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Abstract—As federated learning (FL) becomes more exten-
sively employed, it attracts an increasing number of scholars and
practitioners. In contrast to traditional decentralized machine
learning approaches that acquire users’ raw data, FL gathers
locally updated gradients, protecting their privacy. However,
different users may have disparate data distributions, resulting
in underperformance of the federated model. It is beneficial
to adapt the federated model to various data distributions.
Numerous personalisation approaches have been examined, but
most of them are limited to a single device with minimal data,
making them susceptible to bias and overfitting. In fact, the data
distributions of certain users are similar, and these similarities
can be leveraged to increase the efficacy of personalisation. In this
research, we describe a sparsity-based clustering method, as well
as a federated personalisation strategy based on it. Our method
mitigates the impact of non-IID data and generates more accurate
local models. The trials reveal that it outperforms several of its
counterparts.

Index Terms—Federated Learning, Privacy, Personalisation,
Clustering

I. INTRODUCTION

Increasingly, internet-connected devices are becoming an
integral part of people’s daily life. During their operation,
they create a significant amount of data. Alough this data
is of immense financial worth, most users don’t want their
privacy to be abused. It’s meaningful to exploit local resources
to collaboratively train machine learning (ML) models while
keeping data on the devices. Federated learning [1] satisfies
this requirement for it only requires participants to upload their
locally determined gardiends to a sever and then aggregate
them. The most well-known aggregation algorithm is the
Federated Average (FedAvg), which simply averages each
user’s gradients. And vanilla FL refers to FL using FedAvg.
However, the global model generated by vanilla FL is usually
not satisfying for a specific user, because data is usually Non-
independently and identically distributed(non-IDD) between
clients [2].

A wealth of ways have been presented to solve the difficul-
ties that data heterogeneity poses for FL. The global model
can be improved by, for instance, retraining its parameters
using input from a single user to produce a unique local
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model [3]. Yu et al. [4] introduced two further ways of
personalization, namely multi-task learning and knowledge
distillation. In addition, Arivazhagan et al. [5] suggested a
federated learning strategy with personalization layers.

While all of these tactics contribute to personalisation,
they all suffer from the same disadvantage: insufficient data.
As a result, scholars investigated the feasibility of using
federated approaches to indirectly augment the data used for
personalisation. Liu et al. [7] describes a method that groups
clients based on their data distribution, and use FedAvg within
clusters to personalize the global model. Nonetheless, it was
assumed that clients belonging to the same cluster would have
the same data distribution, which occurs infrequently.

Clients’ data distributions are similar but not identical, i.e.,
clients’ preferences are consistent in general but varied in
specifics. According to Liu et al. [7] the sparsity of an input
image’s feature map is often unique and may be utilized as
a representation of the image. Simultaneously, this form of
data representation is privacy-protective, as it conceals the
underlying data. We have taken this idea and created some
beneficial changes.

In this research, we offer a privacy-preserving federated
personalisation technique to mitigates non-IID impact of FL.
To begin, we transform the data distribution of each client
into a sparsity vector. Then, we cluster these sparsity vectors
to achieve client clustering. Following that, federated person-
alisation occurs within each cluster.

Our technique implemented federated learning at a finer
grain, allowing clients in the same cluster to exchange critical
knowledge without sacrificing their identity. Each client can
obtain a model developed specifically for them. This work’s
contribution can be summarized as follows:

• We propose a privacy-preserving clustering method based
on vector representations of clients’ data distributions.

• Our strategy allows for some variation in the data distri-
bution of clients within the same cluster, which is more
practical.

• To maximize the effect of personalisation, we innova-
tively employ a FL approach with personalisation layers
within clusters.

• We ran multiple relevant experiments and found that our
technique outperforms its competitors.



The remainder is structured as follows: Section II provides
background information. Section III elaborates on the pro-
posed method. Section IV details the experiments and their
outcomes. Additionally, Section V discusses related work.
Section VI concludes and suggests some potential directions
worth pursuing.

