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Abstract—Context driven environments are growing in pop-
ularity. Mobile applications, Internet of Things devices, au-
tonomous vehicles, and future technologies respond to context
events in their environments. This work uses a set of context
events from real users to guide the generation of context
driven test cases. Context event sequences are obtained by
applying Conditional Random Fields (CRF). Test suites are then
constructed by interleaving the context event sequences with GUI
events. The choice of context event is made based on transitions
obtained from the CRF. Results of the empirical studies show
that techniques that incorporate context events provide better
code coverage than NoContext for the subject applications. A
heuristic technique introduced in this work, ISFreqOne, yields
4x better coverage than NoContext, 0.06x better coverage than
Random Start Context, 0.05x better coverage than Iterative
Start Context, which are control context generation techniques,
and 0.04x better coverage than ISFreqTwo, another heuristic
introduced in this work.

Index Terms—Android Testing, Context events, GUI events,
Software Testing, Test Suite Generation

I. INTRODUCTION

Many applications allow streams of context and user events
to influence their behavior. We see examples in the domains
of autonomous vehicles, Internet of Things (IoT), and mobile
devices. For instance, if a user clicks a button, an app
that responds by accessing data over the Internet to update
the user’s view will respond differently the device’s context
changes from WiFi to airplane mode. Additional examples of
context events include changes in battery levels, the device’s
physical location, sound output to speakers or headphones,
and changes to screen orientation. The work in this paper
generates context aware test suites with a strategy based on a
real-world data set of context events [1].

In the remainder of the paper: Section II summarizes
related work; Section III describes the event sequence model;
Section IV covers the data driven test generation strategy;
Section V describes experiments; Section VI shows results
and discussion; Section VII shares threats to validity; and
Section VIII gives conclusions.

II. RELATED WORK

GUI testing: GUI testing is an important task that many
tools support. Examples include Monkey [2], Dynodroid [3],
and Autodroid [4]. Most tools generate test cases without
consideration of context events and their interactions with
the application under test (AUT). Tests are often generated
with respect to an initial setup of context variables that do

not change during the testing. This may result in insufficient
exploration of application states and code.

Monkey [2] offers fast and replayable test cases in the
form of random clicks and swipes. Monkey does not interact
explicitly with on-screen elements such as buttons and text
fields, but clicks on events at specific screen coordinates [2].

Dynodroid [3] is an online testing tool that is responsive to
application changes when it generates a “next event”. It con-
siders both system and user generated events. In an extensive
study, Dynodrod generated 50 open source applications and
outperformed Monkey in terms of code coverage.

Tema [5], [6] is an online GUI testing framework that
utilizes models of application behavior informed by user
data to generate abstract tests and are independent of device
platforms. The models identify application state from abstract
user actions. In its final step, Tema translates the abstract test
cases into test cases by mapping of actions for specific devices
and applications.
Context-aware GUI testing: Testing that uses both context
and GUI events may increase fault detection for context driven
apps [3], [7]–[10]. Dynodroid [3] is one tool that considers
context events. While generating context events, Dynodroid
does not offer a guarantee of combinatorial coverage of
context and GUI event intersections will occur.

Adamsen et al. [11], Majchrzak et al. [12], and Song
et al. [10] each propose context-sensitive mobile testing
approaches. The approaches execute test suites under differing
context environments. The change in context can change a
valid test into an invalid one, such as a video streaming app
attempting to execute without WiFi. While their approaches
cover multiple context environments, there are opportunities
to improve with more cost-effective strategies.

Amalfitano et al. [7] use context and GUI event combi-
nations into test case generation. They consider a small set
of GUI and context events and interleave them during test
generation. The work demonstrates benefits of testing with
both context and GUI events.

Griebe et al. [8] use a model-based approach where testers
generate an annoted UML diagram to describe GUI behavior
and context parameters of the AUT. The authors later expand
this approach to incorporate sensor input [13]. Using the UI
sensing tool Calabash-Android, they generate sensor values
into the test cases [14]. They further provide parsing of natural
language expressions, such as ”I invert the phone” to generate
additional test data.
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CAIIPA [15] is a cloud based testing service that supports
context aware apps. Their results demonstrate that using
real-world context events during test generation improves
performance fault and crash detection up to 11x better than
Monkey. CAIIPA utilizes real-world context data. However,
it is limited to hardware options such as WiFi and sensor
settings. It cannot detect context such as screen orientation.
AppDoctor [16] is another a cloud-based automation testing
tool that injects events such as changes to network states,
device storage, GUI gestures, and more during execution.

