
DOI reference number: 10.18293/SEKE2022-102

An Exploratory Study of Bug Prioritization and
Severity Prediction based on Source Code Features

Chun Ying Zhou
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zcy9838@stu.hubu.edu.cn

Cheng Zeng
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
zc@hubu.edu.cn

Peng He*
School of Computer Science and

Information Engineering
Hubei University

Wuhan, China
penghe@hubu.edu.cn

Abstract—Software systems generate a large number of bugs
during their lifecycles. Managing and assigning these bug reports
is a challenging task. Building prediction models for the priority
or severity levels of bugs through bug reports can help developers
prioritize highly urgent bugs. Traditional prediction models are
based on the textual description information in bug reports.
However, most of the description is little or no. According to the
bug report, developers need to fix the corresponding source code
files. If the corresponding source code file is a core module in a
software system, the report is likely to have high-level assignment
rights. Therefore, in this paper, we investigate the effect of using
the source code file feature sets on classification performance. In
addition, we evaluate the effect of different sampling methods on
the data, namely SMOTE, RUS, SMOTEEN, Adaboost, and GAN.
Extensive experiments were conducted on five open-source
projects. The experimental results show that the source code file
feature sets do not perform as well as the textual description
features in bug reports. Besides, over-sampling methods do not
alleviate the data imbalance problem in the case of insufficient
data, while GAN performs best in the case of sufficient data.

Keywords—bug priority; bug severity; bug report; source code;
data imbalance

I. INTRODUCTION

Throughout the software lifecycle, developers will receive a
large number of bug reports. Once a bug report is committed and
confirmed, the bug needs to be fixed in a timely manner.
Different analyses can be performed based on the bug reports,
including Bug Triage, Bug Localization, Bug-fix Time
Estimation, predict defect attributes etc [1]. A bug report
contains several attributes, such as bug id, summary, description,
reporter, created date, fix version, status, priority, severity, in
which the priority levels range from P1 (most important) to P5
(least important), and the severity is categorized into blocker,
critical, major, normal, minor, enhancement, and trivial.
Priority is assigned from the developer's point of view, which
indicates the urgency of fixing bugs. Severity is assigned from
the user's point of view, which indicates the degree of impact on
the use of software function [2].

Existing studies analyzed the text of bug reports by using
machine learning methods to automatically predict priority or
severity [3]. Given the excellence of deep learning in the field of
natural language processing, researchers also explored
various neural networks to further extract semantic information
from bug reports [1, 6-9]. Unfortunately, if the bug reports
provide insufficient or misleading information, the performance
of the predictor will be greatly affected. Therefore, in addition to

the textual features of bug reports, whether there are other
appropriate features for bug prioritization and severity
prediction becomes an open challenge. To this end, we will
further consider the information of source code files. We assume
that if a source code file is a core file in the project, then it has a
higher level of importance. Once the file is defective, it is more
likely to have a higher priority or severity. Leveraging neural
networks to capture semantic and syntactic features from source
files is widely used for bug localization [4] and defect prediction
[5].

In addition, during bug repair, the co-change relationships
between source files have been proved to be potentially valuable
[10]. We assume that if two files are associated with a bug report
at the same time, there will be some correlation between these
two files. More occurrences together indicate a stronger
relationship. Hence, we construct a co-occurrence network
(COON) between source code files, and extract relational
features of the source files by network embedding learning.

The study aims at investigating the feasibility of source code
feature sets mentioned above on bug prioritization and severity
prediction, and analyzing the impact of different features on this
task. To simplify the subsequent presentation, we use FSet-1 to
represent the feature set learned from the textual information of
the bug reports, FSet-2 to represent the semantic feature set of
the source code files associated with the bug reports, and FSet-3
to represent the relational feature set learned from the co-
occurrence network of the source code files. Extensive
experiments were conducted on five open-source projects to
answer the following research questions:

RQ1: Which type of feature set performs better?

RQ2: Is it helpful to consider the importance of source code
files?

RQ3: Do the combined feature sets achieve better results?

RQ4: Is the impact of sampling methods obvious?

The remainder of this paper is organized as follows. The
related work is presented in Section II. The method is detailed in
Section III. The evaluation and analysis are presented in Section
IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

Most of the existing models predict various attributes based
on textual analysis of bug reports (e.g., summary and

Corresponding author: Peng He (penghe@hubu.edu.cn)

description). Tian et al. [2] treated priority prediction as a linear
regression problem rather than a classification problem. The
priority level is an ordinal value rather than a categorical value,
while classification will make a large difference between levels.
Sharma et al. [3] evaluated the performance of different
machine learning techniques such as SVM, Naive Bayes, and
K-Nearest Neighbors in the priority prediction. Kumari et al. [6]
took care of uncertainty by using entropy-based measures.
Umer et al. [7] and Ramay et al. [8] proposed an automatic
emotion-based prediction method for sentiment analysis of bug
reports. Bani-Salameh et al. [9] used a five-layer RNN-LSTM
neural network model for bug priority prediction.

