
A Novel Network Alert Classification Model based
on Behavior Semantic

Zhanshi Lia, Tong Lia,∗, Runzi Zhangb, Di Wua, Zhen Yanga
a Beijing University of Technology

b NSFOCUS Technologies Group Co., Ltd., Beijing 100089, China
*litong@bjut.edu.cn

Abstract—With the ever-increasing complexity and scale of
today’s information systems, security personnel have to face
massive alerts every day. Efficiently and precisely classifying
such alerts in terms of different threat levels is essential for
protecting systems from serious threats. However, existing works
mainly focus on binary classification which are coarse-grained
and cannot pragmatically reduce the number of alerts examined
by security personnel. This challenge is further exacerbated
when dealing with large numbers of alerts. Moreover, existing
approaches only focus on textual and temporal features without
considering behavior semantic information when training classi-
fiers. In this paper, we propose a behavior semantic-based alert
multi-classification model. Specifically, our proposal classifies
alerts into three threat levels according to the real practice of our
industrial collaborator. In the meantime, we extract attribute,
temporal, and behavioral semantic features to help classifiers
to better learn classification boundaries. To extract behavior
semantic information, we embed the alert attributes by learning
their contextual behavior semantics and use the embedding vector
as behavioral semantic features. We conducted experiments using
a real enterprise network alert dataset. The experimental results
demonstrate that our approach outperforms baseline methods in
terms of false positive rate and classification performance.

Index Terms—Alert Classification, Semantic Feature, Machine
Learning

I. INTRODUCTION

In large enterprises, security personnel need to continuously
monitor, analyze, and classify security alerts to defend against
malicious attacks [1]. Security alerts are typically classified
into multiple levels by security personnel. However, modern
large-scale systems face a vast number of security alerts every
day, desperately requiring an effective and efficient multi-
classification approach. While there has been some work ex-
ploring the task of alert classification, it still has shortcomings.

Firstly, existing works [2], [3] mainly focus on binary
classification which are coarse-grained. Coarse-grained alerts
cannot pragmatically reduce the number of alerts examined
by security personnel. Especially, when dealing with a huge
number of alerts, existing approaches cannot effectively reduce
the workload of security personnel. For example, Lin et al. [2]
classify alerts into alerts triggered by attacks and by non-
attacks, respectively. They believe that alerts triggered by
attacks are all important high-threats. However, this is not the
case in practice. Because some attacks (e.g., worm attacks) are
low-threat and do not cause actual loss to the enterprise. The

DOI reference number: 10.18293/SEKE2022-116.

security personnel’s real needs are identifying high-threats,
which are usually not that many and feasibly to be manually
reviewed. In conclusion, the alert classification method based
on binary classification is not reasonable.

Secondly, existing approaches only focus on textual and
temporal features without considering behavior semantic in-
formation when training classifiers. Specifically, these methods
are simple in representing alert attributes without considering
the behavior semantic information of the alert attributes. For
example, Shittu et al. [4] represent IP addresses as binary
strings to calculate the distance between alerts. The distance
between IP addresses is measured by the length of the longest
common prefix. The way the distance between IP addresses is
calculated shows that the longer the common prefix, the closer
the logical distance between different IP addresses. However,
the longest common prefix length for two IP addresses only
implies whether they are in closer subnets and does not
indicate similar behavior.

To address the above shortcomings, we propose A behavioR
seMantic-based alert multi-Classification mOdel (ARMCO).
Specifically, ARMCO extracts a series of alert features from
the attributes of historical alerts, including attribute, temporal,
semantic features. Attribute features encode discrete attributes
of alerts with a wide range of values into a low-dimensional
vector space, which save space and facilitates subsequent clas-
sification model learning. Temporal features can characterize
the temporal aspects of alerts for different threat levels. To
extract behavioral semantic information, we embed the alert
IP addresses and ports by learning their contextual behavior
semantics, and use the embedding vector as semantic features.
Therefore semantic features can characterize the contexts of
IP addresses and ports at different threat levels alerts. In the
meantime, the representation of the IP addresses and ports is
kept consistent with their behavior characteristic. In addition,
ARMCO classifies alerts into high-threat, low-threat, and non-
threat alerts according to the real practice of our industrial
collaborator. Fine-grained classification of alerts more conform
to the real network situation, and more friendly to security
personnel as well. The major contributions of this paper are
the following:

• We classify alerts into non-threat, low-threat, and high-
threat, which are more in accordance with the threat
situation of real network alerts.

