Formal Verification and Analysis of Time-Sensitive
Software-Defined Network Architecture

Weiyu Xu', Xi Wu?, Yongxin Zhao'*, and Yongjian Li?
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
2 The University of Sydney, Australia
3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—Safety-critical traffic in Industrial Internet of Things
(IIoT) requires real-time communications with high fault toler-
ance, bounded latency and low jitter. Time-Sensitive Software-
Defined Network (TSSDN), which combines the deterministic
transmission of Time-Sensitive Networking (TSN) with the cen-
tralized management of Software-Defined Networking (SDN),
was recently proposed to support the real-time requirement in
IIoT. The research on TSSDN has been receiving increasing
interests, however, the existing work has limitations including
1) the functional safety of TSSDN cannot be guaranteed; and 2)
the effect of the separation of data plane and control plane on
the time-sensitivity of TSSDN has not been evaluated. Therefore,
in this paper, we employ the timed model checker UPPAAL to
formalize the TSSDN architecture. Firstly, we use the build-in
checker in UPPAAL to verify deadlock-free property, functional
safety property and starvation-free property of our model. Then,
the total latency of frames forwarding and scheduling within a
single switch is measured based on the model. We focus on the
latency overhead of frames requesting processing rules from the
controller, which is on average an additioanl 180us latency in the
worst case, but the impact of this delay on the time-sensitivity
of TSSDN is tolerable. As far as we know, this is the first paper
providing a formal verification and analysis approach for TSSDN
architecture, which could benefit for both TSSDN designers as
well as the researchers.

Index Terms—TSSDN Architecture, Real-Time Communica-
tion, Formalization, Verification, Timing Analysis

I. INTRODUCTION

The fourth industrial revolution (i.e., industry 4.0) focuses
on the integration of physical objects, humans and smart digital
echnology in a sophisticated information network, which is
also known as the Industrial Internet of Things (IIoT) [1].
With the rapid development of the IIoT, its safety-critical
applications increasingly request both the real-time communi-
cation and run-time flexibility, which, however, cannot be both
supported in the existing networking (e.g., Real-Time Ether-
net) [2]. In 2016, Nayak et al. proposed the Time-Sensitive
Software-Defined Network (TSSDN) [3], which integrates the
deterministic and reliability of Time-Sensitive Networking
(TSN) with the flexibility, heterogeneity and reconfigurability
of Software-Defined Networking (SDN), to support the above
requirements in the ITIoT.

Recently, the research on TSSDN has been receiving in-
creasing interests, which mainly focus on architecture design
[4]-[6], control strategy [7]-[9] and latency analysis [10], [11].

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2022-094

Various solutions on how to combine TSN and SDN to form
the TSSDN architecture have been discussed, among which
our work is based on the one proposed by Béhm et al. [5].
Specifically, TSN and SDN utilize a unified control plane,
therefore all network devices are managed by a centralized
TSSDN controller. Based on the timing analysis evaluation,
Nayak et al. [10] showed that TSSDN provided deterministic
end-to-end latencies with low and bounded jitter for the time-
triggered traffic on a specific benchmark topology. However,
there are few work on the formalization of the TSSDN ar-
chitecture, especially lacking the verification on its properties
(e.g., safety and time-sensitivity) and formal analysis about
how the separation of data plane and control plane affects the
time-sensitivity of TSSDN.

In this paper, we use the model checker UPPAAL to for-
mally verify and analyze the TSSDN architecture. We formal-
ize the TSSDN controller and the switch as timed automata.
Then, we verify the deadlock-free property, functional safety
properties and the starvation-free property in our model via
the UPPAAL build-in checker. Finally, we measure the total
latency of frames forwarding and scheduling within a switch,
and assess the additional latency of the frames requesting
processing rules from the controller in the worst case. Our
formal verification results illustrate that the TSSDN properties
in the model are satisfied, and our timing analysis shows that
the transmission over the TSSDN architecture is still time-
sensitive to some extent. To the best of our knowledge, this
is the first work on the formal verification and analysis of the
TSSDN architecture.

The main contributions of this paper are:

1) Formal Modeling. We present a formal model of TSSDN
architecture via timed automata in UPPAAL. Properties
(e.g., functional safety property) can then be verified
within the model. This approach can facilitate both re-
searchers and designers to assess the time performance
and validity of TSSDN architecture before deployment.

2) Timing Analysis. Our timing analysis mainly focuses on
how the latency overhead caused by the separation of
data panel and control panel affects the time-sensitivity
in TSSDN. It is the first work on TSSDN architecture
combining formal verification with analysis approaches.

The remainder of this paper is structed as follows. A brief
introduction of the TSSDN architecture and model checker

UPPAAL has been given in Section II. In Section III, we
present the formal model of the TSSDN architecture in UP-
PAAL. Section IV presents an experimental implementation
with formal verification and timing analysis. Finally, Section
V concludes this paper and presents the future work.

