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Abstract—Software systems generate a large number of bugs 
during their lifecycles. Managing and assigning these bug reports 
is a challenging task. Building prediction models for the priority 
or severity levels of bugs through bug reports can help developers 
prioritize highly urgent bugs. Traditional prediction models are 
based on the textual description information in bug reports. 
However, most of the description is little or no. According to the 
bug report, developers need to fix the corresponding source code 
files. If the corresponding source code file is a core module in a 
software system, the report is likely to have high-level assignment 
rights. Therefore, in this paper, we investigate the effect of using 
the source code file feature sets on classification performance. In 
addition, we evaluate the effect of different sampling methods on 
the data, namely SMOTE, RUS, SMOTEEN, Adaboost, and GAN. 
Extensive experiments were conducted on five open-source 
projects. The experimental results show that the source code file 
feature sets do not perform as well as the textual description 
features in bug reports. Besides, over-sampling methods do not 
alleviate the data imbalance problem in the case of insufficient 
data, while GAN performs best in the case of sufficient data. 

Keywords—bug priority; bug severity; bug report; source code; 
data imbalance 

I.  INTRODUCTION  

Throughout the software lifecycle, developers will receive a 
large number of bug reports. Once a bug report is committed and 
confirmed, the bug needs to be fixed in a timely manner. 
Different analyses can be performed based on the bug reports, 
including Bug Triage, Bug Localization, Bug-fix Time 
Estimation, predict defect attributes etc [1]. A bug report 
contains several attributes, such as bug id, summary, description, 
reporter, created date, fix version, status, priority, severity, in 
which the priority levels range from P1 (most important) to P5 
(least important), and the severity is categorized into blocker, 
critical, major, normal, minor, enhancement, and trivial. 
Priority is assigned from the developer's point of view, which 
indicates the urgency of fixing bugs. Severity is assigned from 
the user's point of view, which indicates the degree of impact on 
the use of software function [2]. 

Existing studies analyzed the text of bug reports by using 
machine learning methods to automatically predict priority or 
severity [3]. Given the excellence of deep learning in the field of 
natural language processing, researchers also explored      
various neural networks to further extract semantic information 
from bug reports [1, 6-9]. Unfortunately, if the bug reports 
provide insufficient or misleading information, the performance 
of the predictor will be greatly affected. Therefore, in addition to 

the textual features of bug reports, whether there are other 
appropriate features for bug prioritization and severity 
prediction becomes an open challenge. To this end, we will 
further consider the information of source code files. We assume 
that if a source code file is a core file in the project, then it has a 
higher level of importance. Once the file is defective, it is more 
likely to have a higher priority or severity. Leveraging neural 
networks to capture semantic and syntactic features from source 
files is widely used for bug localization [4] and defect prediction 
[5]. 

In addition, during bug repair, the co-change relationships 
between source files have been proved to be potentially valuable 
[10]. We assume that if two files are associated with a bug report 
at the same time, there will be some correlation between these 
two files. More occurrences together indicate a stronger 
relationship. Hence, we construct a co-occurrence network 
(COON) between source code files, and extract relational 
features of the source files by network embedding learning.  

The study aims at investigating the feasibility of source code 
feature sets mentioned above on bug prioritization and severity 
prediction, and analyzing the impact of different features on this 
task. To simplify the subsequent presentation, we use FSet-1 to 
represent the feature set learned from the textual information of 
the bug reports, FSet-2 to represent the semantic feature set of 
the source code files associated with the bug reports, and FSet-3 
to represent the relational feature set learned from the co-
occurrence network of the source code files. Extensive 
experiments were conducted on five open-source projects to 
answer the following research questions: 

RQ1: Which type of feature set performs better? 

RQ2: Is it helpful to consider the importance of source code 
files?  

RQ3: Do the combined feature sets achieve better results? 

RQ4: Is the impact of sampling methods obvious? 

The remainder of this paper is organized as follows. The 
related work is presented in Section II. The method is detailed in 
Section III. The evaluation and analysis are presented in Section 
IV. Finally, the conclusion is drawn in Section V. 