MoTiF [17] identifies and replicates context sensitive
crashes for Android apps. Future work may extend this to
not only reproduce crashes but to fully identify information
of crash patterns across applications.

MobiCoMonkey [18] extends Monkey [2] by itnerleaving
context events at random or as predefined by testers. This tool
could be enhanced in the future with systematic interleaving
of context and GUI events.
Conditional Random Fields (CRFs): Hidden Markov Mod-
els(HMMs) [19] are popular probabilistic sequence models
[20]. However, HMMs suffer difficulty in modeling arbitrary,
dependent features of input sequences. To overcome this
drawback, we apply conditional random fields (CRF) [21]
to testing context-aware systems. CRF sequence models are
discriminative in nature, which allows for maximization of
conditional likelihood.

III. EVENT SEQUENCE MODEL

Our event sequence model is built on Autodroid [22] which
comes with a test builder, abstraction manager to identify
GUI events available in the AUT at different states, an
event selector, and the event executor. We add context events
to enable dynamic context-GUI testing for context aware
applications.

Let us define GUI and context actions and events.

Definition 1. We define individual context events as a 2-tuple
(c, a); c is a context variable with a as the assigned context
action.

Screen orientation WiFi Battery AC power
portrait connected Ok connected

landscape disconnected low disconnected
- - high -

TABLE I
EXAMPLE CONTEXT VARIABLES AND POSSIBLE VALUES

Table I shows four context variables (screen orientation,
WiFi, battery status, AC power) that may be set to any of
the respective values shown in the table. A context event is
then defined as one of these variables with an assigned value,
i.e. c= ScreenOrientation = landscape, WiFi = cdisconnected,
Battery = low, Power = disconnected.

Definition 2. Action: We define an action as a user interac-
tion with the application or a system level call with a target.
Each action consists of a target, type, and value. There are
two types of actions:

• GUI action: A user executes an action using GUI
widgets, e.g. a click on a on-screen widget or filling in
a text-field.

• Context action: The mobile operating system executes
a system action, e.g. change in screen orientation.

Sometimes an action may require a value. For example, a text
box may require users to type in a value. We consider two (or
more) actions to be equivalent if they have the same target
and type.

Definition 3. Event: We define an Event consists of a
sequence of actions with pre and post conditions. A GUI event
causes a change in the GUI state after its execution. A context
event has one or more context actions and may or may not
cause a change in the GUI state. An event is a complete event
if it is executed and its post condition is known, otherwise it
is a partial event.

Definition 4. Test Case: We define a test case as a sequence
of events. Each test case has a unique id, a set of events, and
a length. Table II shows a test case of length two containing
one context event and one GUI event.

ID tc001
Event 1
(GUI event - launch)

event:
precondition:

activity name: null
state id: null

postcondition:
activity name: MainActivity
state id: 07f24

actions:
type: launch
value: null

target:
selector: system
selector value: app

type: app
description: launch

Event 2
(Context event -
Power disconnected)

event:
precondition:

activity name: MainActivity
state id: 07f24

postcondition:
activity name: MainActivity
stateId: 5d158

actions:
type: power disconnected
value: null

target:
selector: power
selector value: disconnected

type: context
description: power disconnected

TABLE II
A TEST CASE WITH ONE CONTEXT EVENT AND ONE GUI EVENT

IV. DATA DRIVEN TEST GENERATION STRATEGY

Data collection and CRF modeling. To generate the CRF
model, we observed everyday smartphone use from 58 univer-
sity students for the duration of one month, via a monitoring
app [1]. The app was configured to listen to 144 broadcasts
which occurred 16,257,795 times during the one month pe-
riod. [1]. This data fed into the construction of CRFs using



Fig. 1. Pseudocode for data-driven test generation algorithm based on
Autodroid framework [23]
Inputs: Android app. package (AUT), combinatorial context model

(M), context event sequence (C) context event frequency (p)
Outputs: Test suite (T )

1: Call ← generateContextsFromCoveringArray(M )
2: T ← φ . test suite
3: repeat
4: Ti ← φ . test case
5: econtext ← selectInitialContext(Call)
6: Ti ← Ti ∪ econtext

7: install AUT and execute launch event, elaunch

8: Ti ← Ti ∪ elaunch

9: scurr ← initial GUI state after app launch
10: while termination condition is false do
11: Eall ← getGuiEvents(scurr)
12: esel ← selectGuiOrContextEvent(scurr, Eall, C, p)
13: execute selected event, esel
14: Ti ← Ti ∪ esel
15: scurr ← current GUI state
16: end while
17: tearDownTestCase()
18: T ← T ∪ {Ti}
19: until completion condition is false

142,138 instances for training data and 28,663 instances of
context events for test data.

