMIFIER through examples
and evaluate SMIFIER on real-world contracts in composite
transactions. We also compare SMIFIER with state-of-the-
art safety analysis tools and demonstrate SMIFIER greatly
outperforms other tools in terms of specifying properties in
composite transactions.

The contribution of our work is as follows:
• We give a definition of composite transaction which

can provide an explicit description of multiple complex
trading scenarios involving several interacted functions or
contracts.

• We impose a framework called SMIFIER, which can
automatically verify functional correctness of contracts
in composite transactions. For conveniently specifying
properties in interacted functions or contracts, we design
a set of specifications applied for composite transactions.

DOI reference number: 10.18293/SEKE2022-128

1 /// @notice invariant enableTransfer ==> transferFrom
2 contract DaiToken {
3 mapping(address => uint) public balances;
4 address public owner;
5 uint public totalSupply;
6 bool public transferEnabled;
7
8 constructor() public {
9 owner = msg.sender;

10 balances[msg.sender] = totalSupply;
11 }
12 function enableTransfer() public {
13 transferEnabled = true;
14 }
15 function transferFrom(address _from, address _to, uint

_value) public {
16 require(transferEnabled == true);
17 balances[_from] -= _value;
18 balances[_to] += _value
19 }
20 }

21 /// @notice invariant sum(DaiToken.balances) == DaiToken.
totalSupply

22 contract TokenFarm {
23 DaiToken public daiToken;
24
25 constructor(DaiToken _daiToken) public {
26 daiToken = _daiToken;
27 }
28
29 /// @notice precondition DaiToken.transferEnabled ==

true
30 function deposit(uint _amount) public {
31 daiToken.transferFrom(msg.sender, address(this),

_amount);
32 _mint(msg.sender, _amount);
33 }
34 }

Fig. 1: Simplified Token Farm source code.

• We implement the framework and demonstrate the valida-
tion of our tool. We perform the evaluation over 12 real-
world projects and 65 properties defined for composite
transactions, showing that SMIFIER can effectively verify
properties for smart contracts in composite transactions.

II. MOTIVATING EXAMPLE

In this section, we present a motivating example of contracts
in composite transaction. Fig. 1 presents the simplified source
code from Token Farm, a common DeFi (Decentralised Fi-
nance) application [7]. Through Token Farm, users can deposit
Dai tokens (a stablecoin cryptocurrency) to the contract and it
will mint and transfer Farm Tokens (cryptocurrency provided
by the application) to them. The users can later withdraw their
Dai tokens by burning their Farm Token on smart contract and
the Dai tokens will be transferred back to them. As mentioned,
the annotations (beginning with “/// @notice”) in code
will be illustrated in the following section.

In contract DaiToken, the function enableTransfer sets
the state variable transferEnabled to true (line 13 in
Fig. 1). Only after the owner makes transfers enabled, the
function transferFrom can transfer the specified amount
of tokens from the address _from to the address _to
(line 15-19). The successive transactions sent to function
enableTransfer and function transferFrom make up
a transaction sequence. If the developer forgets writing the
require clause (line 16), the functionality that tokens are
tradeable only after the operation of owner will be incomplete.
However, the result of vulnerable transferFrom would
be identical to the correct one when verifying the single
function. Therefore, the proving of this functionality can only
be achieved by putting the two transactions together to validate
whether the entire transaction sequence is executed in order.

In contract TokenFarm, function deposit externally calls
function transferFrom to transfer several Dai tokens from
msg.sender to this address (line 31). Contract DaiToken is
a token contract and implements standard interfaces. The
developers always assume the implementation is consistent

with the standard interfaces and satisfies intended func-
tionality. However, if the token contract makes fake im-
plementation by only invoking standard interfaces without
correct code writing, developers will mistakenly call the
false function. For example, if transferFrom deliberately
mistakenly writes the plus and minus operators by writing
balances[_from] += _value and balances[_to]
-= _value, “deposit” will become “withdraw” when To-
kenFarm calls this wrong function, which makes the meaning
completely opposite and may lead to unexpected financial loss.
Therefor, it is essential to verify functional correctness of the
called contract before sending message calls.