II. RELATED WORK  

Most of the existing models predict various attributes based 
on textual analysis of bug reports (e.g., summary and 
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description). Tian et al. [2] treated priority prediction as a linear 
regression problem rather than a classification problem. The 
priority level is an ordinal value rather than a categorical value, 
while classification will make a large difference between levels. 
Sharma et al. [3] evaluated the performance of different 
machine learning techniques such as SVM, Naive Bayes, and 
K-Nearest Neighbors in the priority prediction. Kumari et al. [6] 
took care of uncertainty by using entropy-based measures. 
Umer et al. [7] and Ramay et al. [8] proposed an automatic 
emotion-based prediction method for sentiment analysis of bug 
reports. Bani-Salameh et al. [9] used a five-layer RNN-LSTM 
neural network model for bug priority prediction. 

If the reporter provided an insufficient description of the bug, 
it is difficult to learn valuable features from it. As far as we know, 
few studies have explored bug prediction and severity in terms 
of the feature sets of source code. In fact, a bug report is often 
associated with at least one source code file that needs to be fixed. 
Source code files can be used to indirectly learn about potential 
bug features. The source code files are converted into Abstract 
Syntax Trees (ASTs). Then a tree-based neural network is used 
to extract semantic information. Compared to the source code, 
the ASTs ignore unnecessary details but still retain lexical and 
syntactic structure information [11]. 

With the wide use of complex networks in software 
engineering, a co-occurrence network is proposed in this paper 
inspired by this research trend. Considering that source code 
files are not independent, when two files are associated with a 
bug report at the same time, there is an association relationship 
between them, and a complex network is constructed based on 
this correlation. In fact, real-world networks are often more 
complex in that not only topological information is available, but 
also each node and edge has attributes. However, traditional 
network embedding methods are unsupervised and cannot utilize 
node attribute information. With the development of Graph 
Neural Networks (GNNs), a group of models has emerged 
specifically for learning graph structure data [12], which can 
smoothly incorporate node and edge attributes while learning the 
network structure to generate better robust representation. 

Unlike existing studies, we not only perform textual analysis 
of bug reports, but also consider semantic information of source 
code files and relational information based on co-occurrence 
network. Therefore, the feature sets in this paper are divided into 
three categories: textual features of bug reports; semantic 
features of source code files; and relational features of co-
occurrence networks. These three sets of features are then 
combined and applied to bug prioritization and severity 
prediction. 

III. APPROACH 

The workflow (cf. Figure. 1) comprises three parts: (1) FSet-
1 generation: extract the summary and description of bug reports, 
then use CNN to learn the textual features; (2) FSet-2 generation: 
convert source code files to ASTs, then use CNN to extract the 
code semantic features; (3) FSet-3 generation: construct a co-
occurrence network between source code files, then use GNN to 
learn the structural features. Finally, the three feature sets are 
combined in different ways and fed into the classifier for 
prediction. 
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Figure 1. Experimental workflow. 

A. FSet-1 generation 

The summary and description of each bug report are 
combined into a document, then all textual information is 
preprocessed. First, tokenize each word in the text sequences. 
Second, remove words without real meaning, such as "the", 
"and", "this", "that", etc. Finally, stem each word into basic 
words. For example, "working" and "worked" will be converted 
into "work". In addition, we further processed the tokens as 
treated in [4]. Since developers usually use compound words to 
name classes and methods. Therefore, according to CamelCase 
naming rules, compound words are split into separate real words. 
For example, "WorkbenchActionBuilder" is split into 
"Workbench", "Action" and "Builder". After preprocessing, 
each token is converted into a word vector using word2vec and 
then fed into CNN to extract textual features for bug reports. 

B. FSet-2 generation 

In this part, the open-source python package javalang1 is 
adopted to parse the source code files into ASTs. Three types of 
nodes were selected as in [13]: (1) nodes of method invocations 
and class instance creations, (2) declaration nodes, and (3) 
control-flow nodes. After parsing, each Java file is converted 
into a token sequence. Since CNN requires input integer vectors, 
each token is mapped to a unique integer. That is, the token 
sequence is converted into an integer vector. Since the length of 
the token sequence of each file is unequal, the dimensions of the 
converted integer vectors will be different. To keep the same 
dimension of each file vector, 0 is added at the end of the integer 
vector, which is equal to the length of the longest vector. Note 
that adding 0 will not affect the result. Moreover, some 
uncommon tokens are filtered out and only the tokens that 
appear more than three times are encoded. 

