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Abstract—Facing a large number of candidate Web service
with the same function, user wishes to get the most appropriate
one. Quality-of-Service (QoS) which represents non-functional
attributes of Web services, has become a major concern for choos-
ing service. But it is time-consuming and resource-consuming to
assess all the QoS values by invoking candidate services one
by one. Thus, QoS prediction is considered an effective method
to obtain QoS information. Although most of QoS prediction
methods claim be able to capture the interaction between users
and services, few of them take account non-interaction factors,
especially the factors arising from the network environment.
In this paper, the non-interaction factors from the network
environment are referred as network bias, and a network
biased matrix factorization (NBMF) method is proposed for
QoS prediction. The method packages network bias into a
linear regression model and puts the user-service interaction
into a matrix factorization model, which is more sophisticated
in adapting diversified circumstance, particularly in complex
network environment. In addition, extensive experiments are
conduct on real-world QoS dataset, and the result prove that the
NBMF method achieves better performance than other state-of-
the-art methods.

Index Terms—Web services, QoS prediction, matrix factoriza-
tion, network bias

I. INTRODUCTION

The statistics published by ProgrammableWeb1 indicate
rapid growth in the number of published Web services over the
past few years. The popularity of Web services allows different
service-oriented applications and systems to be built to meet
the increasingly complex business requirements [1].

To ensure the performance of service-oriented applications
and systems, the quality of their component Web services
needs to be assured. The quality of Web services can be
described by their functional and non-functional attributes.
Quality-of-Service (QoS) represents non-functional attributes
of Web services, such as response time, throughput, availabil-
ity, and reliability [2]. Since there are many Web services with
similar functions on the network, investigating non-functional
QoS attributes becomes a major concern for service selection
[3], [4]. In practice, it is not easy to obtain the QoS values
of all candidate services. First, the QoS values observed by
users depend heavily on the invocation environment, and the
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quality of the same web service observed by different users
may be very different [5]. Second, it is time-consuming and
resource-consuming to assess all the QoS values by invoking
candidate services one by one, due to a large number of users
and services [6], [7]. Therefore, QoS prediction has attracted
the attention of many researchers over the past few years and
is considered an effective way to obtain QoS information.

Matrix factorization (MF) is arguably the most popular
model-based collaborative filtering technique for QoS predic-
tion [8], [9]. MF attempts to capture the interaction between
users and services [10], [11], which factorizes the high-rank
user-service matrix into two low-rank feature matrices [1], [3],
and the inner product of the feature matrices represents the
predicted QoS values of services observed by users. In addition
to the user-service interaction, there are many factors unrelated
to the interaction in the real-world prediciton. Although Zhu et
al. [10] propose using user bias and service bias to capture the
non-interaction from users and services, they do not take into
account the non-interaction from the network environment.
In the case of response time, the user-perceived response
time must include network latency [12], which can vary
significantly depending on the network path.

In this paper, we refer to the non-interaction factors from
the network environment as network bias, and propose a
network biased matrix factorization (NBMF) method for QoS
prediction. Our method considers both interaction and non-
interaction between users and services. Among the factors
related to the non-interaction, we focus on the influence of
network bias on QoS prediction. Specifically, our method
packages network bias into a linear regression model, while
putting the user-service interaction into a matrix factorization
model, which makes our method adaptable to complex net-
work environment.

In summary, the main contributions of this paper include:
• We propose a network biased matrix factorization method

for QoS prediction. Our method considers both inter-
action and non-interaction between users and services,
which makes our method adaptable to complex network
environment.

• We conduct extensive experiments on a real-world QoS
dataset to evaluate the performance of our method. The
result demonstrates that our method can achieve better
performance than the state-of-the-art baseline methods.



The remainder of this paper is organized as follows. In
Section II, we explain the motivation of this work. In Section
III, we introduce the proposed method. In Section IV, we
conduct experiments on a real-world dataset to illustrate the
effectiveness of the proposed method. In Section V, we review
work related to our method. Finally, we conclude our work
with future directions in Section VI.

II. MOTIVATION

The traditional MF may not produce personalized QoS
prediction, because it ignores the non-interaction bias between
users and services, especially the non-interaction bias from
the network environment. To explain this problem in detail,
this section first introduces MF-based QoS prediction and then
gives an example to illustrate the influence of network bias on
MF-based QoS prediction.

