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Abstract

Based on the need of prioritization of maintenance ac-
tivities in a BOSCH Spot Welding process in the automo-
tive industry, this work aims to develop anomalous equip-
ment selection methodologies for assisting it. The first one
is proposed based on data exploration by checking every
possible set of alarms of the machines. A second one is
created using multiple data clustering models in order to
identify machines that behave differently from the others for
certain time periods. Bayesian networks were also applied
to assist the identification of cause-and-effect relationships
between the warning and error logs. The clustering method
proved effective in identifying anomalies, which were later
inspected on the shop floor.

Keywords: data mining, maintenance, spot welding, au-
tomotive industry, anomalies.

1 Introduction
The Automotive Industry are in constant process of

transformation and, in order to thrive in the era of Industry
4.0, automakers need to quickly adapt in order to continu-
ously achieve their goals and overcome challenges, increas-
ing the lifespan of their assets and productivity through the
use of technologies such as Big Data Analytics, enabling
intelligent manufacturing [1].

Having in mind that maintenance activities must make
the best possible use of scheduled downtime and resources
to minimize its losses, it is always necessary to select which
activities should be performed. In many cases, traditional
maintenance policies can be satisfactory, but when mainte-
nance and failure costs are high [2], managing maintenance
using data analysis becomes a better choice.

By analyzing the data generated by the welding ma-
chines and using data mining techniques, this study plans to
develop methodologies that assist in the detection of anoma-
lous behavior patterns, to support the reduction of unsched-
uled stops, maintenance time and repair costs and provide a
rise in the efficiency and quality of the welding process.

2 Background
2.1 Spot Welding

The industrial process of manufacturing an automobile
has four major workshops. The one of interest for this work
is the Body-in-White Shop, responsible for the construction
of the car bodies by joining its metal parts.

A common process to all body-in-white shops globally is
the joining of metal sheets using a technique known as Spot
Welding. The equipment used, called welding gun, uses two
metallic copper electrodes to apply a force of union between
metallic plates creating welding spots by passing high level
electrical current through them and the metal worksheets
in between [3]. The heat generated by the passage of high
electric current through the small section of the electrodes
melts the metals of the two plates, providing the union of
the parts when the material solidifies again.

Figure 1: Example of welding guns (left) The union of two
pieces of metal through spot weld (right)

A body-in-white shop contains thousands of welding
guns and every machine stores information about the weld
application, configuration parameters and measurements of
each spot weld in a standard SQL Server database. It is
available on the local manufacturing machine on the same
industrial network as other welding equipment and robots.

2.2 Anomaly Detection

Cluster analysis is one of the most important research
fields in data mining. Clustering belongs to the category of
unsupervised learning as it does not depend on training sam-
ples, this is why they are the straightforward technique for
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anomaly detection. For these algorithms, given a number of
clusters k as an initial parameter, the set of data objects is
divided into k categories, or groups.

An example of this type of algorithm is K-Means. One
can use several sets of different starting centers for various
iterative calculations and choose the best one as the final re-
sult, but one cannot guarantee that this result is the optimal
solution, while several iterations consume a lot of time, a
lot of uncertainty, so it is very important to select the ones
suitable starting group centers [4].

Another algorithm, DBSCAN (Density-Based Spatial
Clustering), is a pioneering density-based algorithm. It
can discover clusters of any arbitrary shape and size in
databases that contain even noise and outliers, although
it has some problems, such as being subject to dilemmas
when deciding meaningful clusters from datasets with vary-
ing densities [5].

When the algorithm is able to minimize an error func-
tion, it is often called C-Means where c is the number of
clusters, and if the classes used are using the Fuzzy tech-
nique, then it is known as Fuzzy C-Means (FCM) [6]. Its
benefit is the formation of new clusters from data points that
have membership values close to existing classes. Fuzzy C-
Means has the advantage of being very good for problems
of many dimensions.

The most popular model of association patterns between
groups of items uses item set frequencies to quantify associ-
ation level, but there are also the Bayesian, that use Bayes’
theorem to represent knowledge. In simple cases, the struc-
ture of Bayesian networks can be defined by an expert and
used to make inferences about a given problem. In other
more complex applications the structure and parameters of
the network can be learned [7] [8].

2.3 Related Work

Many works found propose a prioritization approach
from a maintenance perspective, with data-oriented ap-
proaches and aiming at the preventive diagnosis of prob-
lems. Several methods have been developed to identify per-
formance bottlenecks related to maintenance activities in
production systems [9]. The underlying logic behind all of
them lies in analyzing the machines’ event log data [10].

