
DeepController: Feedback-Directed Fuzzing for Deep Learning Systems

Hepeng Dai 1 Chang-ai Sun 1 * Huai Liu 2

1 University of Science and Technology Beijing
Email: daihepeng@sina.cn, casun@ustb.edu.cn

2 Swinburne University of Technology
Email: hliu@swin.edu.au

Abstract

Deep learning (DL) systems are increasingly adopted
in various fields, while fatal failures are still inevitable in
them. One mainstream testing approach for DL is fuzzing,
which can generate a large amount of semi-random yet
syntactically valid test cases. Previous studies on fuzzing
are mainly focused on selecting “quality” seeds or using
“good” mutation strategies. In this paper, we attempt to im-
prove the performance of fuzzing from a different perspec-
tive. A new fuzzer, namely DeepController, is accordingly
developed, which makes use of the feedback information ob-
tained in the test execution process to dynamically select
seeds and mutation strategies. DeepController is evaluated
through empirical studies on three datasets and eight DL
models. The experimental results show that, with the same
number of seeds, DeepController can generate more adver-
sarial inputs and achieve higher neuron coverage than the
state-of-the-art testing techniques for DL systems.

Keywords: Fuzzing, Deep Learning Systems, Software
Testing

1 Introduction
Nowadays, deep learning (DL) systems are used in a

wide variety of fields, thanks to their powerful learning and
reasoning capabilities. Nevertheless, DL systems, like tra-
ditional software systems, unavoidably contain some faults
and thus show incorrect or unexpected behaviors. Testing
is a main approach to support quality assurance of software
systems. However, the unique features of DL systems pose
new challenges for testing. For example, the logic behind a
DL system is not manifested as that in traditional software;
DL introduces much higher non-determinism in the soft-
ware output. As such, many traditional testing techniques
are no longer applicable to DL systems.

Among recently proposed testing techniques for DL sys-
tems, fuzz testing (or simply fuzzing) [1] is a basic tech-
nique that has gradually become a standard method in the
industry. It can generate lots of semi-random test cases

*corresponding author

based on existing test data with relatively low cost. Despite
the simplicity in concept, fuzzing has successfully gener-
ated the adversarial inputs that facilitate the fault detec-
tion [2]. Since the first white-box-based fuzzing method for
DL systems [1], various fuzzing techniques have been pro-
posed [3]. Some fuzzing techniques are focused on select-
ing appropriate seeds [1, 4], while others attempt to improve
the performance of fuzzing via choosing “good” mutation
strategies [5, 6].

Most previous studies on seed selection mainly used sin-
gle pieces of test information (e.g., coverage information,
the number of seed mutations, or the times of seeds added
to the seed queue), but did not consider a variety of in-
formation comprehensively. Previous studies on mutation
strategies showed that they tend to activate different sets of
neurons [7], implying the uncertainty on the optimal muta-
tion strategies for a specified seed during testing. Unfortu-
nately, existing mutation strategy selection approaches did
not individually consider specific seeds, which may affect
the fault-detection efficiency of fuzzing.

In this paper, we propose a new fuzzing technique,
namely DeepController, which makes full use of the feed-
back information (including coverage information, testing
results, the number of seed mutations, and the times of seeds
added to the seed queue) collected during the test execu-
tion process to guide the selections of seeds and mutation
strategies. In line with software cybernetics [8], DeepCon-
troller treats the whole testing procedure as a feedback con-
trol system, providing feedback-directed strategies for se-
lecting seeds from the seed queue and choosing the most
appropriate mutation strategies for selected seeds.

Our study has the following three major contributions:

(1) A comprehensive framework (Section 3.1), was pro-
posed to implement DeepController, which can select
seeds and mutation strategies that both have high po-
tentials of fault detection, adaptive to the feedback in-
formation from test executions.

(2) Two algorithms, namely AS2 (Section 3.2) and AMS2
(Section 3.3), were developed for the selections of seeds
and mutation strategies, respectively.

(3) A series of empirical studies on three datasets, and

DOI reference number: 10.18293/SEKE2022-126



eight DL models (Section 4), were conducted to eval-
uate the performance of DeepController. As observed
from these experiments, DeepController could generate
more adversarial inputs, and obtain higher neuron cov-
erage than the state-of-the-art DL testing techniques.

2 Background and Related Work
2.1 Fuzzing

The key idea of fuzzing is to generate a large amount of
semi-random yet syntactically valid test cases by mutating
existing test cases. Generally, the test case generation is
composed of the following three components.