Suppose that there are 𝑛 Java source code files associated 
with all bug reports for project 𝑃, 𝑃 = {𝑓 , 𝑓 , … , 𝑓 }. After the 
above processing, the token sequence 𝑓 = {𝑡 , 𝑡 , … , 𝑡 } is 
extracted, then each token is mapped to an integer, i.e., 𝑓  is 
converted to a fixed-length integer vector 𝑓 ∈ ℝ , 𝑖 ∈ [1, 𝑛]. In 
the embedding layer, 𝑓  is converted to a real-valued vector 
matrix 𝑋 = {𝒙 , 𝒙 , … , 𝒙 }, 𝑋 ∈ ℝ × , where 𝒙 ∈ ℝ  is 
the embedding vector corresponding to the j-th token 𝑡  of 𝑓 . 

1 https://github.com/c2nes/javalang 



Since the source code files associated with the bug reports are 
defective files, clean source code files are also needed to be fed 
into the CNN for training together as positive instances. 
Therefore, positive instances are randomly selected from the 
remaining files in the project, keeping the same number of 
negative instances. After convolution and pooling layers, the 
FSet-2 is generated. 

C. FSet-3 generation 

Figure 1 also shows the construction of a co-occurrence 
network through a simple example with four bug reports A, B, 
C, and D. The source code files associated with these reports are 
listed on the right. Clearly, for A, B, and C, their associated 
source code files form three fully connected communities 
respectively, while the associated files of D connect them, thus 
forming a large co-occurrence network (COON). In COON, two 
files may co-occur frequently, so in order to distinguish the 
strength of the relationship between files, we use the co-
occurrence times as a weight. Note that the co-occurrence 
relationship is undirected in our context. 

After constructing COON, the relational features are learned 
by using a GNN model, which iteratively updates the 
representation of each node by aggregating the features of its 
neighboring nodes. This process is mainly divided into two steps. 
First, aggregate the features of neighboring information to obtain 
𝑎
( ), and then combine the neighboring features 𝑎( ) with the 

node features of the previous layer ℎ( ), in order to obtain the 
updated features. 

𝑎
( )

= 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸( )({ℎ
( )

: 𝑢 ∈ 𝑁(𝑣)}) (1) 

ℎ
( )

= 𝐶𝑂𝑀𝐵𝐼𝑁𝐸( )(ℎ
( )

, 𝑎
( )
) (2) 

where ℎ( )  is the vector of node 𝑣  at the 𝑘 -th layer. 
ℎ
( )

= 𝑋 . 𝑁(𝑣)  is the set of neighbors of node 𝑣 . 
𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(⋅)  and 𝐶𝑂𝑀𝐵𝐼𝑁𝐸(⋅) are the aggregation 
function and combination function respectively. 

 Given that the source code files are defective, and when 
there is only one class of instance labels, it is not possible to use 
a supervised model. However, adding additional instances 
would change the structure of the co-occurrence network. 
Therefore, we choose an unsupervised model DGI [14] to learn 
COON. Generating this type of feature set mainly consists of 
three steps: (1) constructing the network; (2) initializing the node 
attributes; and (3) using DGI to capture the topological structure 
information and generate relational features. DGI can learn both 
network relational and node attribute features. Since the original 
COON has no node attributes, the node attributes in the COON 
should be provided before training the DGI. In addition, rich 
node attributes allow DGI to be better trained. Consequently, the 
token vectors extracted from the source code are used as the 
initial node attributes. Finally, the network topology and node 
attributes are fed into DGI, and FSet-3 is output. 

IV. EXPERIMENTS AND ANALYSIS 

A. Datasets 

In this paper, we use five public datasets commonly used in 
Bug Localization2. We queried the bug priority and severity 
attributes from https://bugs.eclipse.org/bugs/ and 
https://bz.apache.org/bugzilla/ to label these datasets. It is well 

known that data imbalance is one of the problems in multi-class 
prediction. To accurately predict the labels for each class, a large 
amount of data is needed for training. The majority labels of bug 
reports are P3 or normal, which cannot be learned adequately for 
minor classes. Therefore, priority and severity levels are coarse-
grained into three categories. For priority, P1 and P2 are 
classified as high, P3 as medium, P4 and P5 as low. For severity, 
blocker, critical and major are classified as severe, normal as 
normal, minor, enhancement and trivial as non-severe. 