The CRF is the graph obtained after considering the top
likely transitions. We only consider the dependency between
a predefined subset of events and remove all other external
dependencies. Our aim is to find a context sequence which
represents these dependencies without self-loops. We then
select the transitions with the highest weight.
Test generation algorithm. The algorithm in Figure 1 uses
context event sequences derived from a CRF to generate a
sequence of context and GUI events, and then saves the gen-
erated sequence as a test case. The test generation algorithm
consists of the following inputs:

• A compiled Android application
• Context event sequence, C, obtained from the CRF
• An integer value, p, that determines how often a context

event will be added to a test case
The following discussion walks through the algorithm:

Step 1: Generate context covering array. Line 1 uses the
combinatorial context model provided as input to generate a
covering array. Each entry in the covering array represents a
possible starting context for one or more test cases.
Step 2: Test case setup. Lines 4-9 represent the test setup
for each test case. Line 4 initializes the test case as an empty
event sequence. At the beginning of each test case, line 5
chooses an initial context from the covering array generated
in step 1 and applies the chosen context to the execution
environment. Line 6 adds the starting context event to the test

case. Line 7 installs the AUT and launches it in the starting
context. Line 8 adds the launch event to the test case. Line 9
retrieves the initial GUI state of the AUT after launch.
Step 3: Select and execute an event. Line 11 identifies all
GUI events that are available and executable in the current
GUI state. Lines 12-14 use the current GUI state, the context
event sequence C derived from the CRF, and the specified
context event frequency p to choose which GUI event or
context event to execute.

The algorithm repeats steps 1 to 3 until a specified test case
termination condition holds true. Context events are added to
the test case at the predefined frequency p until the test case
ends or until all events in the context event sequence, C, have
been executed.
Step 4: Test case teardown. After the algorithm executes the
last event in each test case, line 17 resets the test environment
to allow tests to run independent of each other. The algorithm
repeats steps 1 to 4 to generate multiple test cases containing
a mix of context events and GUI events until a specified test
suite completion condition holds true.

V. EXPERIMENTAL SETUP

For our experiments we consider four applications, de-
scribed in Table III. The applications have between 1,215 -
15,062 lines of code, 197-1134 methods, and 46-209 classes.
Each application has over 1,000 downloads at the time of our
experiment. The application’s apk files are downloaded from
F-Droid [24].

App
Name

Installs Vers. Lines Methods Classes

Diode 10k+ 1.3.2.2 7,933 1134 209
Your
Local
Weather

5k+ 5.6.4 15,062 499 114

MovieDB 1k+ 2.1.1 2,719 319 81
Abcore 1k+ 0.77 1,215 197 46

TABLE III
CHARACTERISTICS OF THE APPS UNDER TEST

A. Experimental Setup

The experiments use the Android 10.0 Pixel emulator (API
29) to generate ten test suites of two hour duration for each
technique and application in the study. A two second delay
occurs between event executions and there is a .05 probability
to terminate a test case. We instrument subject applications
with JaCoCo [25] to measure coverage.

B. Variables and Measures

Independent Variable. The independent variable of our
experiments is our test generation technique. We consider
three control techniques and two heuristic techniques.
Control techniques:

• NoContext generates a test suite of GUI events with
only an initial set of context variables that do not
change during testing. NoContext construct test suites



using c = ScreenOrientation=Portrait WiFi=connected,
Battery=OK, AC Power=connected}.

• RandomStartContext (RSContext) starts each test case
by selecting a start context at random from a context
covering array and then makes random selections of only
GUI events.

• IterativeStartContext (ISContext) starts each test case
by selecting a start context in a round-robin fashion
from a context covering array and then makes a random
selection of only GUI events.