• Seed queue construction, which is responsible for con-
structing the seed queue by selecting test cases from
corpus that contains a test pool as well as the label and
coverage information of each test case.

• Seed selection, which is responsible to select seeds
from the seed queue based on a certain selection strat-
egy.

• Seed mutation, which uses some seed mutation strate-
gies to generate mutated seeds that serve as test cases
for executing the program under test (PUT).

2.2 Related Work
Recently, researchers have proposed a large number of

fuzzing techniques for DL systems based on different the-
ories and observations. Among them, coverage-guided
fuzzing techniques have been proven to be very effective
in detecting faults and exploring the internal states of the
DL models. Closely related works are described below.

Seed Selection. Fuzzing iteratively selects seeds from
the seed queue based on some strategies. One simple and
commonly used strategy is random selection, but it does not
use any information of testing process or DL systems. To
enhance the random strategy, the idea of “recency-aware”
was used to select the seed that induces the new coverage
[9, 7, 4, 10, 11, 12], which corresponds to the observation
that if a seed covers a branch, the following branches are
more likely to be covered due to the hierarchical relation-
ship between branches. In addition, the idea of “frequency-
aware” was used to probabilistically select a seed based on
the number of times it has been mutated: if a seed has al-
ready been picked many times, it has a lower probability of
being selected again [4, 10].

Seed Mutation. As one core component of fuzzing,
mutation strategy directly affects the fault-detection effi-
ciency and effectiveness of fuzzing. The existing strategies
for seed mutation can be classified into three categories:
(1) gradient-based mutation strategies, which first calculate
the gradient of the objective function, and then mutate the
seed according to the calculated gradient [1, 13, 14]; (2)
domain-knowledge-based mutation strategies, which mu-
tate the seeds according to the properties of inputs, while the

mutated seed has the same semantic information as the orig-
inal one [7, 15, 16]; (3) search-based mutation strategies,
which mutate the selected seeds using some search-based
algorithms, such as population-based metaheuristics [5] and
Monte Carlo Tree Search (MCTS) [6].

Although existing fuzzers showed promising results in
detecting faults in DL systems, they do not make full use
of the information obtained in test execution process, which
could be useful for improving the efficiency of fuzzing, thus
motivating this study.

3 Methodology
In order to further improve the performance of fuzzing

for DL systems, this study makes use of the feedback in-
formation obtained in test executions to guide the selection
of appropriate seeds and proper mutation strategies, partic-
ularly focused on designing new framework and two strate-
gies for seed and mutation strategy selections.
3.1 Framework

Based on the principles of software cybernetics and the
features of fuzzing, we propose the framework of Deep-
Controller, as illustrated in Figure 1. The starting point of
DeepController is that there already exist a test suite and
some mutation strategies. Note that researchers have de-
vised many mutation strategies for different types of DL
models, so it remains a challenging issue how to select
them for testing. There is a feedback loop in the frame-
work, which consists of basic components of fuzzing, DL
model, the database for storing test information (including
coverage information, the testing results, the times of the
seed being selected, and the time of the seed adding to seed
queue), and the controller for selecting seed and mutation
strategy. Particularly, in the controller, the historical test in-
formation is leveraged to guide the selections of seeds and
mutation strategies. Furthermore, the historical information
can also be used to improve the underlying testing strate-
gies.
3.2 Seed Selection Strategy

Suppose that a seed queue Q has n seeds, that is, Q =
{s1, s2, . . . , sn}. Li(i = 1, 2, . . . , n) = {(si, t0)} is to
store the time of si and the seeds generated based on si
added to Q. For instance, seeds s∗1 and s∗2 are generated at
time t∗1 and t∗2 by seeds s1 and s2, respectively. Both s∗1
and s∗2 can trigger some new coverage (e.g. new neurons).
Then L1 and L2 should be updated as L1 = L1∪{(s∗1, t∗1)}
and L2 = L2 ∪{(s∗2, t∗2)}. The selection probabilities of Li

are denoted as LP = {〈L1, p1〉, 〈L2, p2〉, . . . , 〈Ln, pn〉},
where pi(i = 1, . . . , n) denotes the selection probabil-
ity of Li. There are two lists E = {e1, e2, . . . , en} and
E′ = {e′1, e′2, . . . , e′n}, where ei(i = 1, 2, . . . , n) records
the times the seeds in Li are selected and trigger new cover-
age, while e′i records the times the seeds in Li are selected
but no new coverage is triggered.