Table I gives the statistics of the datasets. It can be seen that 
medium and normal are the majority categories in most projects. 
The data imbalance problem of priority prediction is particularly 
serious. For better empirical validation, we dropped the medium 
category from the priority and the normal category from the 
severity. That is, we perform binary classification aimed to help 
developers prioritize fixing high-level bugs. 

TABLE I.  SUMMARY OF THE DATASETS 

Products 
Bug priority prediction Bug severity prediction 

high medium low severe normal non-severe 

AspectJ 107 477 9 114 378 101 

Eclipse 1072 5301 122 1235 4473 787 

JDT 1020 5163 91 690 4410 1174 

SWT 230 3901 20 787 3090 274 

Tomcat 981 53 22 114 636 306 

B. Settings 

A five-fold cross-validation is used. For each run, the dataset 
is divided into five copies, of which 80% is used for training and 
20% for testing, with each division ensuring that the ratio of 
positive to negative instances is approximated. For each project, 
the experiment was repeated 25 times, and the final results were 
averaged to reduce the bias introduced by dividing the data 
randomly. 

The output dimension of three feature sets is set to 16. For 
the CNN used in FSet-1 and FSet-2, a four-layer architecture is 
employed, including an embedding layer, a convolutional layer, 
a max-pooling layer and a fully connected layer. The batch size 
is set to 32 and the epoch is 100, using Adam optimizer with a 
learning rate of 0.001. For the DGI used in FSet-3, a two-layer 
convolution is employed. The dimension of the hidden layer is 
set to 64. The DGI is a full batch training with epochs of 200, 
also using the Adam optimizer with a learning rate of 0.001. The 
classifier is MLP. The F-measure and Accuracy are used as 
evaluation metrics in this paper. 

C. Analysis  

1) RQ1: Which type of feature set performs better?  
FSet-1 is the textual features for bug reports. For better 

illustration, the preprocessed text is treated as the original 
feature without CNN learning, namely origin. Tables II and III 
show the prediction results. It can be seen that FSet-2 and FSet-
3 perform poorly, even worse than the origin. For priority 
prediction, due to the extreme imbalance of the datasets, both 
FSet-2 and FSet-3 predict into the majority class labels, which 
could not construct a reasonable prediction model. For severity 
prediction, the results are similar to the priority prediction. 

2 https://github.com/yanxiao6/BugLocalization-dataset 



Moreover, the performance of FSet-2 is much worse than that 
of FSet-3. 

2) RQ2: Is it helpful to consider the importance of 
source code files?  

Based on our assumption, if the source code file is a core file 
with a high importance level in the project, then the bug reports 
associated with it are likely to be of high priority or severity level. 
Since the projects in the dataset used in this paper are not from 
the same version, and many of them are test files, which cannot 
be found in the official released version. Therefore, we can only 
calculate the importance of the source code files from the 
available data. Specifically, if the corresponding bug report has 
a high or severe label, the importance value of all source code 
files associated with it will be added by 10, while the medium 
and normal will be added by 3, and the low and non-severe will 
be added by 1. As shown in Figure 2, the importance value of 
the source code file a.java associated with bug reports A, C and 
D is 3+1+3=7. Similarly, after calculating the importance values 
of all source code files, the importance of the bug reports can be 
obtained indirectly. For example, the importance of bug report 
A is the sum of the importance values of a.java, b.java, c.java, 
and d.java. Tables IV and V show the results of priority and 
severity prediction. △ represents the improvement considering 
the importance of source code files.  
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Figure 2. An example of importance calculation. 