A. Matrix Factorization

MF uses a factor model to fit the historical invocation
matrix for prediction, which factorizes the user-service matrix
into two low-rank feature matrices [1], [3]. The low-rank
feature matrix attempts to explain the QoS data by describing
the values on various latent features (e.g., system structure,
hardware composition, software configuration). Each row of
the user feature matrix represents the latent feature of a
user, each row of the service feature matrix represents the
latent feature of a Web service, and the dot product of them
represents the user-service interaction, that is, the QoS value
of the service observed by the user. Thus, the general objective
function for the MF-based QoS prediction method can be
derived as:

Q̂ij = UiW
T
j (1)

Where U ∈ Rm×d denotes the user latent feature matrix,
and W ∈ Rn×d denotes the service latent feature matrix. The
vector Ui(1 ≤ i ≤ m) denotes the latent feature vector of user
i, and the vector Wj(1 ≤ j ≤ n) denotes the latent feature
vector of service j. The number of latent features in our model
is d. The predicted QoS value of Web service j observed by
user i is Q̂ij .

B. Motivating Example

To explain the influence of network bias on MF-based QoS
prediction, a straight-away example is given in Fig. 1(a). In
this example, we need to predict the QoS values of services
w1, w2, w

′
1, w

′
2 observed by users u1, u2. We assume that

u1, u2 are located in region R1, w1, w2 are located in region
R2, and w′

1, w
′
2 are located in region R3. Where services

w1, w2 have the same performance as services w′
1, w

′
2, the

average response time between R1 and R2 is 1s, and the
average response time between R1 and R2 is 2s.

The QoS prediction of traditional matrix factorization is
shown in Fig. 1(b), we assume that the QoS value of the ser-
vice observed by the user is determined by two latent features,
which are hardware composition and software configuration.
In the following, we will focus on user u1 and services w1, w

′
1.

The user-perceived hardware composition feature to u1 is 0.6,
and the user-perceived software configuration feature to u1 is
0.4. The service-provided hardware composition feature to w1

is 1.0, and the service-provided software configuration feature
to w1 is 0.5. The dot product of u1 and w1 is 0.8, which
represents the QoS value of w1 observed by u1. Since the
performance of services w1 and w′

1 are exactly the same, they
have the same degree of latent features, the QoS value of w′

1

observed by u1 is also 0.8.
However, the traditional matrix factorization ignores the

non-interaction bias between users and services, especially the
non-interaction bias from the network environment. In Fig.
1(a), although the performance of services w1 and w′

1 are the
same, they belong to different regions (w1 is located in R2, w′

1

is located in R3), and their QoS values observed by u1 should
be very different. In this case, the QoS prediction made by
previous work is not accurate.

III. METHOD

Since the non-interaction bias from the network environ-
ment accounts for a large proportion of the observed QoS
values, it is crucial to model this bias accurately. To achieve
this goal, we propose a network biased matrix factorization
(NBMF) method for QoS prediction. In this section, we first
introduce the proposed NBMF method, then give an example
to illustrate the improved prediction, and finally describe the
model training and parameter optimization process.

A. Network Biased Matrix Factorization

If we consider the network bias to be continuous rather
than discrete, then linear regression can be used to predict
the network bias between users and services. Following the
above idea, we propose a network biased matrix factorization
method. Our method packages network bias into a linear
regression model, while putting the user-service interaction
into a matrix factorization model. Thus, the general objective
function for NBMF-based QoS prediction method can be
derived as:

Q̂ij = α(µxy + bi + pj) + (1− α)UiW
T
j (2)

The first term α(µxy + bi + pj) of the objective function
is a linear regression model used to predict the network bias
between user i and service j. Where, x is the network of
user i, y is the network of service j, and µxy is the average
QoS value between network x and network y. bi(1 ≤ i ≤ m)
denotes the bias between the QoS observed by user i and other
users in the same network. pj(1 ≤ j ≤ n) denotes the bias
between the QoS provided by service j and other services in
the same network.

The second term (1 − α)UiW
T
j of the objective function

is a matrix factorization model used to capture the interaction
between user i and service j , where Ui(1 ≤ i ≤ m) denotes
the latent feature vector of user i, Wj(1 ≤ j ≤ n) denotes the
latent feature vector of service j, and their dot product UiW

T
j

represents the interaction between user i and service j.



Fig. 1. An example to explain the influence of network bias on MF-based QoS prediction: (a) A real-world Web service invocation scenario; (b) MF-based
QoS prediction; (c) NBMF-based QoS prediction.