II. PRELIMINARIES
A. TSSDN Architecture

As specified by the Open Network Foundation (ONF) [12],
TSSDN architecture is divided into three layers, including
the application plane, the control plane and the data plane,
which can be found in Fig. 1. The application plane provides a

Application-Plane

Network Applications

Northbound Interface
(REST API)
TSSDN Controller
Southbound Interface
(OpenFlow/Netconf)

Network Device

Control-Plane

Data-Plane

Scheduling
Mechanisms

Egress
Ports

Gate Control List

Gated Queue
Scheduling of
Time Aware Shaper

Ingress Flow-based
Ports Forwarding

Fig. 1. TSSDN Architecture

programmable platform to users, which calls different services
provided by the control plane through the northbound REST
API. The control plane interacts with all network devices in
the data plane to be aware of a global view of the network.
According to the global state of the network, the centralized
TSSDN controller can dynamically generate and distribute
network configuration and control information to the data
plane through the southbound API (e.g., Forces and OpenFlow
[13]). The data plane consists of all network devices (i.e.,
bridges and switches). Its main responsibility is forwarding
frames according to the rules in the flow table provided by
the control plane.

Flow table is a finite set of flow table entries, which is
used to control the forwarding of flows (i.e., sequences of
frames with the same destination). According to the OpenFlow
V1.0 [14], each flow table entry consists of header fields,
counters and actions. The head of each frame processed by
the switch is compared against the header fields of flow
table entries. If a matching entry is found, any actions for
that entry will be performed on the frame (e.g., forward to a
specified port, deliver to controller or drop). The controller is
responsible for determining how to handle frames delivered
from the switch. At the egress ports of network devices, the
transmission order of different traffic will be determined based
on different scheduling mechanisms to guarantee the QoS.

B. UPPAAL

UPPAAL [15], [16] is a well-known model checker, widely
used in modeling, simulation and verification of Cyber Phys-
ical Systems (CPS), aerospace systems, real-time scheduling
systems and other areas. In UPPAAL, a real-time system is
modeled as a collection of timed automata with real-valued
clocks. A timed automaton can be represented by a six tuple
My = (L,C,%,E,I,1,), where

1) L is a set of locations;

2) C is the set of clocks;

3) X is a set of actions over edges, which could change the
value of variables or clocks;

4) EC LxB(C)xXx2°x Lis a set of edges, where
B(C) is the set of conjunctions over simple conditions of
clock constraints and 2¢ is the set of clocks to be reset;

5) I: L — B(C) is a mapping of invariant on locations;

6) I is the initial location.

TABLE I
CTL OPERATORS
Operator Meaning Operator Meaning
. && conjunction I disjunction
Logical o - —
! negation — implication
[1 always <> eventually
Temporal X next U until
Path A all E exist

UPPAAL has a simulator for quantitative analysis and a
verifier for model checking. The simulator validates the model
via system execution, whereas the verifier checks properties
such as safety and liveness described by Computational Tree
Logic (CTL) via on-the-fly traversing the entire state space.
As shown in TABLE I, logical, temporal and path operators
in CTL can be used to formally describe system properties.

III. MODELING OF THE TSSDN ARCHITECTURE

The overview model of TSSDN architecture, which can
be found in Fig. 2, consists of generator model, flow table
model, controller model and scheduler model. The formal
models mentioned above are represented in UPPAAL as timed
automata templates which are then instantiated as one or more
processes as necessary, shown as follows:

system Generator_Process,
Flow_Table_Process,
Scheduler_Process,
Controller_Process;

The generator process is used to simulate the frames that
have entered the switch and wait for matching with the
flow table. The flow table process and scheduler process,
respectively, represent forwarding and scheduling within a
single switch. The controller process communicates with the
flow table process and handles frames that request processing
rules.

e " Controller Model |
| Flow Table Model : :

H
\
.
! i
] Processing H
h
H
:

Discard Deliver Controller
'

Flow Table Match

Forward

Port Buffer

| egess |

Fig. 2. An Overview Model of the TSSDN Architecture

finished initial
globalClock <= startTime

globalClock == startTime
count == totalCount °

isGenFinished[flowID] = true

packetOut? suspended

ready

isSuspend]flowID]

count < totalCoynt && lisSuspend|flowID]
generateTime = getTimeStamp(count)
count = count +{1,
newFrame = generateFrame(flowlD class,generateTime,count),
class = (class + [1)% TRAFFIC_NUM,

timer =0,
deliverFrame(nefvFrame)
frameGenerate!

timer == intervals[class] generated

timer <= intervals[class]

Fig. 3. Timed Automata of Generator Model

A. Generator Model

IEEE 802.1Qbv divides data frames into Control Data
Traffic (CDT), Audio/Video Traffic (AVB_A and AVB_B) and
Best Effort Traffic (BE) [17]. The frames of the above four
classes will be generated and delivered to the flow table model
on a regular basis in the generator model.