If the reporter provided an insufficient description of the bug,
it is difficult to learn valuable features from it. As far as we know,
few studies have explored bug prediction and severity in terms
of the feature sets of source code. In fact, a bug report is often
associated with at least one source code file that needs to be fixed.
Source code files can be used to indirectly learn about potential
bug features. The source code files are converted into Abstract
Syntax Trees (ASTs). Then a tree-based neural network is used
to extract semantic information. Compared to the source code,
the ASTs ignore unnecessary details but still retain lexical and
syntactic structure information [11].

With the wide use of complex networks in software
engineering, a co-occurrence network is proposed in this paper
inspired by this research trend. Considering that source code
files are not independent, when two files are associated with a
bug report at the same time, there is an association relationship
between them, and a complex network is constructed based on
this correlation. In fact, real-world networks are often more
complex in that not only topological information is available, but
also each node and edge has attributes. However, traditional
network embedding methods are unsupervised and cannot utilize
node attribute information. With the development of Graph
Neural Networks (GNNs), a group of models has emerged
specifically for learning graph structure data [12], which can
smoothly incorporate node and edge attributes while learning the
network structure to generate better robust representation.

Unlike existing studies, we not only perform textual analysis
of bug reports, but also consider semantic information of source
code files and relational information based on co-occurrence
network. Therefore, the feature sets in this paper are divided into
three categories: textual features of bug reports; semantic
features of source code files; and relational features of co-
occurrence networks. These three sets of features are then
combined and applied to bug prioritization and severity
prediction.

III. APPROACH

The workflow (cf. Figure. 1) comprises three parts: (1) FSet-
1 generation: extract the summary and description of bug reports,
then use CNN to learn the textual features; (2) FSet-2 generation:
convert source code files to ASTs, then use CNN to extract the
code semantic features; (3) FSet-3 generation: construct a co-
occurrence network between source code files, then use GNN to
learn the structural features. Finally, the three feature sets are
combined in different ways and fed into the classifier for
prediction.

a1.java

a2.java

a3.java

a4.java c1.java

c2.java
c3.java

c4.java

b1.java
b2.java

b3.java

A B

C

D

Reports Source files

A

B

C
D

a1.java a2.java a3.java a4.java

b1.java b2.java b3.java
c1.java c2.java c3.java c4.java
a3.java b1.java c4.java

f1 f2 f3 fs-1...

f1 f2 f3 fs-1 fs...

f1 f2 f3 fs-1 fs...

f1 f2 f3 fs-1 fs...

fsa1:

a2:

a3:

a4:

f1 f2 f3 fs-1 fs...mean:

f1 f2 f3 fn-1...

f1 f2 f3 fn-1 fn...

f1 f2 f3 fn-1 fn...

f1 f2 f3 fn-1 fn...

fna1:

a2:

a3:

a4:

f1 f2 f3 fn-1 fn...mean:f1 f2 f3 fr-1 fr...

Textual features Semantic features Relational Features

Bug
Reports

Source
Files

 ASTs Token vectors

COON

Word
Tokenization Word vector

dataset
Feature sets

Classifier

Prediction

Textual features

Semantic features

Node attributes

GNN

(1)

(2)

(3)

(1) FSet-1 (2) FSet-2 (3) FSet-3

FSet-1
FSet-2
FSet-3

FSet-1+2
FSet-1+3

FSet-1+2+3

CNNword2vec

word2vec CNN

Relational Features

Figure 1. Experimental workflow.

A. FSet-1 generation

The summary and description of each bug report are
combined into a document, then all textual information is
preprocessed. First, tokenize each word in the text sequences.
Second, remove words without real meaning, such as "the",
"and", "this", "that", etc. Finally, stem each word into basic
words. For example, "working" and "worked" will be converted
into "work". In addition, we further processed the tokens as
treated in [4]. Since developers usually use compound words to
name classes and methods. Therefore, according to CamelCase
naming rules, compound words are split into separate real words.
For example, "WorkbenchActionBuilder" is split into
"Workbench", "Action" and "Builder". After preprocessing,
each token is converted into a word vector using word2vec and
then fed into CNN to extract textual features for bug reports.