The weight α(0 ≤ α ≤ 1) measures the degree of network
bias in our prediction model. α is an adjustable parameter. If α
is set to 0, our prediction model does not consider network bias
and only uses matrix factorization for prediction. If α is set
to 1, our prediction model does not consider the user-service
interaction and only uses linear regression for prediction. In
order to investigate the impact of α on our model and find an
optimal model, the value of α will be evaluated in Section IV.

B. Method Example

The improved QoS prediction is shown in Fig. 1(c). In the
case of user u1 invoking services w1, w

′
1, the average QoS

µR1,R2 between region R1 and region R2 is 1, and the average
QoS µR1,R3 between region R1 and region R3 is 2. We assume
the bias b1 between u1 and other users in R1 is 0, the bias
p1 between w1 and other services in R2 is 0.1, the bias p′

1

between w′
1 and other services in R3 is 0.2. Then the network

bias between u1 and w1 is 1.1, and the network bias between
u1 and w′

1 is 2.2. The next part of the QoS prediction is
the user-service interaction, and the detailed procedure can
be found in Section II-B.

The parameter α is set to 0.5 by default. After weighted
sum of the network bias and the interaction, we can get the
predicted QoS value of w1 observed by u1 is 0.9, and the
predicted QoS value of w′

1 observed by u1 is 1.5.
Although the performance of services w1 and w′

1 are the
same, they belong to different regions, and their QoS values
observed by u1 are different. It can be seen that our method
is adaptable to complex network environment.

C. Model Training

The latent feature matrices and the bias vectors in Eq. (2)
can be constructed by statistical learning theory. To estimate

the values of matrices U,W and vectors b,p , we approximate
the original matrix Q with the following objective function,
and the minimization formula is as follows:

L = minU,W,b,p
1

2

m∑
i=1

n∑
j=1

Iij(Qij − Q̂ij)
2 (3)

Where Iij is the indicator function that returns 1 if user i
has invoked service j, and 0 otherwise. Q̂ij is the prediction
function as in Eq. (2). To avoid overfitting in approximating
the original matrix, we add four regular terms related to U,W
and b,p.

L = minU,W,b,p
1

2

m∑
i=1

n∑
j=1

Iij(Qij − Q̂ij)
2

+
λ

2
(∥U∥2F + ∥W∥2F + ∥b∥2F + ∥p∥2F )

(4)

Where ∥ · ∥ denotes the Frobenius norm [13], the parameter
λ controls the degree of regularization. The objective function
based on L2-norm as in Eq. (4) is not convex, it is unrealistic to
design an algorithm to find the global minimum [14]. Instead,
the stochastic gradient descent technique [15] can be employed
to find the approximate optimal solution. For each QoS record
observed when user i invokes service j, we have the following
update rules:

U ′
i = Ui − η

∂L

∂Ui
(5)

W ′
j = Wj − η

∂L

∂Wj
(6)



b′
i = bi − η

∂L

∂bi
(7)

p′
j = pj − η

∂L

∂pj
(8)

where η > 0 represents the learning rate of updating the
feature matrices and bias vectors, and

∂L

∂Ui
= λUi − (Qij − Q̂ij)(1− α)Wj (9)

∂L

∂Wj
= λWj − (Qij − Q̂ij)(1− α)Ui (10)

∂L

∂bi
= λbi − (Qij − Q̂ij)α (11)

∂L

∂pj
= λpj − (Qij − Q̂ij)α (12)

The overall optimization procedure of our method is given
in Algorithm 1. Let r denote the number of iterations to
achieve convergence, let s denote the number of valid invo-
cation records in the original matrix Q, and let d denote the
dimensions of the user latent feature matrix and the service
latent feature matrix. The main time cost of Algorithm 1 lies
in the updating of matrices U,W and vectors b,p. In each
iteration, updating U,W takes O(sd) time and updating b,p
takes O(s) time. Thus, the overall time complexity of our
method is O(rsd).