TABLE II.  THE PERFORMANCE OF FEATURE SETS ON PRIORITY 

Feature sets metrics AspectJ Eclipse  JDT SWT Tomcat avg 

origin 
F1 0.518  0.506  0.518  0.515  0.496  0.511  

ACC 0.874  0.826  0.853  0.870  0.965  0.878  

FSet-1 
F1 0.804  0.812  0.802  0.479  0.770  0.734  

ACC 0.966  0.940  0.949  0.920  0.987  0.952  

FSet-2 
F1 0.480  0.473  0.479  0.479  0.494  0.481  

ACC 0.922  0.898  0.918  0.920  0.978  0.927  

FSet-3 
F1 0.480  0.473  0.479  0.479  0.494  0.481  

ACC 0.922  0.898  0.918  0.920  0.978  0.927  

TABLE III.  THE PERFORMANCE OF FEATURE SETS ON SEVERITY 

Feature sets metrics AspectJ Eclipse  JDT SWT Tomcat avg 

origin 
F1 0.606  0.560  0.592  0.537  0.555  0.570  

ACC 0.612  0.583  0.617  0.638  0.658  0.622  

FSet-1 
F1 0.893  0.848  0.859  0.883  0.840  0.865  

ACC 0.894  0.856  0.872  0.913  0.877  0.882  

FSet-2 
F1 0.398  0.390  0.428  0.427  0.421  0.413  

ACC 0.514  0.610  0.629  0.742  0.729  0.645  

FSet-3 
F1 0.630  0.532  0.521  0.485  0.481  0.530  

ACC 0.644  0.630  0.648  0.751  0.722  0.679  

 
In priority prediction, using the importance feature for FSet-

1 reduced the overall prediction performance. In particular, the 
negative impact was significant for AspectJ and Tomcat, and 
SWT predicted all the labels into the majority class. Due to the 
relatively sufficient data, the impact on Eclipse and JDT was 
slight. For FSet-2, AspectJ, SWT and Tomcat, with insufficient 
data, still failed to build a reasonable model. For Eclipse and JDT, 
on the other hand, achieved some improvements. The impact of 
importance feature for FSet-3 was not positive. In severity 

prediction, using the importance feature for FSet-1 had a 
significant negative impact on AspectJ, indicated by -32.4% F1 
value, but the impact on other projects was not significant. The 
importance feature showed a great improvement for FSet-2, 
while it had little impact for FSet-3. 

In short, the results show that the introduction of the 
importance feature of the source code files does not benefit FSet-
1 and FSet-3, and even reduces the prediction performance, 
while it is a great improvement for FSet-2. In addition, based on 
the use of the source file importance feature, the performance of 
FSet-2 is better than that of FSet-3. Moreover, the problems of 
data imbalance and data insufficiency have a great impact on 
prediction. Data imbalance leads to difficulties in constructing 
reasonable model, while data insufficiency leads to large 
fluctuations in prediction results. 