Mutation
Strategy

Seed 
2. Test Cases

Generation

DL ModelTest Cases
Fuzzing

3. Test Execution

4. Test Information 

Record
5. Selection 

Probabilities Adjustment

1. Seed and Mutation 

Strategy Selection

Controller

Results

Seed, Coverage, 
and Results 
Information

Selection 
Probabilities

Figure 1: The framework of DeepController

We propose an adaptive seed selection strategy, namely
AS2, which utilizes test information (including the cover-
age, the times of seeds being used, and the time of a seed
added to seed queue) to select those seeds with higher fault-
detection potentials. If the mutated seeds generated by si
(that belonged to Li) could trigger new coverage, the cor-
responding selection probability pi of Li will be increased;
otherwise, pi will be decreased. Moreover, the smaller the
times of Li being selected, the increase of pi is greater; oth-
erwise, the increase of pi is smaller.

At the beginning, AS2 initializes LP =
{〈L1, 1/n〉, 〈L2, 1/n〉, . . . , 〈Ln, 1/n〉}, and ei = 0, e′i =
0(i = 1, . . . , n). During the test process, assume that
AS2 selects Li based on the LP , and the seed si that is
the latest seed of Li is selected. Accordingly, a set of
mutated seeds T = {s1i , s2i , . . . , ski } (k is the number of
times a seed can be mutated) are generated based on si and
some mutation strategies. Suppose that all seeds in T are
executed. If ∃si∗ ∈ T , and si∗ triggers new coverage and
∀j = 1, . . . , n, j 6= i, we then update ei = ei + 1 and set

p′j =

pj −
ε× (1 + ln(1 + 1/(ej + 1)))

n− 1
if pj ≥W

0 if pj < W
,

(1)
where ε is a probability adjusting factor, and W =
ε× (1 + ln(1 + 1/(ej + 1)))

n− 1
. Then,

p′i = 1−
n∑

j=1,j 6=i

p′j . (2)

Alternatively, If ∀si∗ ∈ T , and si∗ cannot trigger new cov-
erage, we then update e′i = e′i + 1 and set

p′i =

{
pi − ε× (1 + e′i/n) if pi ≥ ε× (1 + e′i/n)

0 if pi < ε× (1 + e′i/n)
,

(3)

p′j =

pj +
ε× (1 + e′i/n)

n− 1
if pi ≥ ε× (1 + e′i/n)

pj +
pi

n− 1
if pi < ε× (1 + e′i/n)

(4)
.

AS2 keeps updating the selection probabilities of seeds
via the formulas 1 to 4. As a result, the seeds with higher
chances of triggering new coverage and being used less
times have higher probabilities of being selected.
3.3 Mutation Strategy Selection Strategy

Suppose that there exist a seed queue Q =
{s1, s2, . . . , sn} and a set of mutation strategies M =
{m1,m2, . . . ,mx}. The list MPi(i = 1, 2, . . . , n) =
{〈m1, p

1
i 〉, 〈m2, p

2
i 〉, . . . , 〈mx, p

x
i 〉} can be created as the

set of mutation strategy selection probabilities for each seed
in Q. The list Ci = {c1i , c2i , . . . , cxi } records the times each
strategy mh(h = 1, . . . , x) has been used by si and trig-
gered new coverage.

We propose an adaptive mutation strategy selection ap-
proach, namely AMS2, which analyzes the performance
of mutation strategies on different seeds and selects the
most appropriate strategy for a specific seed. If the mu-
tated seeds generated by seed si and the mutation strategy
mh(h = 1, 2, . . . , x) could trigger new coverage or detect
faults, the corresponding selection probability phi ofmh will
be increased; otherwise, phi will be decreased. Moreover,
the smaller the times of mh being used, the increase of phi
is greater; otherwise, the increase of phi is smaller.

At the beginning, AMS2 initializes MPi =
{〈m1, 1/x〉, 〈m2, 1/x〉, . . . , 〈mx, 1/x〉}, and sets all
elements in Ci to 0. During the test process, assume that
si is selected by AS2. AMS2 selects a mutation strategy
mh based on the MPi. Accordingly, a set of mutated seeds
T = {s1i , s2i , . . . , ski } (k is the number of times a seed can
be mutated) are generated based on the si andmh. Suppose



that all seeds in T are executed. If ∃si∗ ∈ T , and si∗
triggers new coverage or detects a fault, ∀y = 1, 2, . . . , x
and y 6= h, we then update chi = chi + 1 and set

pyi
′
=


pyi −

δ × x
cyi + 1

if pyi ≥
δ × x
cyi + 1

0 if pyi <
δ × x
cyi + 1

, (5)

where δ is a probability adjusting factor. Then,

phi
′
= 1−

x∑
y=1,y 6=h

pyi
′
. (6)