II. PRELIMINARIES

As a starting point, this section gives background informa-
tion on the concepts of sparsity, clustering, and personalisation
in order to aid in the comprehension of the technique we are
proposing.

A. Sparsity

Sparsity is a numerical value that indicates the percentage
of zeros in a matrix. It is frequently used to accelerate the
inference process of Convolutional Neural Networks (CNNs)
[10]. The first instance of channel-wise sparsity being used
for data representation has appeared in [7]. A sparsity vector
is constructed as follows, vk represents the sparsity of the kth
channel.

V = {v1, v2, v3, v4, ..., vk−1, vk}

While feature maps are frequently used to portray raw
data, they reveal too much fundamental information and are
vulnerable to privacy leaks. In comparison, it is nearly impos-
sible to deduce sufficient knowledge from a sparsity vector,
offering a higher level of privacy protection. On the other hand,
this representation format also contributes to the reduction of
communication and processing overhead, as a sparsity vector
is a number that can be transferred and calculated rapidly.

B. Clustering

Clustering is a technique for grouping similar objects to-
gether, with the core issue being determining how to measure
similarity. There are a variety of distances that can be used to
estimate similarity. Among these, Euclidean Distance [10] is
a straightforward yet widely used one. The Euclidean distance
between two vectors is calculated as follows:

Dist(Va, Vb) =

√√√√j=k∑
j=1

(V
(j)
a − V

(j)
b )2 (1)

Va and Vb denote vectors, while V
(j)
a and V

(j)
b denote the

jth component of Va and Vb, respectively.
Kmeans is a well-known technique for clustering data based

on Euclidean distance. It initially selects k points as centroids
and then groups the points closest to the centroid with them.
The cluster centroid is iteratively updated until the total
distance between it and the points inside the cluster no longer
decreases. At this point, the clustering results are obtained.

C. Personalisation

FL collects and aggregates local gradients from participants
during each communication round in order to update the
global model. When users’ data distributions are comparable,
the global model easily converges and demonstrates superior

performance versus the local models. However, this is not
always the case. Once data distribution is highly variable, the
global model typically underperforms.

A bulk of academics have examined the difficulties inherent
in applying federated learning to heterogeneous data sources.
A frequently used method is to further personalize the global
model. Personalisation, in general, refers to optimization tech-
niques that make the federated global model better suited to
local clients.

III. APPROACH

This section details our strategy. For starters, we demon-
strate how to generate sparsity vectors from the user’s raw data
which consist of images with different classes. Following that,
we describe the clustering procedure using sparsity vectors.
Finally, we describe the federated cluster-wise personalisation
technique.

A. Generation of sparsity vectors

Prior to constructing a sparsity vector for a client, we must
first determine the sparsity of each image on that client. The
sparsity of an image is computed as shown in Figure 1.

Fig. 1. The process of transforming a single image into a sparsity vector.

For feature extraction, we employ the CNN structure. CNNs
are composed of multiple layers of neurons, with each layer
producing a feature map. We calculate the sparsity of fea-
ture maps produced by Rectified Linear Unit (ReLU) layers
because ReLU layers set a section of neurons’ outputs to
zero, resulting in sparse feature maps. The VGG [8] network

Fig. 2. All data are arranged in a matrix by their sparsity vectors, and the
first dimension of this matrix is averaged to generate a vector representing
the data distribution..

stacked small convolutional kernels instead of large ones
repeatedly, increasing the network’s depth while maintaining
the same field of perception, and thereby improving the
network’s capacity to extract features. VGG-11 is the simpleset



VGG network. We replace the original fully connected layers
of VGG-11 with a global average pooling layer, and then
use it as the feature extractor. Feature maps become more
representive with the modified VGG-11 for it establishes a
direct connection between feature maps and classes.

Additionally, we take the first three ReLU layers as the
extraction layers rather than a single one to enhance the
extraction. Feature maps from multiple ReLU layers do not
necessarily have the same number of channels, so we picked
k common channels to calculate a sparsity vector.