Data mining techniques are used to detect bottlenecks
in production systems, although several methods proposed
focus on analytical logs referring to the process, these data
do not provide diagnostic information explaining what the
root causes of incidents are [11].

In one of the approaches, Bayesian networks and at-
tribute relevance analysis are used to process a dataset of
failure records of industrial machinery components, with
the purpose of using the conditional probabilities generated
by the networks, as well as the relevance of the rankings of
criteria for creating a decision-making model [12].

At the same time, some works specifically related to spot
welding technology and case studies applied to BOSCH
were also identified. Due to the great variety and diver-
sity of data collected in the welding process and which are
relevant for monitoring product quality, the work of Sve-
tashova et al. [13] reports that they find significant chal-
lenges for the modeling of machine learning algorithms and
these challenges are presented in conjunction with the pre-
dictive quality monitoring model.

3 Materials and Methods
3.1 Database Description

The CRISP-DM methodology was used for providing a
framework for carrying out data mining projects, regardless
of the industry sector and the technology used.

As said, this database automatically stores spot welding
information in specific datasets for each purpose. The Ex-
tError RDS V dataset contains records of important events
that occurs in one of the welding controllers in the process,
which may have warning codes or errors. This dataset has
13 columns and the existing fields are shown in Table 1.

For this work, the focus was given to one single produc-
tion line, the bottleneck line, thus the most important one,
and all its welding machines. The data considered was the
gathering of a month of production.

Table 1: Dataset ExtError RDS V Data Description

COLUMN DESCRIPTION
date Event registration date
line Record of the production line where the robot is located

protRecord ID Single consecutive number (automatic value)
dateTime Timestamp record of the moment of occurrence of the event

timerName Unique identification of the registered event source welding machine
errorCode1 Warning or Error code event source

errorCode1 txt Warning or Error event source - Text in selected language
errorCode2 Secondary error code

errorCode2 txt Secondary error code - Text in selected language
isError Flag to identify if the event is a Warning or Error

isError txt Literal text Warning or Error
servodynDVState Servo status code

servodynDVState txt Servo Status - Text in selected language
tablename Address of the folder on the computer where the ExtError tables are located

3.2 Data Preprocessing

The data was loaded into a NoSQL database in the
Google Cloud Computing (GCP) cloud called BigQuery
and the approach chosen was firstly the adaptation of the
fact tables of the database in an OLAP (Online Analytical
Processing) architecture, since it allows greater flexibility
and performance in data analysis. Data was transformed
from categorical columns into non-categorical columns
from the beginning, the primary keys with ID for the dates
and machines were stored separately in the Dimension ta-
bles and the new columns id date and id machine were used
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instead of date and timerName.
White spaces at the end of the text were removed, espe-

cially in error description columns, and a mapping of the
missing data in the database was carried out, these values
being later filled with a symbolic value of (-1) not to impact
the operation of subsequent algorithms.

In order to make possible a more in-depth analysis re-
garding each of the alarms present in the database, the
columns errorCode1 txt and errorCode2 txt were concate-
nated creating a new column, errorCode txt. This brings a
second level of detail for each error.

After that, a new table was created, pivoting and group-
ing the data of ExtError RDS V by dates and machines
and presenting the number of occurrences of each of the
alarms of errorCode txt arranged in separate columns, one
for each alarm. The new table, called ExtError group, has
40 columns, two of which are the date and machine ID and
the others represent each of the possible alarms in the weld-
ing guns, encompassing both warnings and errors.

3.3 Exploratory Data Analysis

The analysis were initiated by looking at the distinct
values for each column of the original ExtError RDS V
database and creating histograms based on their categories.
At first, a focus was given to the errorCode1 txt column
in order to identify the unique descriptions of the existing
alarms (errors and warnings), and after that, an analysis of
occurrences of each possible alarm was performed in the
new concatenated column errorCode txt to verify the types
of alarms most common in the whole dataset.

From the new dataset, ExtError group, it is possible to
analyze separately the influence that each one of the alarms
has on the behavior of the machines. For instance, the er-
ror “welding error” with the sub-description “cancellation
by pliers movement” considering all machines from the per-
spective of each date is shown in Fig. 2.

Figure 2: Variation of the error “welding error - cancella-
tion by pliers movement” for each date id (left) and for each
machine id (right).

When analyzing this same error from the perspective of
each machines, a very important information is acquired.

By looking at the boxplots, the machine id=11 stands out
when compared to the others in terms of data variance,
which shows that there may be an opportunity associated
with this machine.

3.4 Modeling

Two approaches were used to prepare the data for
the models, one using the original data from the ExtEr-
ror group dataset and the other using the normalized data
through the StandardScaler method.