III. SMIFIER

In this section, we will describe the definition of composite
transaction and the details of SMIFIER in verifying smart
contracts. Our verification architecture is summarized in Fig. 2,
which consists of three phases. In the first phase, SMIFIER
parses annotated smart contracts and generates an abstract
syntax tree (AST). In the second phase, SMIFIER traverses the
AST and converts Solidity program into Boogie by modular
program reasoning. For specifications for composite transac-
tions, we instrument the Boogie program by states recognition,
extraction and mapping. Finally, SMIFIER relies on Boogie
verifier to prove correctness or reports the violated annotations
in Solidity program.

A. Definition of Composite Transactions

Composite transaction means a trading scenario consisting
of multiple transactions involving several related functions in a
contract or several interacted contracts. We define two kinds of
transaction sequences as composite transaction, one inter-txn
and another intra-txn.

Inter-txn. Inter-txn means a transaction sequence containing
successive transactions sent to related functions in a contract.
Inter-txn is operated by the message sender who sends trans-
actions to contract. We let S represent a transaction sequence,

Fig. 2: Schematic workflow of SMIFIER.

C.f represent invoking function f in contract C. The inter-txn
can be expressed as S = ⟨C.f1, C.f2, C.f3, · · · ⟩ where f1, f2,
f3 have relation r. We define r as f1⊗v f2 = f2 → (f1 ∼ v),
where two functions refer to the same state variable v and
the requirement in f2 depends on the modification in f1. We
divide the relations into two types, precedence relation and
exclusion relation, respectively expressed as f1⊗vf2 = f2

=→
(f1 ∼ v) and f1 ⊗v f2 = f2

̸=→ (f1 ∼ v). Precedence relation
requires v is equal to the value set by f2, while exclusion rela-
tion requires not equal to. The error handling statements(e.g.,
assert, require) in f2 ensures f2 is executed after f1 was in-
voked. For example, function enableTransfer (in Fig. 1)
modifies transferEnabled to true and the execution of
transferFrom requires the modified value is equal to true.
We say the transactions sent to these two functions in sequence
form the inter-txn and two functions have precedence relation.
Intra-txn. Intra-txn means a transaction sequence involving
a set of contracts which externally call each other. Intrax-txn
is operated by the program developer. The intra-txn can be
expressed as S = ⟨C1.f1, C2.f2, C3.f3, · · · ⟩ where C1, C2,
C3 are different contracts and C1.f1 calls C2.f2 and C2.f2
calls C3.f3. For example, the function deposit in contract
TokenFarm externally calls the function transferFrom in
contract DaiToken (in Fig. 1). The transaction sent to con-
tract TokenFarm and then exposing message calls to another
contract DaiToken forms the intra-txn.

B. Specifications for Composite Transactions

We design multiple specifications so that SMIFIER could
verify function relations for inter-txn and called contract
properties for intra-txn, as shown in Table. I. To be mentioned,
the specifications are inserted as in-code annotations supported
by Solidity and consist of three kinds of statements, pre-
and post-conditions and invariants. Contract-level invariants
must hold before and after the execution of every public
function. Functions are specified with pre- and post-conditions,
which hold before entering functions and specify final states
of functions.

For inter-txn, we design two kinds of specifications re-
spectively for two function relations. We let “=⇒” rep-
resent precedence relation and “||” for exclusion relation.
func1 =⇒ func2 means func2 should be called after func1
was invoked because func2 requires var is equal to the

TABLE I: Specifications for inter-txn and intra-txn. The first
two are for inter-txn while the last one is for intra-txn.

Property Notation Description

Precedence
Relation func1 =⇒ func2

func2 requires the variable var is
equal to the value set by func1.
Insert as contract-level invariant.

Exclusion
Relation func1 || func2

func2 requires the variable var is not
equal to the value set by func1.
Insert as contract-level invariant.