Algorithm 1 Optimization procedure of NBMF
Input: Q ∈ Rm×n, α, d, λ, η;
Output: U ∈ Rm×d,W ∈ Rn×d,b ∈ Rm,p ∈ Rn

1: Randomly initialize U and W ;
2: Initialize b and p with zero;
3: repeat
4: for each record (i, j, Qij) observed in Q do
5: Update Ui according to Eq. (5);
6: Update Wj according to Eq. (6);
7: Update bi according to Eq. (7);
8: Update pj according to Eq. (8);
9: end for

10: until Convergence
11: return U,W,b,p;

IV. EXPERIMENT

In this section, we conduct extensive experiments on a real-
world QoS dataset to evaluate the performance of NBMF. The
experiments are designed to address the following questions:
(1) How does NBMF method compare with other state-of-the-
art baseline methods? (2) How does the matrix density affect
the prediction accuracy? (3) How does the weight α of the
network bias affect the prediction accuracy? (4) How does the
dimension d of the latent feature matrix affect the prediction
accuracy? We implement our method and all baseline methods
in Python 3.7, and all experiments were performed on a Linux

server with Intel i5-10400 2.9GHz CPU and 16GB RAM
running 64-bit Ubuntu 16.04.

A. Dataset

We conduct all experiments on a publicly real-world QoS
dataset named WS-DREAM2. The dataset includes 1,974,675
QoS records, which were collected from 339 users in 30
regions on 5825 Web services in 73 regions. There is a QoS
record between each user and each service, and we focus on
the response time (RT) in the QoS attribute. Also, the dataset
collects the IP, region and other information of these users and
services. More details about this dataset can be found in [16].

B. Evaluation Metrics

Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) metrics are used to measure the accuracy of predic-
tion by calculating the difference between the predicted QoS
value and the actual QoS value.

MAE is defined as:

MAE =
1

N

∑
i,j

|Qij − Q̂ij | (13)

RMSE is defined as:

RMSE =

√√√√ 1

N

∑
i,j

(Qij − Q̂ij)2 (14)

Where Qij and Q̂ij represent the actual and predicted QoS
value of the user i invoking service j, and N denotes the
number of predicted QoS values. It can be observed from the
formula that RMSE is more sensitive to large errors. MAE and
RMSE range from 0 to ∞, and their smaller values indicate
better performance of the prediction method.

C. Accuracy Comparison

To demonstrate the prediction accuracy of our method, we
reproduce the 6 most representative QoS prediction methods
and compare the NBMF with them.

• UMEAN: This method employs the average QoS value
of a user to predict the unknown QoS value.

• IMEAN: This method employs the average QoS value of
a server to predict the unknown QoS value.

• UIPCC [17]: This method is user-based and service-based
CF, which employs similar users and similar services for
QoS prediction.

• PMF [18]: This method is probability-based MF, which
factorizes the matrix into two low-rank latent feature
matrices for QoS prediction.

• HMF [7]: This method improves the MF with location
clustering.

• AMF [10]: This method improves the MF with user bias
and service bias.

• NBMF: This method improves the MF with network bias.

2https://github.com/wsdream/wsdream-dataset



TABLE I
QOS PREDICTION ACCURACY (SMALLER MRE AND RMSE INDICATE BETTER ACCURACY)

Methods
MAE RMSE

D = 15% D = 20% D = 25% D = 30% Improve D = 15% D = 20% D = 25% D = 30% Improve

UMEAN 0.8739 0.8738 0.8737 0.8735 47.95% 1.8569 1.8568 1.8564 1.8576 36.60%
IMEAN 0.6821 0.6805 0.6789 0.6781 33.11% 1.5366 1.5305 1.5280 1.5267 23.08%
UIPCC 0.5861 0.5768 0.5725 0.5714 21.14% 1.4464 1.4322 1.4262 1.4247 17.81%
PMF 0.5236 0.5015 0.4904 0.4652 8.16% 1.2556 1.2303 1.2185 1.1949 3.88%
AMF 0.5024 0.4836 0.4589 0.4444 3.72% 1.244 1.2196 1.1977 1.1772 2.68%
HMF 0.4994 0.4713 0.4545 0.4438 2.67% 1.2354 1.2162 1.1819 1.1582 1.73%

NBMF 0.4847 0.4579 0.4459 0.4306 - 1.2232 1.1843 1.1627 1.1388 -

In the real world, the user-service matrix is very sparse, as
users usually invoke only a small number of Web services. In
this paper, to simulate the matrix environment with different
densites, we randomly remove a certain number of QoS values
from the dataset to generate the user-service matrix with
densities of 15%, 20%, 25%, 30%. The removed QoS values
are used as expected values to evaluate the prediction accuracy
achieved by different methods. For example, a matrix density
of 15% means that we randomly select 15% QoS values in
the original matrix to predict the remaining 85% QoS values.