• We embed the alert attributes by learning contextual

behavior semantics to consistent their representation and
behavioral characteristics.

• We conducted a number of experiments on a real network
dataset, the results of which demonstrate the effectiveness
of ARMCO.

II. RELATED WORK

Recently there is a lot of work dedicated to the alert post-
processing, such as alert correlation [5]–[7], aggregation [8],
clustering [9]. These works are interdependent, and the divid-
ing line is blurred. However, they aim to reduce the number
of alerts or detect the attack. Shittu et al. [4] extracted the
association conditions from historical alerts by using posterior
probabilities. They use these conditions to correlate alerts,
called meta-alert. Finally, the different local outliers of meta-
alert are mapped to different alert threat levels. Low-threat
alerts can then be filtered. Hofmann et al. [10] proposed
an online intrusion alert aggregation system, which uses a
finite mixture distribution to measure the similarity between
alerts. However, the effectiveness of this approach depends on
the assumptions of the distributions. Siraj et al. [11] design
domain-specific similarity calculation methods for different
alert attributes. The similarity of two alerts is a weighted sum
of the similarity of attributes. Then, the alerts are aggregated
by similarity for attack detection. Ahmadinejad et al. [12]
use some temporal windows to reduce the comparison of
new alerts with the full history alerts. After that, they use a
probability-based evaluation function to determine the thresh-
old value of the alert association. Two alerts are associated
if their temporal similarity is higher than the threshold value.
The correlated alerts are treated as hyper-alerts, which can be
used for attack detection. In summary, the above works aim
to relieve the pressure on security personnel. However, many
alerts still need to be examined, and security personnel cannot
focus on examining high-threat alerts.

Identifying the threat level of alerts is a relevant research
topic in intrusion detection systems (IDS) [13]. Shittu et al. [4]
mines possible correlation conditions in the alerts history and
set correlation thresholds for different correlation conditions.
Two alerts can be correlated when they satisfy multiple corre-
lation conditions simultaneously. Directly or indirectly related
alerts form a correlation graph. High-threat correlation graphs
are discovered by calculating the similarity among correlation
graphs. Lin et al. [2] jointly model alert temporal dependencies
and textual dependencies to discover actual attacks in alerts.
Temporal dependence exploits Bayes’ rule and prefix tree to
extract attack patterns. Text dependencies measure the co-
occurrence probability between attributes. They combine the
two dependencies to sort the alerts in order of probability
of being an actual attack. Chen et al. [14] encode and
decode high-threat alerts, and the model computes a higher
reconstruction error when non-high-threat alerts appear. More
specifically, they identify high-threat alerts by two encoding
and decoding layers. The above work can also not relieve the
pressure of security personnel very well. They didn’t make a
finer division of non-high-threat alerts, which is unreasonable.

In addition, they capture inadequate factors that influence the
threat level of alerts.

III. A BEHAVIOR SEMANTIC-BASED ALERT
MULTI-CLASSIFICATION MODEL

Fig. 1 illustrates the overall framework of the ARMCO. As
shown in Fig. 1, alerts are input to the semantic, attribute and
temporal feature extraction modules. After the three feature
extraction modules are computed, their outputs are concate-
nated to generate the feature vectors. Then the alerts feature
vector, including multi-dimension features, is used to train the
classification model. Finally, the trained model is used for alert
threat level classification. After threat level classification, alerts
will be classified as high-threat, low-threat, and non-threat.