Other Contract
Property Spec {C.var}

Specify state variable var of contract
C.
Insert as contract-level invariant,
function-level pre- and post-conditions.

value assigned in func1 while func1 || func2 means func1
and func2 cannot be called simultaneously. For example,
the precedence relation in Fig. 1 is expressed as annotation
“enableTransfer =⇒ transferFrom” (line 1).

For intra-txn, we create a new format Spec {C.var}. Spec
contains all provided forms of property expressions, as well
as the specifications designed for inter-txn described above.
Different with message calls to contracts supported by Solid-
ity, SMIFIER uses C.var to represent the variable of called
contract, where C is the called contract name rather than
instance name and var is the variable belonging to C. Intra-
txn specifications are inserted in the current contract as all
three kinds of specification statements. For example, we insert
contract-level invariant in contract TokenFarm (line 21 in
Fig. 1) to ensure the sum of individual balance is equal to the
total supply of DaiToken. The special function sum is provided
to express the sum of collections (arrays and mappings).
Besides, we can also insert pre-condition before where the
call happens to verify the function enableTransfer (line
29).

C. Transform and Verification

We implement a transform algorithm for translating Solidity
to Boogie program in composite transactions. As shown in
Algorithm. 1, given a program P as a list of contracts
source codes and S as a list of specifications, the algorithm
produces an Boogie program P

′
that inserted with transformed

annotations. The algorithm has three parts. Line 1 transfers the
Solidity program into Boogie program without specifications.
Lines 3-16 handles the inter-txn specifications in S, while lines
17-27 handles the intra-txn specifications in S.

For each specification s in S, the algorithm first identifies
the type of the specification. If s contains the function relation
operators “=⇒” or “||”, we predicate s is for inter-txn and
define the two functions before and after the relation operator
as f1 and f2. Otherwise we identify s is for intra-txn if
s contains the name of another contract. For inter-txn, the
algorithm extracts requirement in f2 and assignment in f1,
and then respectively converts into pre- and post-condition. To
verify the priority and exclusion of execution, the algorithm
generates a new procedure proc1 calling two functions in order
and declares another procedure proc2 calling only f2 if we
verify precedence relation. If proc1 is proved and proc2 fails
verification, we indicate that f2 cannot be executed alone and

Algorithm 1: Transform algorithm
Input: Solidity program P as a list of contracts source codes and S

as a list of specifications
Output: Transformed Boogie program P

′

1 Transfer Solidity program P to Boogie program P
′

without S
2 for s ∈ S do
3 if s contains “=⇒” or “||” then
4 r ← “=⇒” or “||”
5 f1 ← Function before r in s
6 f2 ← Function after r in s
7 pre← Rewrite require statement in f2
8 Insert pre before f2 into P

′

9 post← Transfer assignment statements in f1
10 Insert post after f1 into P

′

11 Declare a new procedure proc1 in P
′

12 proc1 ← “call f1; call f2;”
13 if r is “=⇒” then
14 Declare a new procedure proc2 in P

′

15 proc2 ← “call f2;”
16 end
17 Insert proc1 (and proc2) into P

′

18 end
19 else if s contains another contract name then
20 C ← The current contract
21 C

′ ← The called contract
22 vars← The variables names of C

′
in s

23 func← The called function of C
′

24 Create a new specification s
′

and copy s to s
′

25 for var in vars do
26 bg var ← Locate Boogie variable in func in P

′

according to type and name of var
27 Replace C.var in s

′
with bg var

28 end
29 Insert s

′
in P

′
in the same position as s in P

30 end
31 else
32 Transfer and insert s in P

′

33 end
34 end
35 Return P

′

the invocation of f2 requires f1, i.e., the precedence relation
property is verified. Also, we predicate exclusion relation
is proved when the procedure calling two functions fails
verification, as two functions cannot execute simultaneously.

For intra-txn, the algorithm locates the called variable names
of called contract and replaces them with the translated Boogie
representation. We identify variables in Boogie program by
first determining whether they are state variables or local
variables and then traversing the global or local variable
list (of called function) to search them. After research, we
replace C.var with variables in Boogie and insert the replaced
specification in front of the called contract or function and
keep the specification types the same.