As a result, the sparsity vectors from separate layers become
identical in size and can be averaged into one. We will obtain
a n∗k dimensional sparsity matrix for a user with n data. A
one-dimensional sparsity vector with k elements is created by
averaging the sparsity matrix over the first dimension. Figure
2 depicts the process of expressing clients’ data as sparsity
vectors.

B. Clustering Based on Sparsity Vectors

The concept of sparsity-based clustering lies at the heart
of our approach. With respect to this idea, it was first put
forward by Liu et al. [7]. According to them, when the distance
between two sparsity vectors is smaller than a certain thresh-
old, they are considered similar. However, it’s a challenge
to determine this crucial hyperparameter in practice. It can
be counterproductive if the clustering result is inaccurate.
Considering the clustering categories are less extensive than
the threshold, we employ k-means clustering to obtain better
results.

Fig. 3. Kmeans is performed based on sparsity vectors, and then FedPerC is
conducted based on clusters.

The sparsity vector representing a client is computed using
all its data. Then we compute the Euclidean Distance between
each pair of vectors and then cluster them using the k-means
algorithm. Based on the clustering results, we ran FedPerC
to personalise the federated global model that was previously
trained. This procedure is depicted in Figure 3. FedPerC is a
cluster-based algorithm for federated personalization that will
be talked about in the next section.

For clustering, k is critical. If k is set too high, clustering
will be less successful, and if set too low, the benefits of
federated learning will be missed. We can choose k according
to our prior understanding of the dataset. If no prior knowledge
exists, we can do several trials with randomly chosen clients
to determine the best value of k and then apply it to all clients.

C. Federated Personalisation within Clusters

We expand personalisation from a single device to all
devices inside a cluster, and we refer to this approach as
FedPerC. To take use of the similarities in data distributions of
users inside a cluster without losing sight of their differences,
we split the model in two. The concept is derived from [5].
W

(k)
B,i and W

(k)
P,i signifiy the base layer and personalisation

layer parameters of client i at the kth training round, respec-
tively. W (k)

B,i(W
(k)
P,i ) denote the entire model consist of this two

part. LocalUpdate function refers to the training process on a
single device. W (k)

L,i donate the local model of client i at the
kth training round. A formal description of FedPerC is given
in Algorithm 1.

Algorithm 1 FedPerC
Input: Di-the data of the ith client
C-clusters of clients
Wg-federated global model
N -training rounds
Output: Wl-personalised local models
1: Initialisation: Wl ←Wg

2: for k = 0,1,2,...,N-1 do
3: for c in C do
4: for i in c do
5: W

(k)
l,i ← LocalUpdate(W (k−1)

l,i , Di)
6: W

(k)
B,i(W

(k)
P,i )←W

(k)
l,i

7: Aggregate: W (k)
B,c ←

∑c
i=1 W

(k)
B,i

8: for i in c do
9: W

(k)
l,i ←W

(k)
B,c(W

(k)
P,i )

10: return Wl to local clients

Only the weights of base layers must be uploaded to the
parameter server throughout the personalization process, the
weights of personalization layers remain local. In Figure 4,
we illustrate the process of personalizing within clusters.

Fig. 4. Users within a cluster share the common base layers, and their
personalisation layers can be adapted to individual data.

A formal description of the personalised goals is as follows:
Suppose Mg donates the global model trained federally on
data from all clients and M i

l denotes the local model of the
ith client after personalisation. The number of clients is n, and
Ci represents the cluster to which the ith client belongs. The
goal of FedPerC is to update Mg with the assistance of Ci



TABLE I
ACHIEVED ACCURACY (%) ON CIFAR-100 OF THE BASELINE AND DIFFERENT PERSONALIZATION METHODS USING RESNET34.

