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Abstract—The current course recommendation in massive
open online courses (MOOCs) usually ignores students’ interests
in some certain type of knowledge concepts, resulting in low
completion of most courses. Therefore, it requires a concept
recommendation to help students accurately choose courses in
MOOCs. In this paper, we propose Deep Correlation based
Concept Recommendation (DCCR) for MOOCs. It gathers the
interactive information obtained by different entities through
meta-paths in MOOCs and extracts the semantic information of
concepts. To deeply capture the correlation information among
users, a multi-relation graph is built to generate the correlation
features which aggregates the abundant information under dif-
ferent meta-paths. Then through the graph convolutional neural
networks, entity embeddings of users and knowledge concepts are
generated. Additionally, a concatenation-based fusion function is
designed to get the final joint representations reasonably. By
verifying on two public datasets, experiments show that DCCR
outperforms the state-of-the-art methods.

Index Terms—concept recommendation, correlation feature,
concatenation based fusion, moocs

I. INTRODUCTION

MOOCs have been developing rapidly in recent years,
providing users with a convenient way of education [12]. The
emergence of MOOCs’ platforms has completely changed the
entire education field. However, according to statistics, there
is a very low completion rate of online courses [10]. So there
are lots of works concentrating on course recommendation
in MOOCs. But barely focus on courses would lead to
some problems. 1) The normal course recommendation could
probably cause students to take courses that they are not
attracted to. For example, some computer vision courses only
cover knowledge about geometric, and others may cover deep
learning, which could mislead the result in recommendation.
2) The content and focus of similar courses are different. For
instance, in advanced mathematics, some courses are based on
geometry, and some courses are based on calculus, which is
difficult for students to select [16]. 3) Students with different
prerequisite background may require totally different [5], but if
recommending in the traditional way, students may not realize
that they have not learnt some necessary prerequisite knowl-
edge until taking certain courses [8]. Therefore, the MOOCs
need to accurately locate the learning needs of students, which
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makes it necessary to do concept recommendation, a more
fine-grained recommendation task.

The existing course or concept recommendations are mainly
divided into two categories. One is the methods based on
collaborative filtering (CF), which considers the historical
interaction behavior of users with other online resources
(e.g., videos, courses), and explores the potential of the
same preference [9]. For example, He et al. proposed a
neural network model to evaluate the similarity between items
by using an attention network [7]. Elbadrawy et al. used
neighborhood-based user collaborative filtering to design a
course ranking model [6]. These methods have achieved great
success in recommendation courses, but suffering from the
problem of data sparsity and cold start, so the performance
is limited. The other one constructs the MOOCs information
into heterogeneous information networks, and utilize meta-
paths to guide the dissemination of student preferences. It
always captures the corresponding fruitful semantic relation-
ships between different types of entities, learns the embedding,
and finally generates a recommendation list through matrix
factorization [16]. Vashishth et al. [14] proposed a three-
way neural interaction model to use the rich meta-path-based
information for recommendation. Gong et al. [16] proposed a
method to capture the representation of different types of enti-
ties in heterogeneous information networks, fused the content
features of entities to do recommendation. However, due to
the relative independence of different meta-path relationships,
this kind of methods can not completely capture the interactive
information from the heterogeneous networks in MOOCs, and
may lose some inner information among different meta-paths,
resulting in an unsatisfactory performance.

In this paper, we excavate the deep correlation of users.
Motivated by some efficient multi-relational graph methods
like [15], we propose deep correlation based concept rec-
ommendation (DCCR) for MOOCs, where a multi-relational
graph is constructed to deeply capture the inner correlation of
users among different meta-paths. With the deep correlation
feature extracting from the multi-relational graph , represen-
tations for users in MOOCs can be better learnt from graph
convolutional network to accurately reflect users’ preference.
Meanwhile, we deeply extract the information contained in
concepts themselves including names, definitions, etc. as
auxiliary features, which makes the recommendation system



more effective. We also propose a concatenation-based fusion
function to better combine the entity representations under
different meta-paths, and finally get the rating matrix from
users towards knowledge concepts. The key contributions of
this paper can be summarized as: (i) deep correlation features
of users are generated by constructing a multi-relational graph
among different meta-paths, which leads to better embedded
representations of user entities. (ii) a feature fusion function is
proposed by concentrating on the different entity embeddings
under different meta-paths, which leads to more reasonable
representation for users and concepts. (iii) the DCCR is eval-
uated on two publicly available real datasets MOOCCube [17]
and XuetangX [16], not only the performance in each dataset
is compared, but also the difference between the two datasets
are analysised.