B. FSet-2 generation

In this part, the open-source python package javalang1 is
adopted to parse the source code files into ASTs. Three types of
nodes were selected as in [13]: (1) nodes of method invocations
and class instance creations, (2) declaration nodes, and (3)
control-flow nodes. After parsing, each Java file is converted
into a token sequence. Since CNN requires input integer vectors,
each token is mapped to a unique integer. That is, the token
sequence is converted into an integer vector. Since the length of
the token sequence of each file is unequal, the dimensions of the
converted integer vectors will be different. To keep the same
dimension of each file vector, 0 is added at the end of the integer
vector, which is equal to the length of the longest vector. Note
that adding 0 will not affect the result. Moreover, some
uncommon tokens are filtered out and only the tokens that
appear more than three times are encoded.

Suppose that there are 𝑛 Java source code files associated
with all bug reports for project 𝑃, 𝑃 = {𝑓 , 𝑓 , … , 𝑓 }. After the
above processing, the token sequence 𝑓 = {𝑡 , 𝑡 , … , 𝑡 } is
extracted, then each token is mapped to an integer, i.e., 𝑓 is
converted to a fixed-length integer vector 𝑓 ∈ ℝ , 𝑖 ∈ [1, 𝑛]. In
the embedding layer, 𝑓 is converted to a real-valued vector
matrix 𝑋 = {𝒙 , 𝒙 , … , 𝒙 }, 𝑋 ∈ ℝ × , where 𝒙 ∈ ℝ is
the embedding vector corresponding to the j-th token 𝑡 of 𝑓 .

1 https://github.com/c2nes/javalang

Since the source code files associated with the bug reports are
defective files, clean source code files are also needed to be fed
into the CNN for training together as positive instances.
Therefore, positive instances are randomly selected from the
remaining files in the project, keeping the same number of
negative instances. After convolution and pooling layers, the
FSet-2 is generated.

C. FSet-3 generation

Figure 1 also shows the construction of a co-occurrence
network through a simple example with four bug reports A, B,
C, and D. The source code files associated with these reports are
listed on the right. Clearly, for A, B, and C, their associated
source code files form three fully connected communities
respectively, while the associated files of D connect them, thus
forming a large co-occurrence network (COON). In COON, two
files may co-occur frequently, so in order to distinguish the
strength of the relationship between files, we use the co-
occurrence times as a weight. Note that the co-occurrence
relationship is undirected in our context.

After constructing COON, the relational features are learned
by using a GNN model, which iteratively updates the
representation of each node by aggregating the features of its
neighboring nodes. This process is mainly divided into two steps.
First, aggregate the features of neighboring information to obtain
𝑎
(), and then combine the neighboring features 𝑎() with the

node features of the previous layer ℎ(), in order to obtain the
updated features.

𝑎
()

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸()({ℎ
()

: 𝑢 ∈ 𝑁(𝑣)}) (1)

ℎ
()

= 𝐶𝑂𝑀𝐵𝐼𝑁𝐸()(ℎ
()

, 𝑎
()
) (2)

where ℎ() is the vector of node 𝑣 at the 𝑘 -th layer.
ℎ
()

= 𝑋 . 𝑁(𝑣) is the set of neighbors of node 𝑣 .
𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(⋅) and 𝐶𝑂𝑀𝐵𝐼𝑁𝐸(⋅) are the aggregation
function and combination function respectively.

 Given that the source code files are defective, and when
there is only one class of instance labels, it is not possible to use
a supervised model. However, adding additional instances
would change the structure of the co-occurrence network.
Therefore, we choose an unsupervised model DGI [14] to learn
COON. Generating this type of feature set mainly consists of
three steps: (1) constructing the network; (2) initializing the node
attributes; and (3) using DGI to capture the topological structure
information and generate relational features. DGI can learn both
network relational and node attribute features. Since the original
COON has no node attributes, the node attributes in the COON
should be provided before training the DGI. In addition, rich
node attributes allow DGI to be better trained. Consequently, the
token vectors extracted from the source code are used as the
initial node attributes. Finally, the network topology and node
attributes are fed into DGI, and FSet-3 is output.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In this paper, we use five public datasets commonly used in
Bug Localization2. We queried the bug priority and severity
attributes from https://bugs.eclipse.org/bugs/ and
https://bz.apache.org/bugzilla/ to label these datasets. It is well

known that data imbalance is one of the problems in multi-class
prediction. To accurately predict the labels for each class, a large
amount of data is needed for training. The majority labels of bug
reports are P3 or normal, which cannot be learned adequately for
minor classes. Therefore, priority and severity levels are coarse-
grained into three categories. For priority, P1 and P2 are
classified as high, P3 as medium, P4 and P5 as low. For severity,
blocker, critical and major are classified as severe, normal as
normal, minor, enhancement and trivial as non-severe.