TABLE IV.  THE PERFORMANCE OF USING IMPORTANCE ON PRIORITY 

Feature sets metrics AspectJ Eclipse  JDT SWT Tomcat avg 

FSet-1 

F1 0.480  0.829  0.780  0.479  0.572  0.628  
△ -32.4% 1.8% -2.2% 0.0% -19.8% -10.6% 

ACC 0.922  0.947  0.947  0.920  0.980  0.943  
△ -4.3% 0.7% -0.3% 0.0% -0.7% -0.9% 

FSet-2 

F1 0.480  0.579  0.514  0.479  0.494  0.509  
△ 0.0% 10.6% 3.5% 0.0% 0.0% 2.8% 

ACC 0.922  0.908  0.921  0.920  0.978  0.930  
△ 0.0% 1.0% 0.3% 0.0% 0.0% 0.3% 

FSet-3 

F1 0.480  0.472  0.476  0.479  0.494  0.480  
△ 0.0% -0.1% -0.2% 0.0% 0.0% -0.1% 

ACC 0.922  0.860  0.862  0.920  0.977  0.908  
△ 0.0% -3.8% -5.6% 0.0% -0.1% -1.9% 

TABLE V.  THE PERFORMANCE OF USING IMPORTANCE ON SEVERITY 

Feature 
sets 

metrics AspectJ Eclipse  JDT SWT Tomcat avg 

FSet-1 

F1 0.719  0.845  0.863  0.879  0.860  0.833  
△ -17.4% -0.2% 0.4% -0.4% 2.0% -3.2% 

ACC 0.751  0.854  0.875  0.910  0.891  0.856  
△ -14.3% -0.1% 0.3% -0.4% 1.4% -2.6% 

FSet-2 

F1 0.656  0.616  0.542  0.606  0.576  0.599  
△ 25.9% 22.6% 11.4% 17.9% 15.5% 18.7% 

ACC 0.660  0.686  0.658  0.774  0.731  0.702  
△ 14.5% 7.6% 2.9% 3.2% 0.2% 5.7% 

FSet-3 

F1 0.526  0.553  0.508  0.525  0.588  0.540  
△ -10.3% 2.1% -1.3% 4.0% 10.7% 1.0% 

ACC 0.564  0.625  0.586  0.616  0.736  0.625  

△ -8.0% -0.5% -6.2% 
-

13.5% 
1.4% -5.4% 

 
3) RQ3: Do the combined feature sets achieve better 

results?  
According to the results obtained above, FSet-2 and FSet-3 are 

much less effective than FSet-1. Inspired by this, can hybrid 
feature sets further improve prediction performance? In this RQ, 
we explore three combinations: FSet-1+2, FSet-1+3 and FSet-
1+2+3. For example, given a bug report A, the source code files 
associated with it are 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎 , 𝑎 . 𝑗𝑎𝑣𝑎  and 
𝑎 . 𝑗𝑎𝑣𝑎 , where the importance of the source code files are 
𝑖𝑚𝑝 , 𝑖𝑚𝑝  𝑖𝑚𝑝 , and 𝑖𝑚𝑝 . The dimension of FSet-1 is 𝑑 , 
while FSet-2 is 𝑑  and FSet-3 is 𝑑 . Then the combined 
features of A are respectively expressed as follows: 

𝒙𝒓 = 𝑥 , 𝑥 , … , 𝑥  (6) 

𝒙𝒔 = 𝑥 , 𝑥 , … , 𝑥  (7) 

𝒙𝒏 = 𝑥 , 𝑥 , … , 𝑥  (8) 



𝒙𝒄𝟏 𝟐
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒) 
(9) 

𝒙𝒄𝟏 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝 ∙ 𝒙𝒏𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟒) 
(10) 

𝒙𝒄𝟏 𝟐 𝟑
= 𝒙𝒓⨁𝑚𝑒𝑎𝑛 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟏 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟐 , 𝑖𝑚𝑝

∙ 𝒙𝒔𝟑 , 𝑖𝑚𝑝 ∙ 𝒙𝒔𝟒 ⨁𝑚𝑒𝑎𝑛(𝑖𝑚𝑝

∙ 𝒙𝒏𝟏, 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟐 , 𝑖𝑚𝑝 ∙ 𝒙𝒏𝟑, 𝑖𝑚𝑝

∙ 𝒙𝒏𝟒) 

(11) 

where 𝒙𝒓 ∈ ℝ  is FSet-1, 𝒙𝒔 ∈ ℝ  is FSet-2, 𝒙𝒏 ∈ ℝ  is 
FSet-3, 𝒙𝒄𝟏 𝟐

∈ ℝ  is FSet-1+2, 𝒙𝒄𝟏 𝟑
∈ ℝ  is 

FSet-1+3, 𝒙𝒄𝟏 𝟐 𝟑
∈ ℝ  is FSet-1+2+3. 𝑚𝑒𝑎𝑛(∙)  is 

the mean function, ⨁ is feature splicing symbol. 

Tables VI and VII show the results of priority prediction 
and severity prediction. △ shows an improvement compared to 
FSet-1. The results show that the combined features are not as 
effective as expected. FSet-1+3 and FSet-1+2+3 were 
decreased greatly, indicating that FSet-3 was highly destructive 
to FSet-1. Although FSet-1+2 decreased slightly and can 
improve prediction performance in some cases, the enhancement 
was not significant. Hence, blindly combining feature set for bug 
prediction can easily lead to negative effects.  

