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Abstract

Aero-engine is the ‘heart’ of the aviation aircraft.
Practical failure prediction of aero-engines is difficult
due to the performance degradation covered by the con-
tinuous switching between various operating conditions.
In order to solve the above problem, we propose a new
type of aero-engine fault diagnosis model–RIRCNN
(Residual Independently Reccurent and Convolutional
Neural Network). It can process long sequences, and
has superior feature extraction effect. We gather flight
data sets through ground bench experiment of the
aviation turboprop engine, and intensively conduct
comparative experiments to evaluate the effectiveness
of our model. The verification results demonstrate that
our model can achieve excellent performance compared
with other available baseline models.
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1 Introduction

The safety of the aircraft is very important to ensure the
military and people’s livelihood. Aviation turboprop en-
gines are mainly used in military transport aircraft. Com-
pared with other types such as gas turbine engines, turbo-
prop engines have a harsher working environment. The air
circuit is the most prone to failure, so it is important to de-
tect its failure. The traditional model-based, data-driven,
and knowledge-based diagnostic methods are not accurate
and economical. Thus, it is necessary to carry out research
on key technologies such as feature data extraction, intelli-
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gent fault diagnosis and turboprop engine health state pre-
diction. The artificial intelligence algorithm has strong rea-
soning ability and generalization ability, and has inherent
advantages for complex engine fault diagnosis. Some in-
telligent algorithms have been applied in advanced Aero-
engine health management systems, such as Deep Belief
Network [1], LSTM (Long Short-Term Memory) [2] and
Data Mining Techniques [3]. Although effective in differ-
ent ways, these methods all have certain drawbacks.

Our purpose is to perform diagnostics on air path fault
data from aero-turboprop engines. Considering that the
essence of engine flight data is a kind of regular time se-
ries data, the model used for processing time series data in
machine learning is given priority. RNN (Recurrent Neural
Network) has been proposed as a solution to process time
series and widely used and improved. LSTM [4] is a vari-
ant of RNN, proposed for solving the gradient disappear-
ance and explosion problems. However, for data dealing
with long time steps LSTM still has the limitation, it can
only discriminate tokens in a small range and have diffi-
culty capturing long-term dependencies. The flight condi-
tions are constantly changing, and the flight duration is not
invariable, it may cause the amount of series data be very
long. So a more suitable model is needed.

In this paper, after investigating a lot of methods we pro-
pose a new model named RIRCNN. It is a new model based
on the residual combination of IndRNN (Independently Re-
current Neural Network) [5] and CNN (Convolutional Neu-
ral Networks) [6]. Our main contributions are shown below:

(1) In the aviation turboprop engine bench experiment,
we simulate flight states of normal and component failures
under different working conditions, and obtain the data sets.

(2) We propose a novel model called RIRCNN that can
process for long-series time series data and extract global
feature fast.

(3) We conduct extensive experiments and verify that



our model outperforms other available methods in air cir-
cuit fault diagnosis of aero-turboprop engines.

2 Related Work

Since the aviation turboprop engine is mostly used in the
military transportation bureau, its technology and data in-
volve secrecy. Only few public information and research
are publicly available. Almost of the existing more cutting-
edge artificial intelligence method resea are based on some
public civil aviation turbine engine data. For example, a
study [7] utilized a DFC and LSTM to established an of-
fline health flight state estimation model and a degradation
trend prediction model. Another group studied out a trans-
fer learning method based on CNN and SVM for gas turbine
fault diagnosis [8]. Zhou [9] employed a Res-BPNN and in-
troduced the method of maximizing the domain confusion
loss based on the adversarial mechanism in the experiment,
so that the features learned from different domains are as
close as possible and reduce the distribution difference of
each aero-engine model.

Therefore, in order to conduct research based on turbo-
prop engine failure data, it is necessary to obtain the corre-
sponding data of the relevant model engines first. For exam-
ple, the Australian Aviation and Navigation Research Labo-
ratory took the F404 turbofan engine as the object, injected
corresponding faults into several components such as the
variable geometric angle and nozzle area of the compressor.
And in this way, they finally obtained the simulated fault
flight data.

In this paper, we obtain the data set through the ground
simulation experiment of aviation turboprop engine, which
made up for the shortcoming of insufficient data of this type
of engine failure. Then we design a neural network named
RIRCNN which can classify the data and detect faults by
extracting the time series features and global features of the
data.

3 Approach

How IndRNN implements a neuron-independent archi-
tecture within a layer and solves the gradient problem are
described in Subsection 3.1; the newly proposed model
RIRCNN in the paper is introduced in Subsection 3.2.