K-Means, DBSCAN and Fuzzy C-Means clustering al-
gorithms were the techniques used for the anomaly detec-
tion. The K-Means and Fuzzy C-Means methods require the
number of clusters as an initial parameter, while DBSCAN
requires an agglutination radius and the minimum number
of records to form a cluster. To determine these parame-
ters, a search using the two approaches for each method and
dataset was performed: Maximum Silhouette score and El-
bow Curve (Inertia).

Therefore, a total of 12 models were analyzed in
search of machines of interest: Three Methods (K-Means,
DBSCAN and Fuzzy C-Means) × Two Datasets (Non-
standardized and Standardized) × Two Approaches (Maxi-
mum Silhouette and Elbow Curve, using Silhouette for DB-
SCAN and Inertia for the others two methods.

Bayesian networks were used to find causality in the
error and warning logs, trying to relate apparently non-
relevant errors and warnings with errors related to critical
failures for the machines of interest. The structure was
trained using the Hill Climbing Search algorithm.

4 Evaluation and Results
4.1 Results

For the first of the 12 models, the result of the Inertia
metric in the search for parameters (number of clusters) for
the K-Means method and Non-standardized data is the point
where a discontinuity occurs (the elbow). Here it was pos-
sible to see that the ideal number of groups that best rep-
resents the data from ExtError group is four for the Elbow
Curve method, showed in Fig. 3(a).

Figure 3: Result of Elbow Method Inertia vs. number of
clusters (a) and Result of Silhouette Score vs. number of
clusters (b).

This parameter is used to train the K-Means algorithm
and then apply the model to the data to obtain an association
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of each of the records in the database to one of the four
clusters. This model had an overall Silhouette Score of 0.38
and an average Euclidean distance of 48.9.

Fig. 4(a) shows the number of day-machine pairs
grouped in each cluster for the K-Means model with four
clusters and the approach using Elbow Curve Inertia with
Non-standardized data. It is observed that 28 events were
isolated in group number 2, clearly different from the oth-
ers grouped in large clusters. Minority groups tend to show
rare and/or unusual events that may indicate good oppor-
tunities for preventive maintenance plans by characterizing
machines that behaved anomalously in a small set of days.

Figure 4: Distribution of clusters for K-Means model with
four clusters (a) and three clusters (b) and Non-standardized
data.

By looking at the records of each machine distributed
among the four clusters, it was verified that the 28 events of
interest occurred on the same machine, id=5. This machine
was then declared a machine of interest, as it may be as-
sociated with anomalous functioning, and this information
should be compared with the shop floor and the information
held by the stakeholder, the welding specialist.

The Max Silhouette approach was used to select the
number of clusters for training the second K-means algo-
rithm, also applied to Non-standardized data, showed in Fig.
3(b). Three clusters were selected for this model and it was
trained, obtaining the association between records and clus-
ters. This model had an overall Silhouette Score of 0.38 and
an average Euclidean distance of 41.4.

Fig. 4(b) shows the amounts of day-machine pairs
grouped in each cluster of the second model, with K-Means
with three clusters and the approach using Max Silhouette,
and Non-standard data. It is seen that 30 events were iso-
lated in group number 2, another notably minority group.
As discussed earlier, this can characterize a set of machines
with anomalous behavior.

Once again, observing the records of each machine dis-
tributed among the clusters, it was seen that the 30 events
of interest in cluster number 2 are from the same machine
id=5, reinforcing that this machine is a machine of interest
for maintenance prioritization.

The Bayesian network was created to the machine with
id=5 (the anomaly data from cluster number 2, the minority
class). The resulting network was analyzed and filtered with
the help of the stakeholder. Three relationships of interest

were identified. Relationships 1 and 2 indicate a lack of
current error related to a maximum lag warning. It refers
to the phase shift of current with respect to voltage in the
welding process. Relation 3, on the other hand, indicates a
current oscillation problem. The main possible causes for
the errors presented in 1, 2 and 3 are the same: abrasion of
the welding electrode, measuring circuit or auxiliary cables;
interference from other processes on the same network; and
weld transformer problems (insufficient capacity).

Table 2 summarizes the result of the same methodology
applied to these and the other 10 models created, and Table
3 summarizes the total occurrences of machines of interest
identified by each of the models that were applied.

Table 2: Summary of algorithms, parameter selection meth-
ods, applied parameters, metrics (Silhouette Score - Dis-
tance) and the identified machines of interest.