A. Extract Attribute Features

Most alert attributes are discrete variables such as source IP
address (Sip), destination IP address (Dip), source port (Sport),
destination port (Dport), the rule id utilized to trigger the alert
(RuleId) and the attack category to which the traffic belongs
(AttackType). The above alert attributes include important
information about an attack, which is useful for classifying the
alert threat level. To facilitate the learning of the classification
model, these discrete variables need to be encoded as feature
vectors. In this paper, we use hash coding to encode discrete
attributes. The hash encoding approach is more suitable for
cases where the variables have a large range of values. And it
can map variables with any range of values to feature vectors
of a small length. Let the set of values of a variable v be V . v
including n different values, we use hash coding approach to
map a (a ∈ V) to a feature vector a⃗ of length

√
n. Specifically,

we use the signed 32-bit variant of MurmurHash3 as hash
function. MurmurHash3 is an extensively tested and fast non-
cryptographic hash function [15]. It has good distributivity and
is suitable for machine learning. The RuleId and AttackType
attributes of the alert can be encoded directly as described
above. The remaining four attributes need to be coded in
two separate groups, Sip, Dip and Sport, Dport, respectively.
Because Sip and Dip belong to the IP address, they need to
be encoded together, so do Sport and Dport. The following
description is how to encode Sip and Dip, the same for Sport
and Dport. Let the set of values of Sip be S, the set of values
of Dip be D,and V = A ∪D, and n = |A|+ |D|. Then for b
(b ∈ V) and n, they also input above-mentioned hash function
to get the feature vector.

B. Extract Temporal Features

In this section, the construction of temporal features is
described. For simplicity, no-threat, low-threat and high-threat
are represented by 0, 1 and 2 respectively.

Alert count. We define the number of alerts in a specific
time window as the alert count (e.g., the total number of
alerts in the 5 minutes before the current alert was triggered).
Intuitively, security personnel should pay more attention to an
alert with a sharp change in the number of alerts in a short
period [16].

Fig. 1. The architecture of ARMCO.

Inter-arrival time. We define the time difference between
the current alert and the previous alert as the inter-arrival
time [16] (e.g., if alert A was triggered at 2021.03.22 00:00:00
and alert B was triggered at 2021.03.22 00:01:00, the inter-
arrival time for alert B is 60 seconds). Intuitively, the first
alert after a long period of no alerts should be focused on by
security personnel [16].

C. Extract Semantic Features

For simplicity, we consider Sip, Dip, Sport and Dport as im-
portant attributes of the alert. Although the important attributes
are also encoded by the attribute features, they are encoded
for different purposes. The attribute features are designed to
numerically encode discrete attributes.And semantic features
aim to encode important attributes with contextual behavioral
semantics. The contextual behavioral semantics of attributes
refers to different IP addresses or ports that are similar if
they appear in similar contexts. The approach to embedding
important attributes of alerts follows the idea of IP2Vec [17]
but is still somewhat different. While IP2Vec embeds IP
addresses in network traffic, our approach embeds both IP
addresses and ports in alerts. We extract the context of IP
addresses and ports from historical alerts and construct training
samples to input the embed attributes module. Fig. 1 shows the
architecture of embedding the IP addresses and ports. Several
key tasks are explained in detail next.

Selection of context. How to select behavioral semantics of
important attributes is a core issue. As introduced in Section I,
existing methods are simple in their representation of alert
attributes and fail to capture the differences between their be-
haviors. Each alert describes the information related to specific
anomalous traffic, as shown in Table I. Not all attributes are
helpful. It is not difficult to find that the important attributes
themselves are closely related because host communication
requires this information. Therefore, we choose the important
attributes themselves as their context.