Method client1 client2 client3 client4 client5 client6 client7 client8 client9 client10
BaseLine 45.17 41.39 43.18 41.11 41.67 35.83 38.33 39.72 38.06 41.39
FineTune 64.49 61.39 64.49 59.44 64.17 62.50 61.67 63.89 64.44 62.50

PFA 63.92 57.50 65.63 58.33 67.22 63.89 60.83 63.06 61.94 64.17
Ours 65.34 65.28 65.06 63.06 68.89 65.56 63.89 64.72 65.28 65.56

Method client11 client12 client13 client14 client15 client16 client17 client18 client19 client20
BaseLine 37.78 41.94 40.56 38.06 34.44 43.06 39.17 44.47 41.76 41.76
FineTune 56.94 62.22 60.2 58.33 57.22 65.00 59.17 64.24 63.92 68.47

PFA 58.33 64.17 59.44 60.56 60.56 67.50 58.61 66.86 63.07 63.64
Ours 61.39 65.83 61.39 62.50 61.67 67.50 63.61 70.35 66.19 70.17

TABLE II
ACHIEVED ACCURACY (%) ON CIFAR-100 OF THE BASELINE AND DIFFERENT PERSONALIZATION METHODS USING MOBILENETV1.

Method client1 client2 client3 client4 client5 client6 client7 client8 client9 client10
BaseLine 37.22 33.33 34.38 31.11 38.33 35.83 35.56 40.29 37.79 41.68
FineTune 66.48 61.39 62.22 61.11 66.39 65.57 66.11 60.56 63.33 63.89

PFA 65.63 62.78 63.35 61.11 65.56 66.39 64.72 63.89 66.39 60.00
Ours 68.75 65.56 65.34 65.56 70.56 68.06 68.33 65.56 67.50 69.44

Method client11 client12 client13 client14 client15 client16 client17 client18 client19 client20
BaseLine 37.50 41.11 35.00 29.44 33.33 41.11 34.44 40.70 40.63 31.82
FineTune 58.33 63.33 60.28 56.11 58.61 62.78 57.50 64.54 60.51 63.64

PFA 60.56 57.22 59.17 53.61 57.50 63.33 60.56 67.73 60.23 64.21
Ours 62.50 65.56 63.06 58.61 63.33 66.94 63.61 69.19 63.92 67.33

and generate a personalised model M i
l . The following is the

objective function:

min

n∑
i=0

L(Di, Ci,Mg) (2)

where L denotes the loss function, and in this work we use
the cross-entropy loss.

IV. EXPERIMENT

Detailed descriptions of the experimental setup, including
the datasets and models used, as well as the implementation
details and methodologies for comparison, are provided in this
part.

A. Settings

On two widely used network architectures, ResNet [11]
and MobileNet [12], we conducted experiments to validate
our technique. ResNet addresses the issue of gradient van-
ishing through a residual structure, improving performance.
MobileNet pioneered the notion of depthwise separable con-
volution, drastically reducing model parameters and making
itself suitable for low-resource mobile devices. We employed
ResNet34 and MobileNetV1 on the CIFAR-10 and CIFAR-100
datasets [6], respectively. They are both image classification
datasets, with 10 and 100 categories, respectively. Addition-
ally, we implement our strategy in Python using PyTorch [13].

At first, we simulate a federated environment. To be more
precise, we simulate 20 clients and 5 clients roughly belonging
to a type of distribution for each dataset. For clients from
CIFAR-10 that are expected to be drawn from the same
distribution, 80% of their data came from two common
categories and 20% from a random category. CIFAR-100 is
processed similarly, with similar clients sharing twenty classes

of data and holding an additional five classes of data. Thus,
four distinct data distributions correspond to four clusters.
Furthermore, to mimic the finite nature of client data, we limit
the quantity of data available to each client to no more than
1000.

Experiments was conducted to determine the values of the
hyperparameters. The final experimental parameters are as
follows: 50 and 30 rounds were conducted respectively for
training the federated model and personalizing. The batch size
and local epochs are set to 64 and 4, while the learning rate and
momentum are set to 0.01 and 0.5. The number of channels
used for feature extraction is 32, and the indexes of the ReLU
layers involved are 0, 1, 2. In federated personalization, the
final fully connected layer serves as the personalization layer
for both networks.