Alternatively, If ∀si∗ ∈ T , and si∗ cannot trigger new cov-
erage or detect a fault, we then set

phi
′
=

{
phi − δ if phi ≥ δ
0 if phi < δ

, (7)

pyi
′
=


pyi +

δ

x− 1
if phi ≥ δ

pyi +
phi
x− 1

if phi < δ
. (8)

AMS2 dynamically adjusts the selection probabilities of
mutation strategies based on the formulas 5 to 8. As a result,
the mutation strategies with a higher probabilities of trigger-
ing new coverage and detecting faults for the selected seeds
have higher probabilities of being selected.

4 Empirical Study
We conducted a series of empirical studies to evaluate

the performance of DeepController.
4.1 Research Questions

In our experiments, we focused on addressing the fol-
lowing three research questions.
RQ1 Can DeepController generate more adversarial inputs

than the commonly used testing techniques for DL
models?

RQ2 Can DeepController achieve higher neuron coverage
(NC) [1] than state-of-the-art techniques?

RQ3 How about the performance of DeepController in
terms of time overhead?

4.2 Experimental Design
DeepController was implemented as a self-contained

fuzzing framework, written in Python based on the DL
framework Keras (ver.2.1.6) with TensorFlow (ver.1.5.0)
backend. With DeepController, we performed a compar-
ative study to answer the three research questions raised
above.

Datasets, DNN Models, and Baselines. We selected
three popular publicly available datasets (i.e., MNIST [17],
ImageNet [18], and CIFAR10 [19]) as the evaluation sub-
jects (see Table 1). We further utilized the commonly

Table 1: Subject datasets and DL models

Dataset DL Model Number of Parameters Acc.(%)

ImageNet VGG-16 138,357,544 92.60
VGG-19 143,667,240 92.70

LetNet-1 7,206 98.25
MNIST LetNet-4 69,362 98.75

LetNet-5 107,786 98.63

VGG-16 138,357,544 86.84
CIFAR10 VGG-19 143,667,240 77.26

CNN-20 952,234 77.68

used DL models, including LeNet-1, LeNet-4, LeNet-5,
VGG-16 and VGG-19 for ImageNet, VGG-16 and VGG-
19 for CIFAR10, and 20 layer CNN with max-pooling
and dropout layers [6]. Note that most used models are
open-source available, except VGG-16 and VGG-19 for
CIFAR10, which were trained by ourselves. As summa-
rized in a survey [3], there are several open-source tools for
DL systems. To further measure the fault-detection ability
of DeepController, we selected three representative fuzzers
(DeepXplore [1], DeepTest [7], and DeepHunter [4]) and a
gradient-based testing approach proposed recently (FGSM
[20]) as our baselines.

Mutation Strategies. We select eight mutation strate-
gies for image, which can be partitioned into two categories:
(1) Pixel Value Mutation P , which includes image contrast,
image brightness, image blur, and image noise; (2) Affine
Mutation G, which includes image translation, image scal-
ing, image shearing, and image rotation. The empirical re-
sults in [7] showed that combining different image mutation
strategies, neuron coverage can be improved. In order to
keep the semantics of the mutated seeds close to the origi-
nal one, we adopt a conservative strategy that selects a pixel
value mutation strategy p from P by using AMS2, and ran-
domly selects an Affine mutation g from G. Then the mu-
tated seeds could be obtained by applying selected p and g
on the selected seed. Note that this study aims to improve
the fault-detecting efficiency of fuzzing, the strategy pro-
posed in [4] was used to judge whether the mutated seeds
are valid or not.

Parameter Settings. The hyper-parameters of DeepX-
plore, DeepTest, DeepHunter, and FGSM were configured
based on the settings in their original studies. For the prob-
ability adjusting factors ε and δ of DeepController, we con-
ducted a series of trial experiments to find a fair setting, and
finally set ε = 0.01 and δ = 0.1.