Fig. 3 presents the simplified transformed Boogie program
of Token Farm contracts (Fig. 1). According to our algorithm,
we create two procedures proc1 and proc2 in DaiToken
respectively calling two functions and only the latter function.
The new procedure parameters are made up of arguments
of functions called in the procedure. For intra-txn, we move
specifications (previously inserted in contract TokenFarm) to
the front of called contract DaiToken and called function

transferFrom. We also replace variables in properties
(e.g., DaiToken.balances) with Boogie expressions.

1 // invariant sum(balances) == totalSupply
2 contract DaiToken {
3 var balances: [address]int;
4 var transferEnabled: bool;
5 procedure enableTransfer(...) { ... }
6 // precondition transferEnabled == true
7 procedure transferFrom(_from: address, _to: address,

_value: uint) { ... }
8 procedure proc1(_from: address, _to: address, _value:

uint) {
9 call enableTransfer();
10 call transferFrom(_from, _to, _value);
11 }
12 procedure proc2(_from: address, _to: address, _value:

uint) {
13 call transferFrom(_from, _to, _value);
14 }
15 }
16 contract TokenFarm {
17 DaiToken public daiToken;
18 procedure deposit(_amount: uint) {
19 // call transferFrom() in DaiToken
20 }
21 }

Fig. 3: Simplified transformed Boogie program of Token Farm.

After being transferred to Boogie program, SMIFIER lever-
ages Boogie verifier to transform the program into verification
conditions and discharge them using SMT solvers. SMIFIER
verifies each procedure of each contract and outputs the
verification result of each procedure. If Boogie proves the cor-
rectness of program, the result will display “OK”. Otherwise
if there are vulnerabilities in program, SMIFIER will report
“Error” and map the violated annotations back to the Solidity
code (e.g., line numbers, function names).

IV. EVALUATION

We now present out evaluation of SMIFIER on real-world
Ethereum projects. We focus on the following key questions:
1) What types of properties are common for composite trans-
actions in real world? 2) How effective is SMIFIER in verifying
smart contracts in composite transactions? 3) How does SMI-
FIER compare with other smart contract safety analysis tools?
All experimental results reported in this section are conducted
on a server running Ubuntu 20.04 LTS with 32 AMD EPYC
CPUs at 2.8GHz and 64GB of physical memory.

A. Benchmark and Properties

Benchmark. We have collected in total 12 Ethereum projects
in ERC-20, ERC-721 standards and DeFi applications. We
focus on these projects because 1) they are most widely
used contracts, 2) they contain several related functions in a
contract or several interacted contracts which satisfy definition
of composite transactions, 3) we want to focus our analysis on
contracts that manipulate critical digital assets. Our benchmark
includes the top five ERC-20 contracts and the top five
ERC-721 contracts ranked by Etherscan [8] which define
the interface and specification for implementing fungible and
non-fungible tokens respectively. We also include two decen-
tralized exchanges (DEX), Uniswap and Sushiswap, which

TABLE II: Properties for composite transactions and concrete examples taken from the benchmarks.

Type Description Example
User-based
access control

Only particular users have privi-
leges to perform critical actions.

function setOwner() {owner = msg.sender;}
function withdraw() {require(msg.sender == owner);}

Token-based
circulation control

The circulation of token is allowed
at certain states.

function enableTransfer() {transferEnabled = true;}
function transferFrom() {require(transferEnabled == true);}

Contract
life circle

The transaction of contract is al-
lowed at certain states.

function pause() {paused = true;}
function unpause() {require(paused == true);}

Balances
consistence

The sum of individual balance
keeps invariant. invariant sum(ERC20.balance) == ERC20.totalSupply

State-based
properties

Defines states which invariants
must hold or variables must satisfy. invariant ERC721._approve ==> ERC721.transferFrom

use decentralized network protocols to facilitate automated
transactions between cryptocurrency tokens.
Properties. To focus on verifying composite transactions, we
have summarized common properties and classified them into
five distinct categories, as shown in Table. II.