In the experiments, the parameters of the baseline methods
are initialized according to the corresponding papers for op-
timal performance, and the parameters of our NBMF method
are set to α = 0.6, d = 6, λ = 0.02, η = 0.003, the maximum
number of iterations in the model training is set to 300. In
addition, we perform an early stopping strategy during the
model training, where we stop training if the evaluation metric
on the testing set increases five times in a row.

Table I provides the prediction accuracies of different
methods at 15% to 30% matrix density. We can observe that
NBMF achieves an improvement of 2.67∼47.95% in MAE
and 1.73∼36.6% in RMSE compared with other classical
prediction methods, and NBMF has the smallest MAE and
RMSE regardless of matrix density, which indicates that our
method has the best prediction accuracy. Compared with the
AMF method, NBMF method achieves 3.72% and 2.68%
improvement in MAE and RMSE. Because the real-world
network environment is very complex, it is more suitable to
consider network bias than user bias and service bias for real
QoS prediction systems. Compared with the HMF method,
NBMF method achieves 2.67% and 1.73% improvement in
MAE and RMSE. Because the HMF method clusters based on
regions, while the NBMF method clusters based on network
paths, which is more adaptable to complex network envi-
ronments. The prediction accuracy of all methods improved
significantly as the matrix density increased from 15% to 30%,
suggesting that more QoS information can contribute to higher
prediction accuracy.

D. Impact of Parameter α

The parameter α measures the degree of network bias in our
prediction model. If α is set to 0, our prediction model does

Fig. 2. Impact of Parameter α

Fig. 3. Impact of Dimension d

not consider network bias, in which case NBMF is equivalent
to PMF. If α is set to 1, our prediction model does not consider
the user-service interaction and only uses linear regression for
prediction. To evaluate the impact of α and find an optimal
model, we set the dimension d to 6 and set the density D to
15% and 30%.

Fig. 2 shows us the changes in MAE and RMSE when
α is adjusted from 0 to 1. Before the prediction accuracy
reaches the best, the values of MAE and RMSE decrease as the
value of α increases, indicating that the prediction accuracy
is improved. However, when the value of α exceeds a certain
threshold, the values of MAE and RMSE increase instead,
indicating a decrease in prediction accuracy. We observe that
the thresholds for both MAE and RMSE are around α = 0.6
for all densities of the matrix environment. The existence of
the thresholds confirm our intuition that the best prediction
performance can be achieved by a proper combination of MF
and network bias. In addition, we find that our NBMF method
is quite stable, as it maintains similar trends for different
criteria in all configurations.



E. Impact of Dimension d

In our proposed method, d denotes the dimension of the
low-rank latent feature matrix, i.e., the number of latent
features in matrix factorization. If d is small, only a few key
latent features determine the QoS value. If d is large, many
latent features jointly determine the QoS value. To investigate
the impact of the dimension d on prediction results, we set the
parameter α to 0.6 and set the density D to 25% and 30%.

Fig. 3 presents the changes in MAE and RMSE when the
dimension d is adjusted from 2 to 12. As the dimension
increases, the values of MAE and RMSE decrease rapidly at
first, indicating that only a few latent features cannot achieve
good prediction results. However, when the dimension exceeds
a certain threshold, the values of MAE and RMSE gradually
increase. Because higher dimension leads to overfitting prob-
lems, which reduces the prediction performance.

V. RELATED WORK

In recent years, collaborative filtering (CF) has been widely
used for QoS prediction [8], [9]. Existing CF-based prediction
methods can be classified into two types: memory-based CF
and model-based CF. Memory-based CF first finds similar
users or services by Pearson correlation coefficient (PCC),
and then uses the QoS values of similar users or services to
predict the missing values [5], [17]. However, a user may have
invoked only few services in the real world, which reduces
the accuracy of calculating similarity using PCC [1]. Model-
based CF trains a global model to make predictions based on
observed historical invocation records, and it performs well
when dealing with sparse user-service matrix [3].

Matrix factorization (MF) is arguably the most popular
model-based CF technique [8], [9], which attempts to cap-
ture the interaction between users and services [10], [11].
He et al. [7] introduced a hierarchical MF method based
on location grouping, they assumed that local invocations
reflect more interaction than global ones. Zhang et al. [2]
proposed a neighborhood-integrated MF method, which uses
PCC to calculate the similarity between users. Tang et al.
[19] employed the IP addresses and Ryu et al. [20] employed
the location information to improve the calculation of similar
users, they assumed that similar users have similar interaction
with services. In addition to the user-service interaction, there
are many factors unrelated to the interaction in the real-world
prediciton. Although Zhu et al. [10] propose using user bias
and service bias to capture the non-interaction from users and
services, they do not take into account the non-interaction from
the network environment.