Sampling of training data. The Sip, Dip, Sport and Dport
of each alert are considered a ”sentence”, we use a subset of
the ”sentence” to construct the input and output words. As

shown in Fig 1, it shows how to sample training data. When
using Sip as input words, Dip, Sport, and Dport are used as
context words. When Dport is used as the input word, only
Dip is selected as the context word. When using Sport as the
input word, only Dip is selected as the context word. After
the above sampling, input-output word pairs can be obtained,
which are inputted into the module of embedding attributes.

Embed attributes. After receiving the input-output pairs,
we need to convert them into knowledge graphs. The nodes in
the knowledge graph are the set of all inputs and outputs.
For each input-output pair, a directed edge from input to
output is added to the knowledge graph. There are at most
two edges with different directions between two nodes. In the
module of embedding attributes, we adopt interactE([18])
to embed the attributes. InteractE is based on three key
ideas – feature permutation, a novel feature reshaping, and
circular convolution. The interactE optimizes the performance
of embedding by increasing feature interaction.

D. Classify alerts

After feature extraction, each alert is represented by a set of
features, and each alert also includes a threat level label that is
examined and labeled manually. The XGBoost classification
model is adopted for the alert threat level classification task.
XGBoost is a gradient boosting tree-based model that is widely
used by data analysts and has achieved good performance on
many problems [19]. The algorithm creates and combines a
large number of separate weak but complementary classifiers
to produce a powerful estimator. This combination can be done
in two ways: bagging (random forests) and boosting. Gradient
boosting is established sequentially. In fact, a new weak
learner is constructed to have a maximum correlation with the
negative gradient of the loss function of the entire set in each
iteration [20]. XGBoost belongs to a group of widely used
tree learning algorithms [21]. Decision trees allow prediction
of output variables based on a series of rules arranged in a tree
structure. They consist of a series of segmentation points, or
nodes, determined according to the values of the input features.
The last node is a leaf that gives us the specific value of

TABLE I
AN EXAMPLE ALERT.

Attribute Value
Timestamp 2021-03-22 00:00:00
AlertLevel 2
RuleId 18622209
AttackType Directory traversal
Sip *.*.*.*
Dip *.*.*.*
Sport 48045
Dport 80
Payload \x085q\x1024\x9cW\xadopu\x08. . .
q body POST /login/login.htm. . .
r body HTTP/1.1 200 OK \r\n Server. . .

the output variable. Tree learning algorithms do not require
linear features or linear interactions between features. They
are significantly better classifiers than other algorithms [22].
In addition, XGBoost, a gradient boosting algorithm, has
two major improvements: accelerated tree construction and
proposed a new distributed tree search algorithm.

IV. EXPERIMENT

In this section, we use real network dataset to evaluate
ARMCO, aiming to answer the following research questions:

• RQ1: Can ARMCO effectively improve the alert threat
level classification performance?

• RQ2: How much do different features affect classification
performance?

A. Datasets

We first present information about the attributes of the alerts
and the dataset used.

1) Alert Description: an alert, which has multi-dimensional
alert attributes, is the smallest core data structure we study and
analyze. Table I presents an example alert with several major
attributes. The Timestamp attribute indicates the time when
the alert was triggered. The AlertLevel attribute indicates the
threat level determined by the traditional rule-based approach.
The higher the value, the higher the threat level. The RuleId
attribute indicates the rule ID utilized to trigger the alert. The
AttackType attribute indicates the attack category to which
the traffic belongs. The Sip, Dip, Port, and Dport attributes
indicate the source IP address, destination IP address, source
port, and destination port of the traffic, respectively. The
payload attribute indicates the alert payload, including IP
layer and lower layer data. The q body attribute indicates the
request body of the web access. The r body attribute indicates
the response body of the web request.

2) Dataset Description: the network alert dataset used in
this paper is collected from a real security company. This
dataset records a day’s total of about nine million alerts. As
Table I shows, while each alert log includes its threat level,
that threat level is evaluated by a rule-based approach that
has poor classification performance. For further analysis and
to get better classification performance, the security personnel
examine each alert and label it with the real corresponding
threat level.