ALGORITHM
AND GROUPS

STANDARD
DATA

METHOD SELECTION
OF NUMBER OF GROUPS

S. SCORE
AND DIST.

ID MACHINES
OF INTEREST

K-Means-3 No Max Silhouette score 0.38 - 48.9 5
K-Means-2 Yes Max Silhouette score 0.43 - 13.0 Not identified
K-Means-4 No Elbow Method (Inertia) 0.38 - 41.4 5
K-Means-4 Yes Elbow Method (Inertia) 0.32 - 10.1 17, 18

DBSCAN-2a No Max Silhouette score 0.47 - none 2, 4, 17
DBSCAN-2b Yes Max Silhouette score 0.15 none 2, 3, 4, 13, 17, 18
DBSCAN-4a No Elbow Method (Silhouette) 0.33 - none 5, 7, 17, 18, 26
DBSCAN-4c Yes Elbow Method (Silhouette) 0.16 - none 2, 4, 13, 17, 33
FC-Means-2 No Max Silhouette score 0.37 - 51.6 23, 33, 34
FC-Means-2 Yes Max Silhouette score 0.43 - 13.0 Not identified
FC-Means-4 No Elbow Method (Inertia) 0.31 - 39.2 Not identified
FC-Means-4 Yes Elbow Method (Inertia) 0.32 - 10.1 17, 18

aResult of eps=19 and min samp=10.
bResult of eps=18 and min samp=7. cResult of eps=10 and min samp=3.

Table 3: Summary of the total occurrences of machines of
interest identified by the various models.

ID MACHINES 17 18 2 4 5 33 13 7 3 34 23 26
OCCURRENCES 6 4 3 3 3 2 2 1 1 1 1 1

4.2 Discussion

For each cluster found, it is necessary to map the inherent
characteristics that isolate one from the others. The impli-
cations of each group and latent opportunities in this anal-
ysis are under continuous discussion with the stakeholders.
In general, it is expected that most clusters are associated
with groupings of only warnings and a mix of warnings and
alarms events, both cases in proportions that are common
to the process. Minority classes are the ones likely to have
anomalous events that must be analyzed with greater care.

Following Lima et al.[12], The Bayesian network anal-
ysis identified that there may be a failure in the process re-
garding the quality of energy in the weld on the machine
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id=5. The root cause is believed to be associated with a
failure in the milling process of the welding electrodes, or
in the cables and measurement and power circuits of this
machine. There is also the possibility that the welding con-
troller is not able to supply the power and energy required
for the application of the spot, either due to a wear event
(gaps, contact faults), mechanical conditions of alignment
and orthogonality or due to electrical defects in electronic
components of the welding controller itself.

The machines shown in Table 3 gave rise to greater op-
portunities for maintenance intervention. Some were not
even in the radar of prioritization and these results turned
out to be of great importance. A great emphasis was given
to the machines id=17 and id=18, as they appear in sev-
eral models as machines of interest. The machines were
inspected on the shop floor and issues such as the early
abrasion of the welding electrodes were raised and treated,
restoring their base conditions.

5 Conclusions
5.1 Conclusion

One of the main goals of this work was to explore the
data in search of anomalies that could lead to latent opportu-
nities for the priorization of activities in specific machines.
Data was migrated from the on-premises SQL database to
the cloud, where it was consumed for processing and analy-
sis. A data preprocessing was carried out in order to prepare
and model them to obtain the necessary information for the
purpose of finding anomalous patterns in the data.

The types of alarms are very unbalanced due to the nor-
mal operation of the welding process. Most of the data
is composed of Warnings, which do not necessarily imply
losses in the production process. Some warnings may sim-
ply mean records of the normal functioning of the process,
such as records of milled electrodes or signaling that these
need to be milled, although in some cases, prealarms, they
may be indicative of errors that may occur later.

From the results obtained with the work, the authors
came with the definition of two methodologies to identify
machines of interest. The first one consists of scanning all
types of machine failures still in the data exploration stage.
When finding a machine with a variance above the others, it
is considered a machine of interest for inspections and close
attention of the Maintenance team. The second methodol-
ogy, associated with the result of the Unsupervised Cluster-
ing algorithm, consists of classifying the events organized
by day and machine, in which the database columns are
composed of each possible warning or error in the process,
with the values being the amount of event occurrences for
the machine-data pair. It was possible to apply several dif-
ferent models to this data and identify the records grouped
into minority classes as machines of interest.

5.2 Future Work

Other datasets, such as the spot welding process param-
eters and measurements ExtMeasuresProt V, are likely to
be used in the future to improve the findings produced with
this work, to improve analysis and associate failure modes
in more detail. Also, the use of this dataset might help to
identify new priorities that also benefit quality control, not
exclusively the maintainability of the welding process.
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