To reduce the randomness effect of experiments, we ran-
domly generated ten seed queues for each dataset using dif-
ferent random seeds (each seed queue has 1000 images) and
averaged the results. The termination condition of testing



Table 2: Average number of adversarial inputs generated by fuzzers on different datasets

Fuzzers MNIST ImageNet CIFAR10

LeNet-1 LeNet-4 LeNet-5 VGG-16 VGG-19 VGG-16 VGG-19 CNN-20

DeepXplore 23.4 32.8 23.2 118.0 124.8 88.2 92.2 103.0
DeepTest 21.8 26.4 20.2 130.2 166.4 302.0 309.6 370.4
DeepHunter 24.8 24.4 38.6 132.6 150.4 381.4 308.2 472.6
FGSM 27.2 19.8 19.4 30.8 31.0 324.4 311.4 595.2
DeepController 37.8 35.4 43.4 162.6 199.0 478.8 447.4 697.2

Table 3: Average neuron coverage of fuzzers on different datasets

Fuzzers MNIST ImageNet CIFAR10

LeNet-1 LeNet-4 LeNet-5 VGG-16 VGG-19 VGG-16 VGG-19 CNN-20

DeepXplore 44.62% 55.81% 53.88% 23.66% 22.20% 5.53% 5.37% 32.55%
DeepTest 47.88% 64.32% 55.60% 32.33% 29.25% 5.74% 5.24% 34.56%
DeepHunter 46.62% 63.86% 58.58% 26.98% 24.04% 5.47% 4.85% 34.26%
FGSM 38.46% 61.08% 57.39% 32.02% 28.95% 5.06% 4.76% 33.26%
DeepController 48.08% 64.59% 59.11% 32.94% 29.80% 5.88% 5.57% 34.71%

DL models on MNIST and CIFAR10 is the generation of
1000 test cases. Since testing the VGG models on Ima-
geNet required huge testing resources, we set the generation
of 500 test cases as the termination condition. Besides, in
all experiments, we set the threshold of NC to 0.75 and the
experiments are preformed on an Mac machine (one Intel i5
3733 MHz processor with four cores, 16GB of memory).

4.3 Results

RQ1: Generation of Adversarial Inputs. Table 2 re-
ports the average number of adversarial inputs generated by
different fuzzers. It is clearly shown that DeepController
generated more adversarial inputs than the four baseline
techniques.

We also conducted statistical testing to verify the
significance of this evaluation. We used ANOVA [21]
(with significance level α = 0.05) to determine which
pairs of testing techniques had significant differences.
Our calculated results (the f-ratio value was 6.0951, and
the p-value was 0.0001) show that DeepController was
significantly better than the four baseline techniques in
terms of the capabilities of generating adversarial inputs.
Answer to RQ1: DeepController generated more adver-
sarial inputs than the four baseline techniques .

RQ2: Neurons Coverage. Table 3 reports the average
neuron coverage achieved by the four baseline techniques
and DeepController on different datasets. It is clearly
shown that DeepController achieved higher neuron cover-
age on different models than the four baseline techniques.

Answer to RQ2: DeepController covered more neurons
than the four baseline techniques.

RQ3: Time Overhead. DeepController makes use of feed-
back information to select appropriate seeds and mutation
strategies, which might result in longer computation time
as compared with DeepXplore, DeepTest, DeepHunter,
and FGSM. The time overhead is mainly composed of the
following: (1) seed and mutation strategy selection time
that refers to how long it takes to select seeds and mutation
strategies; (2) seed mutation time that refers to how long
it takes to generate mutated seeds based on the selected
mutation strategies and seeds; (3) seed execution time that
represents the time required for executing mutated seeds.
Table 4 reports the time overhead of the different tech-
niques, where x/y/z denotes the average time overheads
of studied techniques on MNIST, ImageNet, and CIFAR10,
respectively.

DeepController needed more time to select seeds. How-
ever, seed selection is an inexpensive process. On average,
seed selection time was only 1.2% of the whole testing time.
In terms of the whole test overhead, DeepController did not
always have the longest testing time. Specifically, Deep-
Controller had shorter testing time than DeepXplore and
FGSM on all datasets, shorter than DeepHunter on MNIST
and CIFAR10, DeepTest had shorter testing time than Deep-
Controller on all datasets, but the difference was marginal.

Answer to RQ3: For executing the same number of
test cases, DeepController generally had shorter testing
time than DeepXplore, FGSM, and DeepHunter, but had
marginally higher time overhead than DeepTest.