B. Metrics

As described in Section III, the trained classification model
classify the test set alert. After all the alerts are classified,
the precision (P) /recall (R) /F1-score (F1) /false positive rate
(FPR) be calculated to evaluate the performance of each class.
Each class can calculate P, R, F1 and FPR. Finally, we use the
weighted P, R, F1 and FPR to evaluate the model performance.
The weight of each class is equal to its proportion in the
test set. Precision measures the percentage of identified threat
levels that are the same as the actual threat level. Recall
measures the percentage of alert threat levels that are correctly
identified. F1-score is the harmonic mean of precision and
recall. FPR measures the percentage of alert threat levels
that are incorrectly identified. Therefore a better classification
model has a higher P, R, F1 and a lower FPR.

C. Parameter Settings

We tune the hyperparameters of the ARMCO in the valida-
tion set (split from trainset). In the attribute features, the length
of the feature vectors after hashing Sip, Sport, Dip, Dport,
RuleId and AttackType are 24,124,24,124,5,5, respectively.
In the temporal features, the window size of the alert count
is set to 165 seconds. In interactE model, the attributes are
embedded with a feature vector dimension of 32. For each
positive sample, 50 negative samples are randomly sampled.
Also, we set input dropout rate to 0.2, feature dropout rate
to 0.5, hidden dropout rate to 0.5. It is trained via stochastic
gradient descent over shuffled mini-batches with a batch size
of 128. It uses an Adam optimizer with a learning rate is
0.0001. In the XGBoost classification model, we set lambda
to 2, gamma to 0.1, max depth to 6, subsample to 0.6,
colsample bytree to 0.9, min child weight to 3 and eta is 0.1.

D. Experimental Settings

To answer the research questions raised above, we designed
two experiments. The following experiments uses the dataset
introduced in Sec. IV-A. We use the top 80% of the alerts
that have been sorted in time order as the training set and the
remaining 20% as the test set.

1) Experiment 1: To demonstrate the performance of the
ARMCO, we compare it with two baseline methods. The
compared methods are listed below.

• Rule-based. The traditional rule-based approach classifies
alerts into different threat levels (e.g., high-threat, low-
threat, and non-threat). Experienced security personnel is
required to keep the rule database updated regularly.

• Bug-KNN [23]. Bug-KNN calculates the similarity be-
tween bugs by textual similarity. It uses K-Nearest Neigh-
bor to calculate the distribution of severity levels in
historical bug reports most similar to the new bug report.

2) Experiment 2: The features ARMCO extracted include
the attribute, temporal, semantic features. To demonstrate the
effect of different features on the performance, we prepare
three variants of ARMCO: ARMCOTS , ARMCOAT and
ARMCOAS . They are differentiated below.

Fig. 2. Performance comparison of different methods.

TABLE II
EFFECT OF DIFFERENT FEATURE.

P R F1 FPR
ARMCOTS 0.944 0.939 0.941 0.366
ARMCOAT 0.937 0.930 0.933 0.406
ARMCOAS 0.892 0.666 0.750 0.497
ARMCO 0.945 0.940 0.942 0.362

• ARMCOTS : This variant removes the attribute features.
• ARMCOAT : This variant removes the semantic features.
• ARMCOAS : This variant removes the temporal features.
• ARMCO: This is our complete model which involves

all the proposed features.

E. Experimental Results

1) Experiment 1: Fig.2 shows the performance comparison
of ARMCO and baseline methods in P, R, F1 and FPR.
ARMCO outperformed other baselines, achieving an F1 of
0.942, higher than others, and an FPR of 0.362, lower than
others. Compared with Rule-based, ARMCO’s F1 is increased
by 100%, and FPR is reduced by 31.6%. Compared with Bug-
KNN, ARMCO’s F1 increased by 4.7% and FPR reduced by
61.1%. As shown in Fig.2, the Rule-based approach has an
F1 of 0.470, FPR of 0.530, which is weakly effective. Due
to various factors influencing the threat level of alerts, using
rules alone can’t completely capture these factors. Besides,
the Rule-based approach requires security personnel to spend
plenty of time and effort to maintain the rules.