TABLE VI.  THE PERFORMANCE OF COMBINED FEATURE SETS ON PRIORITY 

Feature 
sets 

metrics AspectJ Eclipse  JDT SWT Tomcat avg 

FSet-1+2 

F1 0.679  0.815  0.781  0.479  0.581  0.667  
△ -12.5% 0.4% -2.2% 0.0% -18.9% -6.7% 

ACC 0.945  0.939  0.945  0.920  0.978  0.945  
△ -2.1% -0.1% -0.4% 0.0% -0.9% -0.7% 

FSet-1+3 

F1 0.480  0.558  0.518  0.485  0.489  0.506  

△ -32.4% -25.4% 
-

28.4% 
0.5% -28.1% 

-
22.8% 

ACC 0.922  0.869  0.904  0.886  0.959  0.908  

△ -4.3% -7.1% -4.5% 
-

3.4% 
-2.8% -4.4% 

FSet-
1+2+3 

F1 0.480  0.595  0.532  0.496  0.499  0.520  

△ -32.4% -21.6% 
-

27.1% 
1.6% -27.1% 

-
21.3% 

ACC 0.922  0.895  0.888  0.850  0.950  0.901  

△ -4.3% -4.5% -6.1% 
-

7.0% 
-3.7% -5.1% 

TABLE VII.  THE PERFORMANCE OF COMBINED FEATURE SETS ON SEVERITY 

Feature sets metrics AspectJ Eclipse  JDT SWT Tomcat avg 

FSet-1+2 

F1 0.907  0.848  0.857  0.865  0.831  0.862  
△ 1.4% 0.04% -0.2% -1.8% -0.9% -0.3% 

ACC 0.908  0.856  0.869  0.899  0.869  0.880  
△ 1.4% 0.1% -0.2% -1.4% -0.9% -0.2% 

FSet-1+3 

F1 0.872  0.706  0.788  0.748  0.806  0.784  

△ -2.2% -14.2% -7.1% -13.6% -3.4% -8.1% 
ACC 0.873  0.722  0.810  0.822  0.852  0.816  
△ -2.1% -13.4% -6.1% -9.1% -2.5% -6.7% 

FSet-1+2+3 

F1 0.851  0.738  0.775  0.716  0.819  0.780  
△ -4.3% -11.0% -8.4% -16.8% -2.1% -8.5% 

ACC 0.860  0.758  0.794  0.777  0.863  0.810  
△ -3.4% -9.8% -7.7% -13.6% -1.4% -7.2% 

 
4) RQ4: Is the impact of sampling methods obvious?  
From Table Ⅰ, it is clear that the data used for prediction are 

obviously unbalanced and insufficient. For example, for SWT, 
the ratio of majority class to minority class was as high as 15:1. 
Extreme data imbalance could easily lead to the prediction 
results completely biased towards the majority class, or the 
results may be very unstable. Therefore, we further investigated 

several data sampling methods to explore whether they could 
alleviate the data imbalance problem: (1) SMOTE [15] (2) RUS 
[16] (3) SMOTEENN [17] (4) AdaBoost [18] (5) GAN [19]. 
SMOTE is an over-sampling method, RUS is an under-sampling 
method, SMOTEENN is a comprehensive method combining 
over-sampling and under-sampling, and AdaBoost is an 
integrated learning method. GAN is a neural network method 
that constructs two networks, a generator and a discriminator. 
These two models compete with each other so that the generator 
generates instances closer to the ground truth, while the 
discriminator is getting stronger to identify the fake instances 
and ground truth. 

TABLE VIII.  THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON 
PREDICTION 