Table I gives the statistics of the datasets. It can be seen that
medium and normal are the majority categories in most projects.
The data imbalance problem of priority prediction is particularly
serious. For better empirical validation, we dropped the medium
category from the priority and the normal category from the
severity. That is, we perform binary classification aimed to help
developers prioritize fixing high-level bugs.

TABLE I. SUMMARY OF THE DATASETS

Products
Bug priority prediction Bug severity prediction

high medium low severe normal non-severe

AspectJ 107 477 9 114 378 101

Eclipse 1072 5301 122 1235 4473 787

JDT 1020 5163 91 690 4410 1174

SWT 230 3901 20 787 3090 274

Tomcat 981 53 22 114 636 306

B. Settings

A five-fold cross-validation is used. For each run, the dataset
is divided into five copies, of which 80% is used for training and
20% for testing, with each division ensuring that the ratio of
positive to negative instances is approximated. For each project,
the experiment was repeated 25 times, and the final results were
averaged to reduce the bias introduced by dividing the data
randomly.

The output dimension of three feature sets is set to 16. For
the CNN used in FSet-1 and FSet-2, a four-layer architecture is
employed, including an embedding layer, a convolutional layer,
a max-pooling layer and a fully connected layer. The batch size
is set to 32 and the epoch is 100, using Adam optimizer with a
learning rate of 0.001. For the DGI used in FSet-3, a two-layer
convolution is employed. The dimension of the hidden layer is
set to 64. The DGI is a full batch training with epochs of 200,
also using the Adam optimizer with a learning rate of 0.001. The
classifier is MLP. The F-measure and Accuracy are used as
evaluation metrics in this paper.

C. Analysis

1) RQ1: Which type of feature set performs better?
FSet-1 is the textual features for bug reports. For better

illustration, the preprocessed text is treated as the original
feature without CNN learning, namely origin. Tables II and III
show the prediction results. It can be seen that FSet-2 and FSet-
3 perform poorly, even worse than the origin. For priority
prediction, due to the extreme imbalance of the datasets, both
FSet-2 and FSet-3 predict into the majority class labels, which
could not construct a reasonable prediction model. For severity
prediction, the results are similar to the priority prediction.

2 https://github.com/yanxiao6/BugLocalization-dataset

Moreover, the performance of FSet-2 is much worse than that
of FSet-3.

2) RQ2: Is it helpful to consider the importance of
source code files?

Based on our assumption, if the source code file is a core file
with a high importance level in the project, then the bug reports
associated with it are likely to be of high priority or severity level.
Since the projects in the dataset used in this paper are not from
the same version, and many of them are test files, which cannot
be found in the official released version. Therefore, we can only
calculate the importance of the source code files from the
available data. Specifically, if the corresponding bug report has
a high or severe label, the importance value of all source code
files associated with it will be added by 10, while the medium
and normal will be added by 3, and the low and non-severe will
be added by 1. As shown in Figure 2, the importance value of
the source code file a.java associated with bug reports A, C and
D is 3+1+3=7. Similarly, after calculating the importance values
of all source code files, the importance of the bug reports can be
obtained indirectly. For example, the importance of bug report
A is the sum of the importance values of a.java, b.java, c.java,
and d.java. Tables IV and V show the results of priority and
severity prediction. △ represents the improvement considering
the importance of source code files.

Reports Source files

A
B
C
D

a.java b.java c.java d.java
b.java c.java d.java
a.java b.java d.java e.java
a.java c.java d.java

Priority

medium
high
low

medium

Source files

a.java 3+1+3=7
b.java
c.java
d.java
e.java

Importance

3+10+1=14
3+10+3=16

3+10+1+3=17
1

Reports

A 7+14+16+17=54
B
C
D

Importance

14+16+17=47
7+14+17+1=39

7+16+17=40
Figure 2. An example of importance calculation.