Bug-KNN measures the threat level by calculating the threat
distribution of the historical alerts that are most similar to
the current alert. As shown in Fig.2, Bug-KNN has an F1 of
0.899, FPR of 0.931. The results show that the Bug-KNN
is weakly effective and has a very high time complexity.
Due to various factors influencing the threat level of alerts,
using textual information alone can’t completely capture these
factors. In summary, the experimental results demonstrate the
effectiveness of ARMCO on classifying the alert threat level.

2) Experiment 2: Table II shows the performance of
ARMCO with its three variants. From Table II, we can see that
ARMCO can achieve the highest F1 of 0.942 and the lowest

Fig. 3. Effects of embedding size.

FPR of 0.362 when all features are used. The following is a
detailed introduction to the impact of each ARMCO variant
on performance.

• ARMCOTS : When this variant was used, F1 drops
from 0.942 to 0.941, and FPR increases from 0.362 to
0.366 compared to ARMCO. The phenomenon shows
that attribute features have little effect on improving
F1 and reducing FPR. Therefore, attribute features have
weakly impact on improving classification performance.

• ARMCOAT : When this variant was used, F1 drops
from 0.942 to 0.93, and FPR increases from 0.362 to
0.406 compared to ARMCO. Compared with the attribute
features, the semantic features have a greater effect
on improving F1 and reducing FPR. Semantic features
can be seen as a way to encode alerting attributes.
Semantic features encode only four attributes. Due to the
encoding process considering the semantic information
of the attributes, the performance leads to significant
improvement. This experimental result demonstrates the
effectiveness of the semantic feature and reflects our
second contribution.

• ARMCOAS : When this variant was used, F1 drops from
0.942 to 0.75, and FPR increases from 0.362 to 0.49
compared to ARMCO. Compared with the previous three
features, the temporal features have the biggest effect
on improving F1 and reducing FPR. This indicates that
the temporal features significantly affect classification
performance.

In summary, the experimental results show that different
features have different extent effects on the performance.
And the temporal feature has the greatest effect, followed by
semantic feature, and attribute feature.

F. Effects of Parameters

Our model has important parameters that need to be tuned.
Here, we evaluate the impact of one parameter on perfor-
mance, i.e., the embedding size in semantic features.

To investigate the effect of the embedding size in semantic
features, we vary it in the set of 4, 8, 16, 32, 64, 128 and
record performance results. From Fig. 3, we can see that the

F1 first improves with the increase in embedding size, and
then starts to decrease at size 16. From Fig. 3, we can see that
the FPR first improves with the increase in embedding size
and then starts to decrease at size 16, finally starts to increase
at size 32. As mentioned in Section IV-B, we expect larger
F1 and smaller FPR. When the embedding size is smaller, the
alert’s important attributes may overlap in the low-dimensional
representation space and cannot be represented accurately, so
F1 and FPR are a bit worse. When the embedding size is
larger since the behavioral semantics of the alert’s important
attributes are stationary, it leads to a deviation of the learning
direction during the embedding process, so F1 and FPR are a
bit worse. Although F1 achieves a maximum of 0.9422 at size
16, the corresponding FPR is high at 0.3859. FPR achieves a
minimum of 0.362 at size 32, and although the corresponding
F1 of 0.942 is 0.0002 lower than the maximum, it is ignorable.
So the optimal performance can be obtained at the embedding
size 32.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a behavior semantic-based alert
multi-classification model, which contains a set of powerful
features to measure alerts of different threat levels. The results
demonstrate the effectiveness of ARMCO and achieve an F1
of 0.942 and an FPR of 0.362. This dramatically reduces the
pressure on security personnel to examine and minimize losses
to the enterprise.