Heuristic techniques:
• IterativeStartFreqOne (ISFreqOne) iterates through

the context covering array to set a starting context and
then uses context sequences obtained from the CRF to
interleave context events with GUI events at an interval
of one until all events in the context sequence have been
executed.

• IterativeStartFreqTwo (ISFreqTwo) iterates through
the context covering array to set a starting context and
then uses context sequences obtained from the CRF to
interleave context events with GUI events at an interval
of two until all events in the context sequence have been
executed.

The heuristic techniques, ISFreqOne and ISFreqTwo, use
context event sequences derived from a CRF that includes
only events for internet connectivity, power connection, bat-
tery level, and screen orientation changes.
Dependent Variables. We assess our research questions using
code coverage:

• Line coverage measures the number of lines of code
executed by the test suite relative to the total number of
statements in the AUT.

• Method coverage counts the number of methods exe-
cuted by the test suite relative to the total number of
methods in the AUT.

• Class coverage counts the number of classes executed
by the test suite relative to the total number of classes
in the AUT.

C. Research Questions

The experiments examine two research questions:
RQ1: Do ISFreqOne and ISFreqTwo increase line, method,

and class coverage in comparison to NoContext, RSContext,
and ISContext?

RQ2: Which of the two heuristic techniques provide the
greatest coverage of lines, methods, and classes in the test
applications?

VI. RESULTS AND ANALYSIS

RQ1 Results: Tables IV, V, and VI show the average
results for line, method, and class coverage for each tech-
nique and app. We calculate the ratio of our techniques to
the controls by dividing average values of both heuristics
(ISFreqOne, ISFreqTwo) by control techniques (NoContext,
RSContext, and ISContext). The ISFreqOne technique shows
an improvement of approximately four times (312%) line

NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 15.83 62.87 63.95 65.15 62.83

MovieDB 40.65 45.22 45.45 47.5 47.205
YourLocalWeather 9.05 9.09 9.04 9.05 9.03

Diode 32.44 32.89 33.33 33.69 33.34
TABLE IV

AVERAGE LINE COVERAGE

NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 25.38 71.72 72.88 73.81 71.28

MovieDB 47.37 54.12 54.55 57.365 55.175
YourLocalWeather 15.32 15.33 15.15 15.18 15.15

Diode 43.81 44.08 45.37 45.50 44.32
TABLE V

AVERAGE METHOD COVERAGE

coverage, three times (191%) method coverage, and 3.5 times
(251%) class coverage when compared to NoContext for
the application AbCore. IsFreqOne shows an improvement
of 1.2 times (17%) line coverage, 1.2 times (21%) method
coverage, and 1.2 times (18%) class coverage for ISFreqOne
when compared to NoContext for the application MovieDB.
ISFreqOne shows about 4% increase in line, method, and class
coverage when compared to NoContext for the application
Diode. ISFreqOne does not result in improvements for Your
Local Weather relative to NoContext. For the Your Local
Weather application, method coverage values for ISFreqOne
and NoContext are similar although the class coverage is less
for ISFreqOne when compared to NoContext. Your Local
Weather has low overall code coverage. Our tool could not
explore the application much because it needs a location to be
entered or selected from the map which hindered exploration.
The average improvement of ISFreqTwo over NoContext is
1.8 times line coverage, 1.5 times method coverage, and 1.67
times class coverage across all four applications.

On average, ISFreqOne offers improvement of 3.03%
line coverage, 3.35% method coverage in comparison to
RSContext across all four applications for ISFreqOne over
RSContext. There is an average improvement of 2.2% line
coverage, 0.6% method coverage, and 1.1% class coverage
for ISFreqTwo over NoContext. Across all the applications,
there is 2.2% line coverage, 2.14 method coverage, and 0.17%
class coverage improvement in ISFreqOne over ISContext.
We observe an improvement of 1.1% line coverage and
0.92% class coverage in ISFreqTwo over ISContext across all
four applications. The method coverage, on average, did not
show improvement for ISFreqTwo over ISContext. The noted
improvements in code coverage indicate that for context-
aware mobile applications, the presence or absence of context
events in test suites has noticeable effects on the behavior of
applications and the ability of test suites to adequately explore
application functionality. The results also suggest that context
events in test suites are useful not just at the beginning of test
cases but also mixed in with GUI events at different intervals
within each test case.
RQ2 Results: We compare results obtained from both heuris-
tic techniques: ISFreqOne and ISFreqTwo. ISFreqOne out-
performs ISFreqTwo across two subject applications. For
Movie DB, there is an improvement of 0.62% line coverage