B. Results

Principal component analysis (PCA), a dimension reduction
technique, was used to visualize the clustering. In Figure 5,
we plot these reduced two-dimensional points to visualize the
clustering, with different colors signifying different clusters.
Figure 6 depicts the process of federally training a global

Fig. 5. Visualization of clustering on CIFAR-10(left) and CIFAR-100(right).



model on the CIFAR-100 dataset using ResNet34 and Mo-
bileNetV1. As can be observed, the heterogeneous distribution
of the data causes the global model to over-fit, necessitating
personalisation. It can be observed that each cluster contains 5

Fig. 6. The ResNet34 and MobileNetV1 training processes on CIFAR-100.

clients, and different clusters are spread in different positions
in space. The clustering findings demonstrate that our approach
matches our expectations.

we use the global model’s test accuracy to establish a
baseline for each client. The global model is then optimized
using a variety of personalization methods, including finetune,
PFA, and FedPerC. Fine-tuning is a popular migrating learning
strategy that retrains all or part of the parameters. In this
case, we refer to it as ”retraining all parameters.” And it
represents the personalisation effect on a single device. PFA
is a framework introduced in paper [7] that organizes clients
first and then personalizes within groups with the FedAvg
algorithm.

TABLE III
THE CLUSTER-LEVEL AVERAGE ACCURACY AND OVERALL AVERAGE

ACCURACY OF RESNET34 ON CIFAR-100.

Method cluster1 cluster2 cluster3 cluster4 Avg
BaseLine 42.50 38.67 38.56 42.04 40.44
FineTune 62.28 61.56 58.61 62.58 61.26

PFA 61.66 62.50 61.65 61.39 61.80
Ours 65.52 65.00 62.56 67.56 65.16

TABLE IV
THE CLUSTER-LEVEL AVERAGE ACCURACY AND OVERALL AVERAGE

ACCURACY OF MOBILENETV1 ON CIFAR-100.

Method cluster1 cluster2 cluster3 cluster4 Avg
BaseLine 34.87 38.23 35.27 37.74 36.53
FineTune 63.52 63.89 59.33 61.79 62.13

PFA 64.12 64.28 57.61 63.21 62.31
Ours 67.15 67.78 62.61 66.20 65.94

During the experiment, each approach is run three times,
and the results of the best performing rounds are averaged
as a reflection of the method’s performance. Table I and
Table II demonstrate experimental findings. When compared
to alternative localization approaches, we can see that our
approach provides a variable degree of accuracy enhancement
to each client. In Table III and Table IV, we display the average
accuracy within and across clusters. The findings indicate the
superiority of our strategy.

TABLE V
THE IMPACT OF CLUSTERING ON RESNET34’S PERFORMANCE ON

CIFAR-100.

Client
Number

Random
Clustering

No
Clustering

Sparsity-based
Clustering

client1 63.07 61.93 65.34
client2 60.83 63.06 65.28
client3 61.65 61.08 65.06
client4 61.11 60.28 63.06
client5 63.33 66.39 68.89
client6 60.83 59.72 65.56
client7 59.17 58.06 63.89
client8 58.61 61.39 64.72
client9 61.11 62.50 65.28
client10 62.22 61.94 65.56
client11 56.67 56.11 61.39
client12 61.11 61.67 65.83
client13 57.78 58.61 61.39
client14 54.44 60.00 62.50
client15 55.56 54.72 61.67
client16 64.17 65.28 67.50
client17 60.00 58.06 63.61
client18 61.92 63.66 70.35
client19 59.38 60.23 66.19
client20 63.07 63.35 70.17

Avg 60.30 60.90 65.16

Furthermore, to see whether clustering affects the impact
of personalisation, we examined the experimental findings of
ResNet34 on CIFAR-100 under three conditions: clustering,
no clustering, random clustering. Table V displays detailed
experimental data.

The experimental investigations indicate that random clus-
tering has a comparable or perhaps slightly lower personalising
impact than no clustering. When employing our clustering
approach, both models increase their accuracy on CIFAR-100
by 5% roughly.

TABLE VI
CIFAR-10 RESULTS FOR THE BASELINE AND DIFFERENT

PERSONALIZATION METHODS.