Alerts do not occur in isolation. Some attacks require
relatively fixed attack steps to exploit the target, and different
attack steps trigger different alerts. This can lead to the alert
under different alert contexts having different threat levels,
and how to incorporate this information into the alert threat
assessment needs further study. Besides, we will also evaluate
the proposed approach to real-time scenarios in future work.

ACKNOWLEDGEMENT

This work is partially supported by the Major Research
Plan of National Natural Science Foundation of China
(92167102), the Beijing Nova Program (Z211100002121150),
the Project of Beijing Municipal Education Commission
(No.KM202110005025), and Engineering Research Center of
Intelligent Perception and Autonomous Control, Ministry of
Education.

REFERENCES

[1] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[2] Y. Lin, Z. Chen, C. Cao, L.-A. Tang, K. Zhang, W. Cheng, and Z. Li,
“Collaborative alert ranking for anomaly detection,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1987–1995. [Online]. Available:
https://doi.org/10.1145/3269206.3272013

[3] M. E. Aminanto, T. Ban, R. Isawa, T. Takahashi, and D. Inoue, “Threat
alert prioritization using isolation forest and stacked auto encoder with
day-forward-chaining analysis,” IEEE Access, vol. 8, pp. 217 977–
217 986, 2020.

[4] R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and M. Ra-
jarajan, “Intrusion alert prioritisation and attack detection using post-
correlation analysis,” Computers & Security, vol. 50, pp. 1–15, 2015.

[5] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms:
A survey and taxonomy,” in International Symposium on Cyberspace
Safety and Security. Springer, 2013, pp. 183–197.

[6] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time
alert correlation and prediction using bayesian networks,” in 2015 12th
International Iranian Society of Cryptology Conference on Information
Security and Cryptology (ISCISC). IEEE, 2015, pp. 98–103.

[7] S. Salah, G. Maciá-Fernández, and J. E. Dı́az-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289–1317, 2013.

[8] D. Man, W. Yang, W. Wang, and S. Xuan, “An alert aggregation
algorithm based on iterative self-organization,” Procedia Engineering,
vol. 29, pp. 3033–3038, 2012.

[9] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fer-
nandez, “Unveiling clusters of events for alert and incident management
in large-scale enterprise it,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 1630–1639.

[10] A. Hofmann and B. Sick, “Online intrusion alert aggregation with
generative data stream modeling,” IEEE transactions on dependable and
secure computing, vol. 8, no. 2, pp. 282–294, 2009.

[11] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion
detection sensor data,” in NAFIPS 2005-2005 Annual Meeting of the
North American Fuzzy Information Processing Society. IEEE, 2005,
pp. 748–753.

[12] S. H. Ahmadinejad and S. Jalili, “Alert correlation using correlation
probability estimation and time windows,” in 2009 International Con-
ference on Computer Technology and Development, vol. 2. IEEE, 2009,
pp. 170–175.

[13] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intru-
sion detection systems,” in NOMS 2008-2008 IEEE Network Operations
and Management Symposium. IEEE, 2008, pp. 33–40.

[14] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li, and Z. Wang,
“iboat: Isolation-based online anomalous trajectory detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp.
806–818, 2013.

[15] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in Proceedings of
the 26th annual international conference on machine learning, 2009,
pp. 1113–1120.

[16] N. Zhao, P. Jin, L. Wang, X. Yang, R. Liu, W. Zhang, K. Sui, and D. Pei,
“Automatically and adaptively identifying severe alerts for online service
systems,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 2420–2429.

[17] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “Ip2vec: Learning
similarities between ip addresses,” in 2017 IEEE International Confer-
ence on Data Mining Workshops (ICDMW), 2017, pp. 657–666.

[18] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, and P. Talukdar, “In-
teracte: Improving convolution-based knowledge graph embeddings by
increasing feature interactions,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 03, 2020, pp. 3009–3016.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[20] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013.

[21] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, 2014, pp. 1–9.

[22] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 161–168.

[23] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” Journal
of Systems and Software, vol. 117, pp. 166–184, 2016.