3.1 Principle of IndRNN

Traditional RNNs models map the hidden states to out-
puts via the following recursive equation, it shares a weight
W at each stage and its final output can be represented
by f [W...[Wf [Wfi]]]. Obviously seen from the cumula-
tive formula: when the gradient to be solved in reverse, if

Figure 1. IndRNN basic model.

the derivative of f is not 1 or 0, it is easy to cause a gra-
dient problem. Therefore, IndRNN is trying to introduce
non-saturating activation functions ReLU to stack multiple
layers of IndRNN to build very deep networks. The basic
IndRNN structure is shown in Figure 1. Every neuron of
IndRNN only receives information from the input and its
own hidden state at the previous time step, which enables
each neuron in the same layer can independently process
a spatial-temporal pattern. Different neurons can be cross-
correlated by stacking two or more layers, in which case
each neuron in the next layer processes the output of all
neurons in the previous layer. The hidden state calculation
formula specific to a single neuron in the hidden layer of
IndRNN is as follows:

ht = f(wn,xtxt + wn,ht
⊙ hn,t−1 + b) (1)

where ⊙ represent the Hadamard product, wn,xt is the nth

row of the input weight matrix, and wn,ht
is the recurrent

weight matrix in hidden layer, respectively. For the back-
propagation of the temporal gradient of each layer, since
there is no interaction between neurons in the layer, the gra-
dient of each neuron can be calculated independently. For
the nth neuron ht, assuming the output at time step T is Jn,
the gradient back-propagated to time step t is
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where fn,kis the derivative of the activation function
such as ReLU and Tanh, which shows its gradient
wT−t

n,ht

∏T−1
k=t fn,k+1 is directly depends on the value of the

recursive weight matrix wn,ht
. When using ReLU as activa-

tion function(the result is the constant 0 or 1). Assuming the
maximum gradient value to ensure that the gradient doesn’t
explode is γ. So the range of |wn,ht | can be represented as
[0, T−t

√
γ]. In the case of |wn,ht | = 0, the neuron only re-

gards the information from the current input and does not



retain any past memory. This method basically maintains
the gradient within an appropriate range and does not af-
fect the gradient backtracked through the neuron. It avoids
the errors caused by the commonly used gradient clipping
method. By stacking the basic IndRNN structures, it is pos-
sible to build a deep network that can even handle sequences
over 5000 time steps.

3.2 Structure of RIRCNN

As inferred by Li [5], neurons in first layer of IndRNN
mainly sequence position information, one neuron in sec-
ond layer aggregates input into long-term memory, while
other neurons usually retain their state or process short-term
memory. Therefore, in order to extract time series charac-
teristics and state parameter characteristics of the aviation
turboprop engine air circuit time series fault data as accu-
rately as possible, we need to design a model with more than
two layers. When a multi-layer IndRNN network stacked,
the neurons in each layer contain the parameter character-
istics of all neurons in the previous layer, and the output
of the network contains the feature extraction results of all
neurons in the hidden layer. We finally superimpose 4-layer
IndRNN with 512 neurons in each layer. After the IndRNN
model, if simply stacking the fully connected layer and the
dropout layer to extract the classification results, although
the probability distribution of the desired format can be
obtained, the randomly discarded neuron information may
cause the loss of some important information. It makes the
classification precision exist a certain bottlenecks.

Therefore, in order to eliminate defects, this paper uses
IndRNN as a general design for processing time series data
to extract time series features. Then a convolutional neu-
ral network structure is introduced as a classifier, and the
output tensor of IndRNN is used as the input of CNN. The
probability distribution of the fault category can be obtained
after the output of the convolution calculation. CNN adapts
to data extraction features by combining convolutional lay-
ers and pooling layers. As the number of network layers in-
creases, the corresponding extracted features are more com-
plex, also, the receptive field is larger. When CNN calcu-
lates, the weight information of neurons in different posi-
tions is shared, and the global features of the input data
can be extracted by integrating the information. These fea-
tures make CNN as a classifier in the line with the pur-
pose of digital data classification in this paper. IRCNN is a
simple serial combination structure of 4-layer IndRNN and
2-layer CNN. However, simply superimposing CNN may
cause overfitting of the model and reduce the diagnostic pre-
cision. Therefore, further research is needed.

Residual network proposed by He [10] is to address the
degradation problem of Deep networks. The structure of
residual learning is somewhat similar to a “short circuit” in

Figure 2. RIRCNN structure.

a circuit. It is to directly transfer concepts captured by pre-
vious layer to next layer. Our proposed RIRCNN residual
connect 4-layer IndRNN and 2-layer CNN shown as Figure
2. We introduce residual connections between all network
layers, and add the output data of the previous layers and
the output data of the latter layers by weight directly. Ex-
plaining in principle, the stacked layers only do the iden-
tity mapping without increasing the parameters and com-
putational complexity. It don’t need to be re-learned every
time, which improves reusability and reduces redundancy.
In order to speed up the training, Batch Normalization is
inserted after each layer. The output of residual connection
is adjusted by fully connected linear layer, and then output
to softmax activation function layer to calculate probability
distribution of the fault category.