NoContext RSContext ISContext ISFreqOne ISFreqTwo
Abcore 21.74 76.30 77.33 76.24 76.39

MovieDB 51.36 59.88 59.45 60.49 61.11
YourLocalWeather 27.93 27.93 25.88 25.88 25.88

Diode 38.42 39.27 40.08 40.10 39.98
TABLE VI

AVERAGE CLASS COVERAGE

Fig. 2. Application Movie DB: Box plot of NoContext, RSContext, ISCon-
text, ISFreqTwo, and ISFreqOne

and 3.9% method coverage. Class coverage is 1.03% higher
for ISFreqTwo compared to ISFreqOne. The application
AbCore shows an improvement of 3.7% line coverage and
3.5% method coverage for ISFreqOne over ISFreqTwo. Class
coverage is 2.1% higher for ISFreqTwo over ISFreqOne.
Diode application shows an improvement of 1.18% line
coverage, 3.17% method coverage, and 0.42% class coverage
for ISFreqOne over ISFreqTwo. The application Your Local
Weather performs similarly for both of these techniques. On
an average, there is an improvement of 1.15% line coverage
and 3.76% method coverage for ISFreqOne over ISFreqTwo
with 0.18% less class coverage. These results indicate that
inserting context variables at an interval of one GUI events
shows more coverage than inserting at two GUI events. This
could be due to the fact that the Android applications are small
in size. Figures 2 - 5 show the box plot the line coverage of
all five techniques for Movie DB, AbCore, Diode, and Your
Local Weather respectively. The standard deviation is less for
ISFreqOne when compared to ISFreqTwo for all applications,
indicating ISFreqOne is the more reliable generation heuristic
on the AUTs in this study.

VII. THREATS TO VALIDITY

The subject applications used for the experiments have
different characteristics which may affect the performance
of our techniques. Adding more subject applications can
help to better generalize the results. We tried to minimize
this threat by choosing applications of varying sizes from

Fig. 3. Application AbCore: Box plot of NoContext, RSContext, ISContext,
ISFreqTwo, and ISFreqOne

Fig. 4. Application Diode: Box plot of NoContext, RSContext, ISContext,
ISFreqTwo, and ISFreqOne

different domains. The set of context events used in this
experiment are limited in number and do not cover the
totality of context events in Android. We minimized this
threat by focusing on events that are reliably accessible in
the emulator. We specifically excluded sensor events due
to the sheer amount of data produced by sensors and the
battery-intensive operations required to collect a constant
stream of sensor values which helps in minimizing this threat.
Inclusion of more context events may change results. For
instance, we did not consider internet changes in this work.
This was because the values in our data contain several
internet connections such as HSPA CONNECTION, HS-
DPA CONNECTION, LTE CONNECTION, etc. We hope
that future advancements in emulators or inexpensive device



Fig. 5. Application Your Local Weather: Box plot of NoContext, RSContext,
ISContext, ISFreqTwo, and ISFreqOne

farms will allow such expansions.

VIII. CONCLUSIONS

This work develops and studies algorithms that systemat-
ically generate test suites comprised of context events and
GUI events. In particular, these techniques are guided by a
real world data set of context data from 58 users. The choice
of context events is made based on transitions obtained from
CRF. We analyze how often context change should occur by
providing an interval as a parameter to the tool. We observe
that the techniques that incorporate context events performed
better than NoContext among all four subject applications.
The heuristic technique ISFreqOne yields four times better
coverage than NoContext, 0.06 times better coverage than
RSContext, 0.05 times better coverage than ISContext, and
0.04 times better than ISFreqTwo strategies. ISFreqOne also
has a lower standard deviation between runs. The initial
context strategies RSContext and ISContext performed better
than NoContext by up to a factor of four indicating the
importance of context while testing Android applications.

Future work will extend this study to examine larger
context data sets and apply the techniques to more mobile
applications. This work also serves as a foundation for
future work that extends our techniques to other domains
such as Internet of Things (IoT), wearable technologies, and
autonomous vehicles. Future work will further examine fault
finding effectiveness of context-aware test generation.
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