Feature sets metrics AspectJ Eclipse  JDT SWT Tomcat avg 

non- 
sample 

F1 0.804  0.812  0.802  0.479  0.770  0.734  
ACC 0.966  0.940  0.949  0.920  0.987  0.952  

SMOTE 
F1 0.878  0.735  0.773  0.668  0.650  0.741  

ACC 0.964  0.866  0.912  0.854  0.940  0.907  

SMOTE- 
ENN 

F1 0.790  0.686  0.733  0.626  0.619  0.691  
ACC 0.927  0.815  0.877  0.802  0.918  0.868  

Adaboost 
F1 0.814  0.801  0.789  0.732  0.827  0.793  

ACC 0.966  0.938  0.948  0.943  0.988  0.957  

GAN 
F1 0.478  0.730  0.733  0.479  0.495  0.583  

ACC 0.917  0.925  0.937  0.920  0.980  0.936  

TABLE IX.  THE PERFORMANCE OF DIFFERENT SAMPLING METHODS ON 
SEVERITY 

Feature sets metrics Eclipse  JDT SWT Tomcat avg 

non-sample 
F1 0.848  0.859  0.883  0.840  0.858  

ACC 0.856  0.872  0.913  0.877  0.879  

SMOTE 
F1 0.841  0.848  0.872  0.819  0.845  

ACC 0.847  0.858  0.899  0.851  0.864  

RUS 
F1 0.864  0.865  0.893  0.842  0.866  

ACC 0.864  0.865  0.893  0.843  0.866  

SMOTEENN 
F1 0.838  0.842  0.842  0.797  0.830  

ACC 0.842  0.850  0.868  0.826  0.847  

AdaBoost 
F1 0.831  0.851  0.876  0.840  0.849  

ACC 0.840  0.864  0.909  0.877  0.872  

GAN 
F1 0.876  0.860  0.896  0.894  0.882  

ACC 0.884  0.869  0.920  0.917  0.897  

 

Tables VIII and IX show the results. In priority prediction, 
AdaBoost outperforms the other sampling methods, while GAN 
is the worst. The advantages of SMOTE and SMOTEENN are 
not outstanding, as indicated by both enhancement and reduction. 
In severity prediction, GAN performs best, followed by RUS, 
which is slightly less accurate than AdaBoost. AdaBoost, 
SMOTE, and SMOTEENN showed an overall decrease in 
performance. The results suggest that over-sampling and 
comprehensive sampling may not be able to synthesize high-
quality instances without sufficient data. Instead, RUS can avoid 
noise caused by synthesized instances when sufficient data is 
available. Note that GAN performs the worst in priority 
prediction but the best in severity prediction due to the fact that 
GAN requires a large amount of data for training. Therefore, we 
recommend using the GAN model for bug prediction when 
training data is sufficient. 

V. DISCUSSION 

In this section, we discuss the shortcomings of the research 
questions in our study. 



Firstly, for FSet-2, we use CNN to extract the semantic 
features of source code files. As we know, CNN is a supervised 
model, the source code files associated with bug reports are 
considered as buggy. Therefore, additional clean files need to be 
fed to CNN for training along with the buggy files. We randomly 
select the remaining source files in the project as clean instances, 
which is consistent with the number of buggy instances. 
However, this may have potential noise, which leads to poor 
performance of FSet-2. First, not all the remaining source code 
files in the project are clean files. Second, since the mapping 
between bug reports and source code files is many-to-many, we 
can only determine the priority and severity of bug reports, not 
the source code files. Therefore, our treatment in this paper may 
lead to the learned features deviating from the actual predictions. 

Secondly, for FSet-3, building a software network [5] based 
on the actual dependencies between code files may better 
represent their relationships. Since the projects in the datasets 
may across multiple versions, it is not possible to construct the 
corresponding software network accurately, so we use a co-
occurrence network (COON) instead. Note that COON is 
actually a virtual network, in which the relationship between 
files is not completely real. Moreover, the stability of the 
network may change greatly as the dataset expands. This could 
also explain the unsatisfactory performance of the relational 
features. 

Finally, the results show that the importance feature of the 
source code files is useful for FSet-2. In fact, our method 
involves only some of the source files, but the importance of 
these files is calculated from the perspective of the project, such 
as Key Class Identification [20]. Hence, there is still some 
deviation from the real situation. 

VI. CONCLUSION 

This study attempts to explore the impact of source code files 
feature sets on bug prioritization and severity prediction. 
Leveraging CNN and GNN to learn the semantic features of 
source code files and the relational features between these files. 
The experimental results show that the impact of learning feature 
sets is not as expected. In addition, five typical sampling 
methods are also introduced to analyze the impact on data 
imbalance. The results show that the GAN model synthesizes the 
highest quality instances with an adequate dataset, significantly 
improving the results on F-measure and Accuracy. Next is 
under-sampling, while over-sampling and comprehensive 
sampling do not perform well. In future work, in order to further 
validate the work of this paper accurately, we need to construct 
a dataset suitable for the method of this paper. The effects caused 
by other factors such as data quality should be excluded as much 
as possible, so that the source code file feature sets can be fully 
utilized. 
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