4 Experiment

4.1 Data Introduction

The existing aero-engine air circuit parameter baselines
calculation model is not disclosed by the engine manufac-
turer as a commercial secret. And there are only a handful of
fault data obtained during actual flight. In order to increase
the reliability of data, we plan to obtain the data of changes
in air circuit components sensed by sensors from the actual
aviation flight and the ground experiments. In addition to
collecting the history field data, simulating operation of the
military aero-turboprop engine “WJ-XX”1 under different

1The details of the aircraft cannot be disclosed due to non-disclosure
agreements



working conditions in bench experiments is needed to ob-
tain stable and long-term data.

We adjust performance parameters (such as pressure
compressor Delta flow HPC/LPC-DW etc.), then we ob-
tain the corresponding aviation turboprop engine air circuit
measurement parameter changes. Aero-engines have hun-
dreds of air circuit components, according to expert prior
knowledge and historical experience, we extract the key at-
tributes below: T1, torque, ITT, PCNF, PCNC, PCNP, P3,
WFB and the working condition. We sample the data at
interval (every 0.1s) according to the equipment situation
and took out the data with same flight time. The data step
size is maintained at about 800. Then, 8 main fault and 1
healthy states of the aviation turboprop engine air circuit
are summarized: blade corrosion, blade tip wear, foreign
object damage, blade fouling, insufficient opening of high-
pressure/low-pressure turbine valve, improperly open/close
of the turbine valve. Finally, a data set with sample size of
6149 is obtained. Training dataset and testing dataset are
divided by the ratio of 8:2.

Considering the degradation trend of sensor measure-
ment variables and some outliers are usually exist. We
use the classic isolated forest algorithm to clean the data
has achieved good results. Moreover, in order to make the
distribution of the data more concentrated and accelerate
the convergence of the model, we normalize the data. The
cleaned effective data can also reduce unnecessary abnor-
mal parameter troubleshooting.

4.2 RIRCNN Fault Classification Experiment

Affected by weight initialization, neural network outputs
have correlated randomness. To counteract the effects of
randomness, we repeat each experiment 10 times and take
average of the fault classifications for comparison. We use
a variety of models to compare the performance of the RIR-
CNN model on 6419 flight data including 9 states. Each
model uses random 5.1k pieces data to train and another
1.4k pieces data to test.

The performance comparison experiments with RIR-
CNN include Transformer, CNN, ResNet, LSTM, IndRNN
and IRCNN. During the designing of each neural network
fault diagnosis model, we first use fully connected neu-
ral network to non-linearly map features extracted by each
model. Then, we use function to normalize the output value
of fully connected neural network to convert the probabil-
ity of different categories predicted by the model. On this
basis, in the training process of classifier model, the Cate-
gorical Cross Entropy Loss is used as evaluation function,
Adam is used as optimization algorithm and Dropout tech-
nique is adopt to prevent the overfitting of model. In view
of different structures of each model and different types of
applicable data, we select the optimal configuration for each

Table 1. Memory-Usage(MemoUsg) and per-
formance.

model MemoUsg Precision Macro-F1
Transformer 2011Mib 76.82% 0.7710
CNN 1693Mib 82.38% 0.8258
ResNet 1689Mib 83.03% 0.8332
LSTM 2249Mib 92.50% 0.9277
IndRNN 1745Mib 92.53% 0.9291
IRCNN 1945Mib 94.44% 0.9466
RIRCNN 1991Mib 95.73% 0.9610

Figure 3. Macro-F1 of all models

in terms of number of layers and hidden units, so these pa-
rameters are not included in the assessment. We evaluate
the model by calculating the failure classification precision
and the multi-classification problem scoring metric Macro-
F1. Table 1 records the memory required at runtime and the
Precision and Macro-F1 score of fault diagnosis. Figure 3
visualizes Macro-F1 of each model.

It can be seen that the LSTM model has high precision in
the task of air circuit fault data diagnosis of aero-turboprop
engines, but with the highest memory consumption during
model training. Compared to LSTM, RIRCNN has better
performance with less memory consumption. The optimal
average classification precision of LSTM and IndRNN can
only reach 92.50% and 92.53%, while RIRCNN can exceed
95%, and also RIRCNN is better than other models in the
Macro-F1 score. It proved that our proposed model is ef-
fective.

5 Conclusion

In this paper, we propose a novel model RIRCNN which
can extract spatial information independently and extract
global features and fast convergence. RIRCNN solves the
limitation of RNN and its variants in terms of network
depth, it can process long sequences without a large in-



crease in memory consumption. Multiple comparison ex-
periments were conducted with existing baseline models.
The result verifies that the proposed RIRCNN model is su-
perior to the existing neural network models in the problem
of air-circuit fault data diagnosis of areo-turboprop engines.
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