II. PROPOSED METHOD

A. Probelm Statement

In the recommendation task, MOOCs’ data usually in-
cludes five specific entities (user(u), knowledge concept(k),
video(v), course(c), teacher(t) [13], [16]). Additionally, there
are abundant text information along with knowledge concepts,
including their definitions, descriptions, and classifications.
The purpose is to generate concept recommendation list for
each user. The framework of DCCR is shown in Fig. 1, and
the explanations of notations are given in Table I.

TABLE I: Notations and explanations.

Notation Explanation
Sk semantic feature of knowledge concepts
Cu correlation feature of users

du, dk the dimension of correlation feature and semantic feature
Nu, Nk the number of users and knowledge concepts

MPu,MPk the meta-path sets of users and knowledge concepts
Ampu , A

mpk
the adjacency matrix sets of users and knowledge concepts

G the correlation triad set
z the correlation triad threshold

fmpu , f
mpk

the representation sets of users and knowledge concepts
p the scale parameter

Fk, Fu the final representations of users and knowledge concepts

dF
the dimension of the final representations

of users and knowledge concepts
ru,k the true rating of user u to knowledge concept k
ˆru,k the predicted rating of user u to knowledge concept k
xu the latent factors of user u
yk the latent factors of knowledge concept k

tu, tk the parameters to integrate the Fu and Fk in the same space
βu, βk the tuning parameters

δ the regularization parameters

B. Semantic Feature Extraction

Ordinarily, the name of a concept, almost the generalization
of itself, contains rich semantic information. Moreover, just
like the name, there is also a wealth of information in con-
cept’s subject classifications, e.g., the subject classifications
of ‘Binary tree’ are ‘theoretical computer science’ and ‘data
structure’, so at least two specific subject classifications can
be collected for this knowledge concept.

After separating the text informations into words, a param-
eter c is set as the number of classification we chose, and

then the word vectors Sname, Sclass1 , Sclass2 , · · · , Sclassc ∈
RNk×dv are generated by Word2Vec [18], in which Nk in-
dicates the total number of knowledge concepts, and dv
indicates the dimension of word vectors. We stitch the word
vectors together to get the semantic feature of concepts
Sk ∈ RNk×dk , Sk = [Sname, Sclass1 , Sclass2 , · · · , Sclassc ],
here dk = dv × (c + 1) indicates the dimension of semantic
feature.

C. Meta-Path Adjacency Matrices
Given the interactive information between different kinds

of entities in MOOCs (e.g., user u3125 have learned courses
c254 and c617), we build the interactive matrices be-
tween entities, including user-click-knowledge concept matrix,
user-watch-video matrix, user-learn-course matrix, user-learn-
course-taught by-teacher matrix, knowledge concept-included
by-video matrix and knowledge concept-involved-course ma-
trix. Each element in each matrix belongs to {0, 1}, which
represents the interaction between two specific entities.

Meta-path [4] means the semantic path that connects dif-
ferent entities and illustrates the relational information in the
dataset. Here, meta-paths are defined like u watch−→ v watch−1

−→
u, which indicates that two different users are connected
because they have watched the same video; k clicked by−→
u clicked by−1

−→ k means that two different knowledge concepts
have been clicked by the same user. In this way, the meta-
path sets MPu = {mpu1 ,mpu2 , · · · ,mpum} and MP k =
{mpk1 ,mpk2 , · · · ,mpkn} are set for users and knowledge con-
cepts respectively, where m,n indicate the number of meta-
paths of users and knowledge concepts.