TABLE II. THE PERFORMANCE OF FEATURE SETS ON PRIORITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

origin
F1 0.518 0.506 0.518 0.515 0.496 0.511

ACC 0.874 0.826 0.853 0.870 0.965 0.878

FSet-1
F1 0.804 0.812 0.802 0.479 0.770 0.734

ACC 0.966 0.940 0.949 0.920 0.987 0.952

FSet-2
F1 0.480 0.473 0.479 0.479 0.494 0.481

ACC 0.922 0.898 0.918 0.920 0.978 0.927

FSet-3
F1 0.480 0.473 0.479 0.479 0.494 0.481

ACC 0.922 0.898 0.918 0.920 0.978 0.927

TABLE III. THE PERFORMANCE OF FEATURE SETS ON SEVERITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

origin
F1 0.606 0.560 0.592 0.537 0.555 0.570

ACC 0.612 0.583 0.617 0.638 0.658 0.622

FSet-1
F1 0.893 0.848 0.859 0.883 0.840 0.865

ACC 0.894 0.856 0.872 0.913 0.877 0.882

FSet-2
F1 0.398 0.390 0.428 0.427 0.421 0.413

ACC 0.514 0.610 0.629 0.742 0.729 0.645

FSet-3
F1 0.630 0.532 0.521 0.485 0.481 0.530

ACC 0.644 0.630 0.648 0.751 0.722 0.679

In priority prediction, using the importance feature for FSet-

1 reduced the overall prediction performance. In particular, the
negative impact was significant for AspectJ and Tomcat, and
SWT predicted all the labels into the majority class. Due to the
relatively sufficient data, the impact on Eclipse and JDT was
slight. For FSet-2, AspectJ, SWT and Tomcat, with insufficient
data, still failed to build a reasonable model. For Eclipse and JDT,
on the other hand, achieved some improvements. The impact of
importance feature for FSet-3 was not positive. In severity

prediction, using the importance feature for FSet-1 had a
significant negative impact on AspectJ, indicated by -32.4% F1
value, but the impact on other projects was not significant. The
importance feature showed a great improvement for FSet-2,
while it had little impact for FSet-3.

In short, the results show that the introduction of the
importance feature of the source code files does not benefit FSet-
1 and FSet-3, and even reduces the prediction performance,
while it is a great improvement for FSet-2. In addition, based on
the use of the source file importance feature, the performance of
FSet-2 is better than that of FSet-3. Moreover, the problems of
data imbalance and data insufficiency have a great impact on
prediction. Data imbalance leads to difficulties in constructing
reasonable model, while data insufficiency leads to large
fluctuations in prediction results.

TABLE IV. THE PERFORMANCE OF USING IMPORTANCE ON PRIORITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1

F1 0.480 0.829 0.780 0.479 0.572 0.628
△ -32.4% 1.8% -2.2% 0.0% -19.8% -10.6%

ACC 0.922 0.947 0.947 0.920 0.980 0.943
△ -4.3% 0.7% -0.3% 0.0% -0.7% -0.9%

FSet-2

F1 0.480 0.579 0.514 0.479 0.494 0.509
△ 0.0% 10.6% 3.5% 0.0% 0.0% 2.8%

ACC 0.922 0.908 0.921 0.920 0.978 0.930
△ 0.0% 1.0% 0.3% 0.0% 0.0% 0.3%

FSet-3

F1 0.480 0.472 0.476 0.479 0.494 0.480
△ 0.0% -0.1% -0.2% 0.0% 0.0% -0.1%

ACC 0.922 0.860 0.862 0.920 0.977 0.908
△ 0.0% -3.8% -5.6% 0.0% -0.1% -1.9%

TABLE V. THE PERFORMANCE OF USING IMPORTANCE ON SEVERITY

Feature
sets

metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1

F1 0.719 0.845 0.863 0.879 0.860 0.833
△ -17.4% -0.2% 0.4% -0.4% 2.0% -3.2%

ACC 0.751 0.854 0.875 0.910 0.891 0.856
△ -14.3% -0.1% 0.3% -0.4% 1.4% -2.6%

FSet-2

F1 0.656 0.616 0.542 0.606 0.576 0.599
△ 25.9% 22.6% 11.4% 17.9% 15.5% 18.7%

ACC 0.660 0.686 0.658 0.774 0.731 0.702
△ 14.5% 7.6% 2.9% 3.2% 0.2% 5.7%

FSet-3

F1 0.526 0.553 0.508 0.525 0.588 0.540
△ -10.3% 2.1% -1.3% 4.0% 10.7% 1.0%

ACC 0.564 0.625 0.586 0.616 0.736 0.625

△ -8.0% -0.5% -6.2%
-

13.5%
1.4% -5.4%

3) RQ3: Do the combined feature sets achieve better

results?
According to the results obtained above, FSet-2 and FSet-3 are

much less effective than FSet-1. Inspired by this, can hybrid
feature sets further improve prediction performance? In this RQ,
we explore three combinations: FSet-1+2, FSet-1+3 and FSet-
1+2+3. For example, given a bug report A, the source code files
associated with it are 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎 and
𝑎 . 𝑗𝑎𝑣𝑎 , where the importance of the source code files are
𝑖𝑚𝑝 , 𝑖𝑚𝑝 𝑖𝑚𝑝 , and 𝑖𝑚𝑝 . The dimension of FSet-1 is 𝑑 ,
while FSet-2 is 𝑑 and FSet-3 is 𝑑 . Then the combined
features of A are respectively expressed as follows:

𝒙𝒓 = 𝑥 , 𝑥 , … , 𝑥 (6)

𝒙𝒔 = 𝑥 , 𝑥 , … , 𝑥 (7)

𝒙𝒏 = 𝑥 , 𝑥 , … , 𝑥 (8)

𝒙𝒄𝟏 𝟐
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒)
(9)

𝒙𝒄𝟏 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒏𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟒)
(10)

𝒙𝒄𝟏 𝟐 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒 ⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝

∙ 𝒙𝒏𝟏, 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟑, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟒)

(11)

where 𝒙𝒓 ∈ ℝ is FSet-1, 𝒙𝒔 ∈ ℝ is FSet-2, 𝒙𝒏 ∈ ℝ is
FSet-3, 𝒙𝒄𝟏 𝟐

∈ ℝ is FSet-1+2, 𝒙𝒄𝟏 𝟑
∈ ℝ is

FSet-1+3, 𝒙𝒄𝟏 𝟐 𝟑
∈ ℝ is FSet-1+2+3. 𝑚𝑒𝑎𝑛(∙) is

the mean function, ⨁ is feature splicing symbol.

Tables VI and VII show the results of priority prediction
and severity prediction. △ shows an improvement compared to
FSet-1. The results show that the combined features are not as
effective as expected. FSet-1+3 and FSet-1+2+3 were
decreased greatly, indicating that FSet-3 was highly destructive
to FSet-1. Although FSet-1+2 decreased slightly and can
improve prediction performance in some cases, the enhancement
was not significant. Hence, blindly combining feature set for bug
prediction can easily lead to negative effects.

TABLE VI. THE PERFORMANCE OF COMBINED FEATURE SETS ON PRIORITY

Feature
sets

metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1+2

F1 0.679 0.815 0.781 0.479 0.581 0.667
△ -12.5% 0.4% -2.2% 0.0% -18.9% -6.7%

ACC 0.945 0.939 0.945 0.920 0.978 0.945
△ -2.1% -0.1% -0.4% 0.0% -0.9% -0.7%

FSet-1+3

F1 0.480 0.558 0.518 0.485 0.489 0.506

△ -32.4% -25.4%
-

28.4%
0.5% -28.1%

-
22.8%

ACC 0.922 0.869 0.904 0.886 0.959 0.908

△ -4.3% -7.1% -4.5%
-

3.4%
-2.8% -4.4%

FSet-
1+2+3

F1 0.480 0.595 0.532 0.496 0.499 0.520

△ -32.4% -21.6%
-

27.1%
1.6% -27.1%

-
21.3%

ACC 0.922 0.895 0.888 0.850 0.950 0.901

△ -4.3% -4.5% -6.1%
-

7.0%
-3.7% -5.1%

TABLE VII. THE PERFORMANCE OF COMBINED FEATURE SETS ON SEVERITY

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

FSet-1+2

F1 0.907 0.848 0.857 0.865 0.831 0.862
△ 1.4% 0.04% -0.2% -1.8% -0.9% -0.3%

ACC 0.908 0.856 0.869 0.899 0.869 0.880
△ 1.4% 0.1% -0.2% -1.4% -0.9% -0.2%

FSet-1+3

F1 0.872 0.706 0.788 0.748 0.806 0.784

△ -2.2% -14.2% -7.1% -13.6% -3.4% -8.1%
ACC 0.873 0.722 0.810 0.822 0.852 0.816
△ -2.1% -13.4% -6.1% -9.1% -2.5% -6.7%

FSet-1+2+3

F1 0.851 0.738 0.775 0.716 0.819 0.780
△ -4.3% -11.0% -8.4% -16.8% -2.1% -8.5%

ACC 0.860 0.758 0.794 0.777 0.863 0.810
△ -3.4% -9.8% -7.7% -13.6% -1.4% -7.2%

4) RQ4: Is the impact of sampling methods obvious?
From Table Ⅰ, it is clear that the data used for prediction are

obviously unbalanced and insufficient. For example, for SWT,
the ratio of majority class to minority class was as high as 15:1.
Extreme data imbalance could easily lead to the prediction
results completely biased towards the majority class, or the
results may be very unstable. Therefore, we further investigated

several data sampling methods to explore whether they could
alleviate the data imbalance problem: (1) SMOTE [15] (2) RUS
[16] (3) SMOTEENN [17] (4) AdaBoost [18] (5) GAN [19].
SMOTE is an over-sampling method, RUS is an under-sampling
method, SMOTEENN is a comprehensive method combining
over-sampling and under-sampling, and AdaBoost is an
integrated learning method. GAN is a neural network method
that constructs two networks, a generator and a discriminator.
These two models compete with each other so that the generator
generates instances closer to the ground truth, while the
discriminator is getting stronger to identify the fake instances
and ground truth.