Table 4: Time overhead of the different techniques on different datasets

Techniques Seed and Mutation Seed Mutation (s) Seed Execution (s) Total (s)
Strategy Selection (s)

DeepXplore 0.003/0.043/0.006 170.467/994.904 /596.079 4.658/3223.119/230.186 175.129/4218.066/826.271
DeepTest 0.003/0.015/0.053 0.384 /7.643 /0.447 1.817/1443.383/21.819 2.204 /1451.041/22.319
DeepHunter 0.880/0.150/0.147 157.648/31.388 /51.072 1.666/1440.198/21.035 160.194/1471.736/72.253
FGSM 0.002/0.013/0.020 4.048 /1497.753/131.868 1.681/441.829 /60.696 5.731 /1939.595/192.585
DeepController 0.782/0.087/0.151 2.204 /11.068 /1.676 1.790/1483.132/22.342 4.776 /1494.288/24.169

5 Conclusions and Future Work
Fuzzing has increasingly been proven to be very effec-

tive in detecting faults and exploring the internal states of
the DL models. In recent years, researchers have pro-
posed quite a few fuzzers. Nevertheless, the execution in-
formation has not been fully utilized in the state-of-the-
art fuzzing techniques. In this paper, we introduced feed-
back into fuzzing for DL models, and proposed DeepCon-
troller, which makes use of feedback information obtained
in test executions to guide the selection of seeds and muta-
tion strategies. Empirical studies were conducted to evalu-
ate the performance of DeepController, in comparison with
four popular techniques for testing DL models, based on
three commonly used datasets, and eight DL models. The
experimental results showed that the proposed approach can
generate more adversarial inputs and explore more internal
states of DL models, with at least similar time overhead.

For our future work, there are two aspects that need fur-
ther investigations: (1) We will apply DeepController to ap-
plications with other types of inputs, such as audios and
text; (2) It is also important to investigate the influence of
hyper-parameters (the probability adjusting factor ε of AS2,
and the probability adjusting factor δ of AMS2) on the per-
formance of DeepController.

6 Acknowledgment
This work is supported by the National Natural Science

Foundation of China under Grant No. 61872039 and the
Fundamental Research Funds for the Central Universities
under Grant No. FRF-GF-19-019B.

References
[1] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated white-

box testing of deep learning systems,” in Proceedings of SOSP’17,
2017, pp. 1–18.

[2] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–
1218, 2018.

[3] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Soft-
ware Engineering, vol. 48, no. 1, pp. 1–36, 2020.

[4] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of ISSTA’19,
2019, pp. 146–157.

[5] H. B. Braiek and F. Khomh, “Deepevolution: A search-based testing
approach for deep neural networks,” in Proceedings of ICSME’19,
2019, pp. 454–458.

[6] S. Demir, H. F. Eniser, and A. Sen, “Deepsmartfuzzer: Reward
guided test generation for deep learning,” arXiv:1911.10621, 2019.

[7] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of
ICSE’18, 2018, pp. 303–314.

[8] H. Yang, F. Chen, and S. Aliyu, “Modern software cybernetics: New
trends,” Journal of Systems and Software, vol. 124, pp. 169–186,
2017.

[9] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing,” in Pro-
ceedings of ICML’19, 2019, pp. 4901–4911.

[10] X. Xie, H. Chen, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Coverage-guided
fuzzing for feedforward neural networks,” in Proceedings of ASE’19,
2019, pp. 1162–1165.

[11] P. Zhang, B. Ren, H. Dong, and Q. Dai, “Cagfuzz:coverage-guided
adversarial generative fuzzing testing for image-based deep learning
systems,” IEEE Transactions on Software Engineering, 2021. DOI:
10.1109/TSE.2021.3124006.

[12] P. Zhang, Q. Dai, and S. Ji, “Condition-guided adversarial genera-
tive testing for deep learning systems,” in Proceedings of AITest’19,
2019, pp. 71–72.

[13] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differ-
ential fuzzing testing of deep learning systems,” in Proceedings of
ESEC/FSE’18, 2018, pp. 739–743.

[14] S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing
of deep neural networks with adaptive neuron-selection strategy,” in
Proceedings of ISSTA’20, 2020, pp. 165–176.

[15] X. Du, X. Xie, Y. Li, L. Ma, J. Zhao, and Y. Liu, “Deep-
cruiser: Automated guided testing for stateful deep learning sys-
tems,” arXiv:1812.05339, 2018.

[16] A. Rios, “Fuzze: Fuzzy fairness evaluation of offensive language
classifiers on african-american english,” in Proceedings of AAAI’20,
vol. 34, no. 01, 2020, pp. 881–889.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep., 2009, TR-
2009.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proceedings of ICLR’15, 2015, pp.
134–146.

[21] L. St, S. Wold et al., “Analysis of variance (anova),” Chemometrics
and intelligent laboratory systems, vol. 6, no. 4, pp. 259–272, 1989.