With the interactive information matrices and
the meta-path sets, the corresponding adjacency
matrix sets Ampu = {Ampu

1
, Ampu

2
, · · · , Ampu

m
} and

Ampk = {Ampk
1
, Ampk

2
, · · · , Ampk

n
} are generated for users

and concepts. Taking users as an example, Ampu is generated
and normalized by the following formula,

Ampu
i
= Norm(Le

u · Le
u
T ), (1)

here Le
u is the corresponding interactive matrix of mpui (e.g.,

the user-watch-video matrix is the corresponding interactive

matrix of meta-path u watch−→ v watch−1

−→ u), Ampu
i

is the nor-
malized adjacency matrix. After iterating through all the meta-
paths in MPu, the meta-path adjacency matrix Ampu of users
is obtained. In the same way, the meta-path adjacency matrix
of knowledge concepts Ampk = {Ampk

1
, Ampk

2
, · · · , Ampk

n
} is

also generated.

D. Correlation Feature Extraction
The meta-path adjacency matrix sets generated above have

captured many significant information from MOOCs. How-
ever, the relative independence of those adjacency matrices
loses lots of correlation information among meta-paths. Fig. 2
shows the contrast between with and without correlation
among meta-paths. Since there are various connections be-
tween users and other entities, the correlation information
among different users’ preferences can be deeply gathered.
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Fig. 1: The framework of DCCR for MOOCs.

First, a threshold z is used to select the users that are
strongly correlated. Then, a user correlation triad set G is cre-
ated. For specific user entities ui and uj , if their corresponding
value in Ampu

q
(q ∈ [1,m]) is lager than z, which means that

these two users are correlated in mpuq , then the correlation
information (ui, r, uj) will be written into G, where r is the
meta-path mpuq .

Based on the triad set G, we build a multi-relational graph
by Graph = (V ,R ,E ,X ,Z), where V is the node set of enti-
ties, R is the correlation set of entities, E is the enlarged cor-
relation triad set, X and Z are the initial feature of nodes and
relations, V ,R ,E are built by G. For every triad (ui, r, uj) ∈
G, ui, uj are involved in V ; R = R ′ ∪ R ′

inv ∪ {Se}, where
R ′ = {r|(ui, r, uj) ∈ G}, R ′

inv = {r−1|(ui, r, uj) ∈ G}, Se
means the self-loop correlation; E = {(ui, r, uj)|(ui, r, uj) ∈
G} ∪ {(uj , r

−1, ui)|(ui, r, uj) ∈ G} ∪ {(u, Se, u)|u ∈ V }.
After that, we get the embeddings with following rules,

h1
uj

= tanh(
∑

(ui,r)∈N(uj)

W 1
λ(r)ϕ(xui , zr)), (2)

h2
uj

= tanh(
∑

(ui,r)∈N(uj)

W 2
λ(r)ϕ(h

1
ui
, h1

r)), (3)

where N(uj) is a set of immediate neighbours of uj for
its outgoing edges, ϕ : Rd × Rd → Rd is a composition
operator, λ(r) indicates the relation type of r, W k

λ(r) is a
relation-type shared parameter at k-th layer, xui and zr are
the initial features of node ui and relation r, h1

uj
is the
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Fig. 2: Contrast between with and without correlation

feature of node uj generated at the first layer, h1
r is the

representation of relation generate at first layer which follows
the rule hk+1

r = W k
relh

k
r , here W k

rel are the shared parameters
for each relation. h2

uj
∈ Rdu is the output of the second layer

as well as the correlation feature of uj . All the parameters
are randomly initialized. Finally the correlation feature matrix
Cu ∈ RNu×du is generated as,

Cu = [h2
u1
, h2

u2
, · · · , h2

uNu
]T , (4)

here, Nu is the number of users and du is the dimension of
correlation feature.