1) User-based access control defines only particular users
have privileges to perform critical actions. This property
is expressed as function relation, where a user has
permissions to invoke another function only after being
granted access in one function. The example in Table. II,
taken from CK contract, stipulates that only the owner
set in function setOwner can invoke withdraw.

2) Token-based circulation control means that the circu-
lation (minting, release and transaction) of token is
allowed at certain states. Only after the tokens are
set accessible in one function, the manipulation of
tokens in another function can be invoked. The exam-
ple in Table. II, taken from LEO contract, shows that
function transferFrom can be invoked only after
enableTransfer enables transfer.

3) Contract life circle defines at which states the trans-
actions of contracts are allowed. The contracts usually
have emergency stop mechanism or can be deprecated,
controlled by state variables. The example in Table. II,
taken from USDT contract, states that function pause
triggers stopped state of the contract and the function
unpause returns the contract to normal state.

4) Balances consistency indicates that the sum of individ-
ual balance keeps invariant after transfers occur. This
property is applied to verifying functional correctness
of the called contract. The example in Table. II ensures
the sum of account balances is equal to the total supply
in Uniswap contract.

5) State-based properties defines states which invariants
must hold and variables must satisfy. This property can
be inserted in single contract or function. It can also
be expressed in the current contract as specification for
the called contract. The example in Table. II shows the
verification of precedence relation in MCHH contract.

B. Verifying Contracts using SMIFIER

We now report on the effectiveness of SMIFIER in verifying
our benchmarks. For each project, we manually insert specifi-

cations using the representation defined in Section.III, which
contain all kinds of properties described above. We represent
out results in Table. III.

The key result is that SMIFIER can successfully verify 60
of the 65 properties (92.3%) in the benchmarks. The reason
why SMIFIER cannot verify the remaining five properties
is that the specification we designed is difficult to express
some properties in ERC-721 contracts. There are several
functions in ERC-721 depending on parameters but not state
variables. If we specify parameters in properties, we are unable
to extract them from functions as state variables when we
implement transform algorithm. We will solve this problem
in future work. The average verification time of SMIFIER is
3.72 seconds and the time is related to the lines of code.
In general, the longer the program, the more contracts and
functions the program contains, the more time SMIFIER takes
to verify it. Because SMIFIER transforms and verifies each
function of each contract in sequence.

Finally, we compare SMIFIER to state-of-the-art smart con-
tract analysis tools: KEVM [9], SOLC-VERIFY [10], VERISOL
[11] and VERX [12], as shown in Table. IV. Our benchmark
consists the first four types of properties defined in the Table. II
which are all for composite transactions, and the last property
for single contract and function. Results indicate that other
tools can only analyze properties in single function or contract
or some properties about function relations while SMIFIER
can verify other contract properties (balances consistence),
which is very important for verifying complete functional
correctness.

V. RELATED WORK

In recent years, there has been great interest in formally
verifying the correctness of smart contracts. For instance,
KEVM [9] translates EVM bytecode to KEVM and leverages
the K framework [13] for checking contracts against given
specifications while Ahrendt [14] translates Solidity into Java
and uses KeY [15], a deductive Java verification tool. SOLC-
VERIFY [10] and VERISOL [11] are two verifiers require users
to manually provide annotations and check contracts based
on translation to Boogie. Except formal verification, there are
other systems using symbolic execution approach for verify-
ing properties. VERX [12] can automatically prove temporal
safety properties of smart contracts since it extracts predicates

TABLE III: Experimental results of SMIFIER verification on benchmarks. LOC: the number of lines of code, Contracts: the
number of contracts in the program, Functions: the number of functions in the program, Properties: the number of properties
we verified, Verified: the number of properties that were successfully proved, Avg.time: the average analysis time in seconds.