VI. CONCLUSION

We propose a network biased matrix factorization method
for QoS prediction. Our method considers both interaction
and non-interaction between users and services, which makes
our method adaptable to complex network environment. We
conduct extensive experiments on a real-world QoS dataset.
The result demonstrates that our method can achieve better
performance than the state-of-the-art baseline methods.

In the future, we intend to improve the current work as
follows: First, we will conduct experiments to evaluate the
prediction performance of NBMF on other QoS attributes.
Second, considering the dynamic nature of Web services, we
will try to implement real-time QoS prediction with weighing
factor based on time preference.

REFERENCES

[1] Y. Zhang, K. Wang, Q. He, F. Chen, S. Deng, Z. Zheng, and Y. Yang,
“Covering-based web service quality prediction via neighborhood-aware
matrix factorization,” IEEE Transactions on Services Computing, 2019.

[2] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service
qos prediction via neighborhood integrated matrix factorization,” IEEE
Transactions on Services Computing, vol. 6, no. 3, pp. 289–299, 2012.

[3] F. Ye, Z. Lin, C. Chen, Z. Zheng, and H. Huang, “Outlier-resilient web
service qos prediction,” in Proceedings of the Web Conference 2021,
2021, pp. 3099–3110.

[4] J. El Hadad, M. Manouvrier, and M. Rukoz, “Tqos: Transactional and
qos-aware selection algorithm for automatic web service composition,”
IEEE Transactions on Services Computing, vol. 3, no. 1, pp. 73–85,
2010.

[5] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized
qos prediction forweb services via collaborative filtering,” in Ieee
international conference on web services (icws 2007). IEEE, 2007,
pp. 439–446.

[6] C. Wu, W. Qiu, Z. Zheng, X. Wang, and X. Yang, “Qos prediction
of web services based on two-phase k-means clustering,” in 2015 ieee
international conference on web services. IEEE, 2015, pp. 161–168.

[7] P. He, J. Zhu, Z. Zheng, J. Xu, and M. R. Lyu, “Location-based
hierarchical matrix factorization for web service recommendation,” in
2014 IEEE international conference on web services. IEEE, 2014, pp.
297–304.

[8] S. H. Ghafouri, S. M. Hashemi, and P. C. Hung, “A survey on
web service qos prediction methods,” IEEE Transactions on Services
Computing, 2020.

[9] Z. Zheng, L. Xiaoli, M. Tang, F. Xie, and M. R. Lyu, “Web service qos
prediction via collaborative filtering: A survey,” IEEE Transactions on
Services Computing, 2020.

[10] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Online qos prediction for
runtime service adaptation via adaptive matrix factorization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp.
2911–2924, 2017.

[11] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web service
qos prediction with location-based regularization,” in 2012 IEEE 19th
international conference on web services. IEEE, 2012, pp. 464–471.

[12] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware service
composition in the cloud,” in Proceedings of the 21st international
conference on World Wide Web, 2012, pp. 959–968.

[13] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[14] Y. Koren, “Factor in the neighbors: Scalable and accurate collabora-
tive filtering,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 4, no. 1, pp. 1–24, 2010.

[15] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[16] Z. Zheng, Y. Zhang, and M. R. Lyu, “Distributed qos evaluation for
real-world web services,” in 2010 IEEE International Conference on
Web Services. IEEE, 2010, pp. 83–90.

[17] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Wsrec: A collaborative
filtering based web service recommender system,” in 2009 IEEE Inter-
national Conference on Web Services. IEEE, 2009, pp. 437–444.

[18] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
Advances in neural information processing systems, vol. 20, 2007.

[19] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang, and T. Zhang, “Collabo-
rative web service quality prediction via exploiting matrix factorization
and network map,” IEEE Transactions on Network and Service Man-
agement, vol. 13, no. 1, pp. 126–137, 2016.

[20] D. Ryu, K. Lee, and J. Baik, “Location-based web service qos predic-
tion via preference propagation to address cold start problem,” IEEE
Transactions on Services Computing, 2018.