E. Concatenation-based Representations Learning

Unlike the specific values in meta-path adjacency matrices
Amp, the triads in the multi-relation graph can not tell the
degree that two users are correlated. So it’s not efficient to



take the correlation feature Cu as the final representations
of users. We need to further generate the representations of
users and concepts under every meta-path. Given the semantic
feature Sk, correlation feature Cu, and the meta-path adja-
cency matrices Ampk and Ampu as inputs, graph convolutional
network (GCN) [19] is adopted with a layer-wise propagation
rule for both users and concepts. Taking user as an example,
the propagation layer is defined as

h
(l+1)
mpu

i
= ReLU(Pmpu

i
hl
mpu

i
W l). (5)

Here h
(l+1)
mpu

i
indicates the new representation of users under

mpui at layer l + 1. Pmpu
i
= D̃− 1

2 · (Ampu
i
+ I) · D̃− 1

2 ,D̃ =
diag((Ampu

i
+I) ·1), I is the identity matrix, 1 is the all-ones

vector, W l is the shared trainable weight matrix at layer l for
every meta-path. Particularly, we take Cu as h0

mpu
i

for users
at the first layers, and take the output at the third layer as the
representation under mpui ,

fmpu
i
= h3

mpu
i
. (6)

After iterating through all the matrices in Ampu
i

,
we ultimately get the representation sets fmpu =
{fmpu

1
, fmpu

2
, · · · , fmpu

m
} for users. In the same way, we take

Sk as h0
mpk

i
for knowledge concept at the first layer to adopt

GCN and generate the representations as

fmpk
i
= h3

mpk
i
. (7)

Finally, fmpk = {fmpk
1
, fmpk

2
, · · · , fmpk

m
} is abtained for

concepts.
In order to evenly consider meta-paths, joint representation

by fusing representations under different meta-paths should
be considered. However, in MOOCs, users’ interactivity under
different meta-paths are quite dissimilar. To solve this problem,
we design a concatenation-based fusion function, which gener-
ates fusion weights by concentrating on representations under
both the current meta-path and the others at the same time. In
this way, we obtain a reasonable joint representation, which
can reflects the association between meta-paths effectively.
Taking users as an example, fusion weight αmpu

i
of mpui is

calculated as

αmpu
i
= softmax(v(tanh(w1fmpu

i
p+w2fmpu

i
(1−p)+ b))),

(8)
where fmpu

i
=

1

m− 1
·
∑m

j ̸=i fmpu
j

is the second concerned

object of mpui , v, w1, w2, b are trainable parameters, p ∈ (0, 1)
is a scale hyper-parameter. Then the final joint representation
of user Fu ∈ RNu×dF is calculated as

Fu =

m∑
i=1

αmpu
i
fmpu

i
. (9)

Similarly, the final representation of knowledge concept
Fk ∈ RNk×dF is calculated as

Fk =

m∑
i=1

αmpk
i
fmpk

i
. (10)

Algorithm 1 shows how to generate Fu and Fk.

Algorithm 1: Generate the representations of users and
concepts

Input: The interactive information
between different entities in
MOOCs,
the meta-path sets of users
and concepts MPu,MPk ,
the text information of
concepts

Output: The representations
Fu, Fk of users and
concepts

1 Initialize
Ampu , Ampk , fmpu , fmpk as
empty lists

2 Extract semantic feature Sk from
text information

3 for each mpki ∈MPk do
4 Calculate Ampki

by Eq (1)
5 Add Ampki

to Ampk

6 for each mpui ∈MPu do
7 Calculate Ampui

by Eq (1)
8 Add Ampui

to Ampu

9 Represent a multi-relational graph
by Ampu

10 Extract correlation feature Cu by
Eq (2,3,4)

11 for each Ampui
∈ Ampu do

12 h0
mpui

← Cu

13 for l = 0 to 2 do
14 Calculate hl+1

mpui
by Eq (5)

15 fmpui
= h3

mpui
according to

Eq (6)
16 Add fmpui

to fmpu

17 for each Ampki
∈ Ampk do

18 h0
mpki

← Sk

19 for l = 0 to 2 do
20 Calculate hl+1

mpui
by Eq (5)

21 fmpki
= h3

mpki
by Eq (7)