Contract LOC Contracts Functions Properties Verified Avg.Time (s)
USDT 447 7 25 4 4 2.46
CRO 641 8 30 5 5 2.87

WBTC 663 11 32 5 5 2.89
LEO 734 7 36 6 6 3.03

Fantom 624 6 46 7 7 2.92
LAND 1118 6 62 7 6 4.24

CK 1977 14 82 9 7 5.33
AXIE 891 7 53 4 4 3.24

MCHH 1192 10 56 6 5 4.21
Sherbet 1407 6 53 3 2 4.57
Uniswap 1256 7 52 5 5 4.46

Sushiswap 1353 8 47 4 4 4.42
Overall 12303 97 574 65 60 3.72

TABLE IV: Comparison of SMIFIER with other analysis tools. “✓” represents the tool can verify the property while “✗”
represents the tool cannot verify the property.

Benchmark KEVM SOLC-VERIFY VERISOL VERX SMIFIER

Single Contract Property ! ! ! ! !

Single Function Property ! ! ! ! !

User-based Access Control % % ! ! !

Token-based Circulation Control % % % ! !

Contract Life Circle % % % ! !

Balances Consistence % % % % !

automatically from the contract’s source code. SMARTPULSE
[16] models the contract’s execution environment and uses
CFGAR-based approach to check liveness properties.

VI. CONCLUSIONS

We presented SMIFIER, the first formal verification tool of
Solidity smart contracts for composite transactions. This paper
gives a definition of composite transaction which involves
several related functions or interacted contracts and defines
the two types it contains. SMIFIER presents a set of specifi-
cations and transform algorithm which specify properties and
transfer Solidity program to Boogie program. After transform,
SIMIFIER relies on Boogie verifier to discharge verification
conditions and prove function correctness. We demonstrated
that SMIFIER is effective in specifying properties in composite
transactions and proving functional correctness over 12 real-
world Ethereum projects and 65 properties.

VII. ACKNOWLEDGEMENT

Zhi Guan is the corresponding author. Zhi Guan is
supported by National Key R&D Program of China
(NO.2020YFB1005800) and Beijing Natural Science Founda-
tion(M21040).

REFERENCES

[1] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of
security and trust. Springer, 2017, pp. 164–186.

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[3] B. Mueller, “Smashing ethereum smart contracts for fun and real profit,”
HITB SECCONF Amsterdam, vol. 9, p. 54, 2018.

[4] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[5] “Solidity documentation,” 2022, https://docs.soliditylang.org/en/v0.8.
12/.

[6] K. R. M. Leino, “This is boogie 2,” manuscript KRML, vol. 178, no.
131, p. 9, 2008.

[7] “Decentralized finance,” 2017, https://ethereum.org/en/defi/.
[8] “Ethereum (eth) blockchain explorer,” 2015, https://etherscan.io/.
[9] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,

B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete
formal semantics of the ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp.
204–217.

[10] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for solidity
smart contracts,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2019, pp. 161–179.

[11] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, I. Naseer, and
K. Ferles, “Formal verification of workflow policies for smart contracts
in azure blockchain,” in Working Conference on Verified Software:
Theories, Tools, and Experiments. Springer, 2019, pp. 87–106.

[12] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[13] G. Ros, u and T. F. S, erbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[14] W. Ahrendt, R. Bubel, J. Ellul, G. J. Pace, R. Pardo, V. Rebiscoul,
and G. Schneider, “Verification of smart contract business logic,” in
International Conference on Fundamentals of Software Engineering.
Springer, 2019, pp. 228–243.

[15] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, “Deductive software verification-the key book,” Lecture
notes in computer science, vol. 10001, 2016.

[16] J. Stephens, K. Ferles, B. Mariano, S. Lahiri, and I. Dillig, “Smartpulse:
automated checking of temporal properties in smart contracts,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 555–
571.

https://docs.soliditylang.org/en/v0.8.12/
https://docs.soliditylang.org/en/v0.8.12/
https://ethereum.org/en/defi/
https://etherscan.io/

	Introduction
	Motivating Example
	Smifier
	Definition of Composite Transactions
	Specifications for Composite Transactions
	Transform and Verification

	Evaluation
	Benchmark and Properties
	Verifying Contracts using Smifier

	Related Work
	Conclusions
	Acknowledgement
	References