Model Method Avg

ResNet34

BaseLine 53.25
FineTune 82.55

PFA 79.45
FedPerC 84.48

FedPerC(Random Clustering) 82.55
FedPerC(No Clustering) 81.88

MobileNetV1

BaseLine 51.28
FineTune 83.53

PFA 78.95
FedPerC 85.08

FedPerC(Random Clustering) 82.85
FedPerC(No Clustering) 83.33

When the clustering is suitable, our technique is supposed
to have a favorable impact since it takes into account the users’
similarities and differences. However, when the clustering
is inaccurate, it might be detrimental. When all clients are
treated as belonging to a cluster, the result is identical to not
clustering, and our technique degrades to the FedPer algorithm
given in article [5].

Table VI presents the average accuracy of all previously
mentioned personalisation techniques on CIFAR-10. The ac-



curacy boost on CIFAR-10 is not as significant as on CIFAR-
100, most likely because CIFAR-100 has a higher number
of classes and the variances across clients within a cluster
are greater. Additionally, a user often owns various classes of
images in reality, so our approach has its practicalities.

V. RELATED WORK

Federated learning has extended the range of applications
for artificial intelligence (AI). In recent years, it has become a
popular research topic. However, It also confronts obstacles
on a variety of fronts [2], including privacy breaches and
heterogeneous data distribution.

Privacy violations may cause a great deal of grief in people’s
lives. As a result, individuals are becoming more conscious
of their right to privacy. Furthermore, the implementation of
applicable rules, like the General Data Protection Regulation
(GDPR) [14], not only officially protects users’ privacy but
also drives adjustments in machine learning algorithms that
need access to users’ raw data.

Secure multiparty computing (SMC) [15] is a privacy-
preserving technique that based on mathematical theory. It
safeguards all parties’ input data while generating accurate
results, and is especially beneficial in the absence of a
trustworthy third party. However, SMC requires substantial
computer power and network resources for encryption and
decryption, which is not achievable for resource-constrained
devices.

Differential privacy (DP) [16] preserves privacy by introduc-
ing noise into the data to diminish its sensitivity. Noise must
be provided to make it more difficult to derive information
about users without significantly affecting the distribution of
data. On the other hand, DP makes the data less reliable, which
has an effect on how well the training works.

As a result, when the idea of federated learning was initially
proposed, it sparked a great deal of attention. Most impor-
tantly, FL enables resource-constrained devices to cooperate
together to train a shared model that benefits each device
without requiring access to any device’s raw data. When the
distribution of data for separate clients is roughly the same,
it proves to be a realistic technique [1]. Unfortunately, this is
not always the case. Therefore, FL has established itself as a
research center dedicated to tackling the issues raised by data
non-IDD.

Mansour et al. [17] introduces a personalisation method
based on clustering. However, users are required to give out
some raw data in return for precise clustering results, compro-
mising data privacy. Wang et al. [3] applies transfer learning
to personalisation, retraining all or part of the parameters
of the federated model on local data. Another one, based
on the concept of transfer learning, is provided in [18], in
which meta-learning is utilized to establish the global model
and then fine-tuning approaches are employed to achieve
personalisation. Yu et al. [4] recommended that networks be
divided into two components: base layers and personalisation
layers, with the former being trained by all users collectively
and the latter by each user individually.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose an algorithm that implements per-
sonalisation by clustering users based on a privacy-protected
representation of their original data. This is an exploratory
way to addressing the non-IID dilemma of FL, although it has
certain downsides. For example, though the sparsity patterns of
various inputs are often distinct, there may be exceptions that
result in incorrect clustering conclusions. How to enhance the
logic of clustering is a topic that deserves to be investigated
more in the future.

Since it is almost impossible to derive the original data from
the sparsity representation, we regard it as privacy-preserving.
However, this representation’s ability to protect privacy has
not been formally demonstrated. Additionally, incorporating
established privacy-protection mechanisms such as DP is a
point of improvement. On the other hand, our method is
limited to CNNs, leaving the possibility of extending it to
other network architectures for future implementation.
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