22 Add fmpki
to fmpk

23 for each fmpui
∈ fmpu do

24 Calculate αmpui
by Eq (8)

25 Generate Fu by Eq (9)
26 for each fmpki

∈ fmpk do
27 Calculate αmpki

by Eq (8)

28 Generate Fk by Eq (10)
29 return Fu, Fk

F. Concept Recommendation for User

Lastly, an extend matrix factorization is utilized to complete
the recommendation task. The predicted rating matrix ˆru,k is
got as follows,

ˆru,k = xT
u yk + βuF

T
u tk + βkt

T
uFk, (11)

where xu and yk are randomly initialized latent factors of user
and knowledge concept, tu and tk are parameters that make
sure Fu and Fk to be in the same space, βu and βk are tuning
parameters. We define the following loss function for reaching
an appropriate rating prediction,

Loss =
1

Nu ×Nk

Nu∑
u=1

Nk∑
k=1

(ru,k − ˆru,k)
2+

δ(||xu||2 + ||yk||2 + ||tu||2 + ||tk||2),

(12)

where ru,k is the target rating matrix of user on knowledge
concept, δ is the regularization parameter. Finally, with the
rating matrix of user on knowledge concept, the concepts are
recommended with the highest rating for each user.

III. EXPERIMENT

A. Datasets

To evaluate the effectiveness of the proposed method, we
adopt two datasets, MOOCCube [17] and the real data from
XuetangX [16]. MOOCCube [17] is a large-scale data repos-
itory of over 700 MOOC courses, 100k concepts, 8 million
student behaviors with an external resource. The abundant
data of MOOCCube was mostly obtained from Baidubaike,
Wikipedia, and Termonline. We divide the interactive behav-
iors of users to concepts into training set and test set with a



ratio of 8:2. XuetangX [16] includes a training set occurring
between October 1st, 2016 and December 30th, 2016 and a
test set with the data occurring between January 1st, 2018 and
March 31st, 2018. It contains 7,020 MOOC courses 43,405
videos, 1,029 course concepts, and 9,986 real MOOC users.
For both datasets, we paired 99 randomly sampled negative
instances with 1 positive instance for each users, and output
the prediction rating [7].

B. Evaluation Metrics and Implementation Details

Several metrics are utilized to evaluate the recommendation
methods. HR@K is a common recall measure that shows the
percentage of top-K recommendations that were successful.
NDCG@K [3] is used to evaluate the differences between this
ranking list and the user’s actual interaction list. MRR [7] is
used for evaluating any process that produces a list of possible
responses to a sample of queries. Additionally, AUC is also
used as a metric.

The methods are run in the environment of python-3.7,
tensorflow-1.13.1. When extracting correlation features, We set
the initial dimension size for nodes and relations to 100 and
the output dimension to 200. When learning representations,
we set the dimension to 256, 128 and 64 at the first, second
and output layer, respectively. Moreover, we set the dropout
rate to be 0.5 and the latent dimension to be 30 in MF. As
for the learning rate, we set it to be 0.001, and implement an
exponential learning rate decays every 100 steps.

C. Analysis of the Proposed Method

1) Evaluation of Meta-path Combinations: We emphati-
cally analyse the influence of the selection and combination of
different meta-paths through the whole recommendation task
by referring the combinations in [16], but we further conduct
a detailed analysis in two different datasets. Specifically,
we consider the following meta-path combinations in both
datasets, including mp1 : u → k −1→ u,mp2 : u → c −1→
u,mp3 : u → v −1→ u and mp4 : u → c → t −1→ c −1→ u.

From Table II, the rank of effectiveness is mp1 > mp3 >
mp4 > mp2 in MOOCCube, and mp3 > mp1 > mp2 > mp4
in XuetangX. Additionally, the combinations of meta-paths
perform better than the individual, and the tendency of the ef-
fect is the same as the individual. For instance, in MOOCCube
the performance of mp1&3 is better than mp1&2, and in Xue-
tangX the performance of mp1&2&3 is better than mp1&2&4,
which indicates that users have dissimilar interactive behaviors
under different meta-paths. In general, it works best when
combining all the four meta-paths. In MOOCCube, the AUC
of mp1&2&3&4 is 4.17%, 6.18%, 4.78%, 5.67% higher than
mp1, mp2, mp3, mp4, respectively. In XuetangX, the AUC
of mp1&2&3&4 is 6.74%, 9.79%, 6.48%, 10.07% higher than
mp1, mp2, mp3, mp4, respectively.