TABLE VIII. THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON
PREDICTION

Feature sets metrics AspectJ Eclipse JDT SWT Tomcat avg

non-
sample

F1 0.804 0.812 0.802 0.479 0.770 0.734
ACC 0.966 0.940 0.949 0.920 0.987 0.952

SMOTE
F1 0.878 0.735 0.773 0.668 0.650 0.741

ACC 0.964 0.866 0.912 0.854 0.940 0.907

SMOTE-
ENN

F1 0.790 0.686 0.733 0.626 0.619 0.691
ACC 0.927 0.815 0.877 0.802 0.918 0.868

Adaboost
F1 0.814 0.801 0.789 0.732 0.827 0.793

ACC 0.966 0.938 0.948 0.943 0.988 0.957

GAN
F1 0.478 0.730 0.733 0.479 0.495 0.583

ACC 0.917 0.925 0.937 0.920 0.980 0.936

TABLE IX. THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON
SEVERITY

Feature sets metrics Eclipse JDT SWT Tomcat avg

non-sample
F1 0.848 0.859 0.883 0.840 0.858

ACC 0.856 0.872 0.913 0.877 0.879

SMOTE
F1 0.841 0.848 0.872 0.819 0.845

ACC 0.847 0.858 0.899 0.851 0.864

RUS
F1 0.864 0.865 0.893 0.842 0.866

ACC 0.864 0.865 0.893 0.843 0.866

SMOTEENN
F1 0.838 0.842 0.842 0.797 0.830

ACC 0.842 0.850 0.868 0.826 0.847

AdaBoost
F1 0.831 0.851 0.876 0.840 0.849

ACC 0.840 0.864 0.909 0.877 0.872

GAN
F1 0.876 0.860 0.896 0.894 0.882

ACC 0.884 0.869 0.920 0.917 0.897

Tables VIII and IX show the results. In priority prediction,
AdaBoost outperforms the other sampling methods, while GAN
is the worst. The advantages of SMOTE and SMOTEENN are
not outstanding, as indicated by both enhancement and reduction.
In severity prediction, GAN performs best, followed by RUS,
which is slightly less accurate than AdaBoost. AdaBoost,
SMOTE, and SMOTEENN showed an overall decrease in
performance. The results suggest that over-sampling and
comprehensive sampling may not be able to synthesize high-
quality instances without sufficient data. Instead, RUS can avoid
noise caused by synthesized instances when sufficient data is
available. Note that GAN performs the worst in priority
prediction but the best in severity prediction due to the fact that
GAN requires a large amount of data for training. Therefore, we
recommend using the GAN model for bug prediction when
training data is sufficient.

V. DISCUSSION

In this section, we discuss the shortcomings of the research
questions in our study.

Firstly, for FSet-2, we use CNN to extract the semantic
features of source code files. As we know, CNN is a supervised
model, the source code files associated with bug reports are
considered as buggy. Therefore, additional clean files need to be
fed to CNN for training along with the buggy files. We randomly
select the remaining source files in the project as clean instances,
which is consistent with the number of buggy instances.
However, this may have potential noise, which leads to poor
performance of FSet-2. First, not all the remaining source code
files in the project are clean files. Second, since the mapping
between bug reports and source code files is many-to-many, we
can only determine the priority and severity of bug reports, not
the source code files. Therefore, our treatment in this paper may
lead to the learned features deviating from the actual predictions.

Secondly, for FSet-3, building a software network [5] based
on the actual dependencies between code files may better
represent their relationships. Since the projects in the datasets
may across multiple versions, it is not possible to construct the
corresponding software network accurately, so we use a co-
occurrence network (COON) instead. Note that COON is
actually a virtual network, in which the relationship between
files is not completely real. Moreover, the stability of the
network may change greatly as the dataset expands. This could
also explain the unsatisfactory performance of the relational
features.

Finally, the results show that the importance feature of the
source code files is useful for FSet-2. In fact, our method
involves only some of the source files, but the importance of
these files is calculated from the perspective of the project, such
as Key Class Identification [20]. Hence, there is still some
deviation from the real situation.