From Table II, it exhibits a larger increase in XuetangX
than in MOOCCube when combing more meta-paths. For
example, the AUC grows 0.75% from mp1&2 to mp1&2&3 in
MOOCCube, while it grows 2.01% in XuetangX. It is because
of that XuetangX has more courses, videos and teacher entities

besides users and concepts, depending on which we can extract
more complete correlation features from XuetangX.

TABLE II: Results of different meta-path combinations

meta-path MOOCCube XuetangX
HR@5 NDCG@5 MRR AUC HR@5 NDCG@5 MRR AUC

mp1 0.6336 0.5184 0.5247 0.9077 0.5871 0.4166 0.3933 0.8909
mp2 0.6027 0.5013 0.4735 0.8876 0.4559 0.3184 0.3115 0.8604
mp3 0.6292 0.5125 0.5179 0.9016 0.6058 0.4218 0.3954 0.8937
mp4 0.6125 0.5087 0.4893 0.8927 0.4456 0.3123 0.3072 0.8576

mp1&2 0.6748 0.5689 0.5564 0.9194 0.5655 0.3919 0.3699 0.9058
mp1&3 0.6984 0.6134 0.6083 0.9236 0.5969 0.4423 0.4353 0.9185
mp1&4 0.6851 0.5868 0.5732 0.9204 0.5828 0.4025 0.3795 0.9077
mp2&3 0.6927 0.6059 0.5913 0.9227 0.6502 0.4723 0.4439 0.9161
mp2&4 0.6624 0.6106 0.5718 0.9176 0.4934 0.3466 0.3353 0.8586
mp3&4 0.6858 0.6048 0.5883 0.9208 0.5257 0.3697 0.3575 0.8993

mp1&2&3 0.7279 0.6364 0.6360 0.9311 0.7162 0.5464 0.5168 0.9386
mp1&2&4 0.7167 0.6222 0.6207 0.9246 0.6727 0.5285 0.4673 0.9199
mp1&3&4 0.7214 0.6347 0.6301 0.9302 0.7106 0.5463 0.5191 0.9367
mp2&3&4 0.7125 0.6208 0.6264 0.9274 0.6924 0.5307 0.4916 0.9213

mp1&2&3&4 0.7542 0.6708 0.6637 0.9494 0.7851 0.6118 0.5766 0.9583

TABLE III: Results of different meta-path combinations

Method MOOCCube XuetangX
HR@5 NDCG@5 MRR AUC HR@5 NDCG@5 MRR AUC

Ave-Fusion 0.6338 0.5387 0.5292 0.8852 0.3923 0.2602 0.2602 0.8506
Loc-Fusion 0.7364 0.6504 0.6426 0.9414 0.7247 0.5552 0.5204 0.9475
Con-Fusion 0.7542 0.6708 0.6637 0.9494 0.7851 0.5833 0.5491 0.9583

2) Comparison of Different Fusion Functions: In order
to verify the efficiency of the proposed fusion function, we
evaluate the recommendation task when using different fusion
functions in the two datasets, including Ave-Fusion that takes
an average of each vector, Loc-Fusion that is a location-
based fusion [11], and Con-Fusion is a concatenation-based
fusion designed in our method. Table III turns out that in
both datasets, the effect of Ave-Fusion is much worse than
the others. Con-Fusion works the best, the AUC of Con-
Fusion is 0.8% higher than Loc-Fusion in MOOCCube, and
1.08% higher than Loc-Fusion in XuetangX, which means that
concatenation-based fusion designed in our method can gather
more associated information from different meta-paths.
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3) Evaluation of Model Parameters: In DCCR, the triad
threshold z is an important parameter. Fig. 3 shows how
z effect the result. The best results in the two datasets are
obtained when z is equal to 0.38 and 0.42, respectively. When
z is too small, too much useless correlation information may
be got, which will affect the performance of the method. While
if z is too large, there will be a lack of correlation information
leading to a bad performance.