VI. CONCLUSION

This study attempts to explore the impact of source code files
feature sets on bug prioritization and severity prediction.
Leveraging CNN and GNN to learn the semantic features of
source code files and the relational features between these files.
The experimental results show that the impact of learning feature
sets is not as expected. In addition, five typical sampling
methods are also introduced to analyze the impact on data
imbalance. The results show that the GAN model synthesizes the
highest quality instances with an adequate dataset, significantly
improving the results on F-measure and Accuracy. Next is
under-sampling, while over-sampling and comprehensive
sampling do not perform well. In future work, in order to further
validate the work of this paper accurately, we need to construct
a dataset suitable for the method of this paper. The effects caused
by other factors such as data quality should be excluded as much
as possible, so that the source code file feature sets can be fully
utilized.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Nos. 61832014, 61902114, 61977021),
and the Key R&D Programs of Hubei Province (No.
2021BAA184, 2021BAA188).

REFERENCES
[1] M. Mihaylov, M. Roper. Predicting the Resolution Time and Priority of

Bug Reports: A Deep Learning Approach, Ph.D. dissertation, Department
of Computer and Information Sciences, University of Strathclyde, 2019.

[2] Tian Y, Lo D, Sun C. Drone: Predicting priority of reported bugs by multi-
factor analysis[C]//2013 IEEE International Conference on Software
Maintenance. IEEE, 2013: 200-209.

[3] Sharma M, Kumari M, Singh R K, et al. Multiattribute based machine
learning models for severity prediction in cross project
context[C]//International Conference on Computational Science and Its
Applications. Springer, Cham, 2014: 227-241.

[4] Xiao Y, Keung J, Mi Q, et al. Improving bug localization with an
enhanced convolutional neural network[C]//2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2017: 338-347.

[5] C. Zeng, C. Y. Zhou, S. K. Lv, P. He and J. Huang, "GCN2defect: Graph
Convolutional Networks for SMOTETomek-based Software Defect
Prediction," 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), Wuhan, China, 2021, pp. 69-79.

[6] Sharma M, Kumari M, Singh R K, et al. Multiattribute based machine
learning models for severity prediction in cross project
context[C]//International Conference on Computational Science and Its
Applications. Springer, Cham, 2014: 227-241.

[7] Umer Q, Liu H, Sultan Y. Emotion based automated priority prediction
for bug reports[J]. IEEE Access, 2018, 6: 35743-35752.

[8] Ramay W Y, Umer Q, Yin X C, et al. Deep neural network-based severity
prediction of bug reports[J]. IEEE Access, 2019, 7: 46846-46857.

[9] Bani-Salameh H, Sallam M. A Deep-Learning-Based Bug Priority
Prediction Using RNN-LSTM Neural Networks[J]. E-Informatica
Software Engineering Journal, 2021, 15(1) DOI:10.37190/e-Inf210102.

[10] McIntosh S, Adams B, Nagappan M, et al. Mining co-change information
to understand when build changes are necessary[C]//2014 IEEE
International Conference on Software Maintenance and Evolution. IEEE,
2014: 241-250.

[11] Zhang J, Wang X, Zhang H, et al. A novel neural source code
representation based on abstract syntax tree[C]//2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019:
783-794.

[12] Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural
networks[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[13] Wang S, Liu T, Nam J, et al. Deep semantic feature learning for software
defect prediction[J]. IEEE Transactions on Software Engineering, 2018.

[14] Velickovic P, Fedus W, Hamilton W L, et al. Deep Graph Infomax[J].
ICLR (Poster), 2019, 2(3): 4.

[15] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority
over-sampling technique[J]. Journal of artificial intelligence research,
2002, 16: 321-357.

[16] Weiss G M. Foundations of imbalanced learning[J]. Imbalanced Learning:
Foundations, Algorithms, and Applications, 2013: 13-41.

[17] Lamari M, Azizi N, Hammami N E, et al. SMOTE–ENN-Based Data
Sampling and Improved Dynamic Ensemble Selection for Imbalanced
Medical Data Classification[M]//Advances on Smart and Soft Computing.
Springer, Singapore, 2021: 37-49.

[18] Ying C, Qi-Guang M, Jia-Chen L, et al. Advance and prospects of
AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.

[19] Sun Y, Jing X Y, Wu F, et al. Adversarial learning for cross-project semi-
supervised defect prediction[J]. IEEE Access, 2020, 8: 32674-32687.

[20] Pan W, Song B, Li K, et al. Identifying key classes in object-oriented
software using generalized k-core decomposition[J]. Future Generation
Computer Systems, 2018, 81: 188-202.