In addition, in the proposed fusion function, we consider the
impact of different values of scale parameter p ∈ [0, 1], Fig. 4
shows the results. When p = 0.8, the best results are obtained
in both datasets. If p is too small, the effect will be reduced
due to insufficient attention to the representation itself. If too
large, it will be hard to fuse the association with the other
meta-paths.

D. Comparison with Other Methods
We compare with the following methods. MLP [2] that

applies a multi-layer perceptron to user representations and
the target knowledge concept representations, FISM [1] that is
an item-to-item CF method, and conducts the recommendation
task with the embeddings of users’ history behaviors and the
corresponding concept, NAIS [7] that is also an CF method
with an attention mechanism to distinguishe the weights of
different online learning behaviors, ACKRec [16] that is an
attentional graph neural network in a heterogeneous view. For
MLP, FISM, and NAIS, we construct the rating matrix and
interaction histories between users and concepts from datasets.
For ACKRec, we construct the corresponding features and
adjacency matrices as inputs based on its steps. We select the
most appropriate parameters to obtain the best results for a
fair comparison.

From Tabel IV , it is apparent that the performance of DCCR
is much better than MLP, FISM, NAIS in both datasets. The
AUC of DCCR is about 5.15% to 8.53% higher than MLP,
FISM, and NAIS in MOOCCube, and 7.72% to 10.51% higher
in XuetangX. Compared with ACKRec, DCCR extracts the
correlation feature of user preference, which leads to a better
performance. The AUC, HR@20, NDCG@20 and MRR
of DCCR are 2.06%, 6.22%, 3.62% and 4.7% higher than
ACKRec in MOOCCube, respectively, and 3.51%, 10.39%,
9.73%, 4.92% higher in XuetangX. It has a lager growth from
ACKRec to DCCR in XuetangX than in MOOCCube, which
means that the correlation information in XuetangX is more
abundant so that DCCR can make a bigger improvement.

TABLE IV: Results of different methods in Mooccube

Methods HR NDCG
MRR AUC

@5 @10 @20 @5 @10 @20

MOOCCube
MLP [2] 0.4335 0.5744 0.7102 0.3562 0.3807 0.4088 0.3335 0.8651
FISM [1] 0.5285 0.7411 0.7715 0.4826 0.5033 0.5288 0.4701 0.8684
NAIS [7] 0.4957 0.6235 0.8497 0.2848 0.3651 0.4218 0.3563 0.8979

ACKRec [16] 0.7125 0.8014 0.8827 0.6326 0.6622 0.6855 0.6015 0.9288
DCCR 0.7542 0.8539 0.9297 0.6708 0.7026 0.7217 0.6637 0.9494

XuetangX
MLP [2] 0.3680 0.5899 0.7237 0.2231 0.2926 0.3441 0.2146 0.8595
FISM [1] 0.5849 0.7489 0.7610 0.3760 0.4203 0.4279 0.3293 0.8532
NAIS [7] 0.4112 0.6624 0.8649 0.2392 0.3201 0.3793 0.2392 0.8863

ACKRec [16] 0.6470 0.8122 0.9255 0.4635 0.5170 0.5459 0.4352 0.9232
DCCR 0.7851 0.9063 0.9747 0.5833 0.6259 0.6432 0.5491 0.9583

IV. CONCLUSIONS

This paper proposes a recommendation method named as
DCCR which generates the knowledge concept recommenda-
tion list for users in MOOCs. DCCR captures the rich entity

interactive information in MOOCs by the guide of meta-path
and extracts the semantic features from text information along
with concepts. It also gathers the correlation features of users
among meta-paths by constructing a multi-relational graph. To
better consider the association between different meta-paths,
a concatenation-based fusion function is proposed to gener-
ate the final joint representation of users and concepts. By
verifying the effectiveness of DCCR on two public datasets,
the experimental results show that DCCR is superior to the
existing methods.
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