Definition 1 (Frame). A frame is represented by a
quadruple (flowlID, class, transTime, timeStamp), where

1) flowID identifies the flow to which the frame belongs,
that is, the abstraction of the destination (e.g., MAC
address, IP address, or VLAN ID);

2) class defines the class of the frame, i.e., CDT, AVB_A,
AVB_B and BE;

3) transTime represents the duration of the frame passing
through ports. On the premise of a constant port transmis-
sion rate, it usually depends on the length of the frame;

4) timeStamp stands for the generation time instant of the
frame, which can be used for latency analysis.

We formalize the generator as a timed automata template
in UPPAAL shown in Fig. 3. The automaton consists of five

states: initial, ready, generated, finished and suspended.
The variable timer is a timer used for generating frames on
a regular basis and the variable globalClock is a global clock
used for the synchronization of all processes in the system.
The variable packetOut will be explained in the controller
model. Other variables and functions are defined as follows:

1) flowID should be specified when instantiating a gener-
ator process because flowlID of the frames generated by
each generator is presumed to be the same;

2) class stands for the traffic to which the frame to be gen-
erated belongs, and TRAFFIC_NUM specifies the number
of traffic classes;

3) totalCount represents the total number of frames to be
generated;

4) count is used to record the number of frames that have
been generated,;

5) frameGenerate is a synchronization channel used to
notify the flow table process to start matching the deliv-
ered frame with the flow table;

6) intervals|...] denotes the generation intervals of different
classes of frames;

7) isSuspend]...] indicates whether the generator needs to
be paused;

8) isGenFinished]...] indicates whether all frames have
been generated and delivered;

9) generateFrame(...) is a function used to generate a new
frame which will be stored in newFrame;

10) deliver Frame(...) is a function, which is responsible for
delivering a frame to the flow table model.

The generator process is initially in the initial state. When
startime equals globalclock, it enters the ready state and
begins generating the first frame. After that, the process alter-
nates between ready state and generated state to periodically
generate and deliver frames. When the value of isSuspend]...]
is true, the process will switch to the suspended state and
suspend working. This is typically caused by frames delivered
by this generator waiting for processing rules from the con-
troller. The generator process will migrate to the finished
state when count == totalcount, indicating that all frames
have been generated and delivered.

B. Flow Table Model

In the flow table model, frames arriving at the switch will
be matched with entries in a pre-configured flow table, which
is defined as follows:

Definition 2 (FlowTable). A flow table is composed of
multiple flow table entries, each of which consists of a triple
(header field, counter, action), where

1) header field is used to match the flowlID of the frame;

2) counter records the number of times a flow entry
matches successfully;

3) action € {CONTROLLER,DROP,PORT_A,PORT_B,...}
indicates the action that the matched frame should take.

The timed automata template of the flow table model can be
found in Fig. 4, which will be instantiated into a unique flow

initial
request(inFrame.class)

packetin!
defaultConf?

frameGenerate?
(action = tableMatch()

working
packetOut?
inFrame = tempFrame,
isSuspend|ingrdme.flowID] = false,
action >pfoResult lisQueueF fill(portID,inFrame.class)
enQueue(infFrame,portiD,inFrame.class)

isForward(action)
portID = action

C) forward

matehFinished isQueueFull(portID,inFrame.class)

action ==CONTROLLER
isSuspend|inFrame.flowID] = true;
tempFrameg = inFrame

% deliverController

Fig. 4. Timed Automata of Flow Table Model

bufferFull

dropFrame

table process. After receiving the default flow table issued by
the controller, the flow table process will move from initial
state to working state. Whenever the process receives the
synchronization signal frameGenerated sent from genera-
tors, the delivered frame inF'rame will be matched with the
flow table, then the process shifts to matchedFinished state.
According to the action of the matched entry, the process
will move to forward state, deliverController state or
dropFrame state. The forwarded frames will be placed in the
matching egress port’s buffer frame queues. Particularly, if the
action of the matched entry is CONTROLLER, inF'rame will
be temporarily stored in tempFrame. Then the switch will
notify the generator of the frame to suspend working and send
a packetIn message to the controller model requesting how to
handle the frame. After receiving the packetout message from
the controller, tempFrame will be discarded or forwarded to
the specified egress port depending on the proResult carried
in packetout. Other variables and functions are defined as
follows:

1) tableMatch(...) is a function matching inFrame with
the flow table;

2) isQueueFull(...) is a function checking the frame queue
of a specific traffic in the port buffer is full. If the queue
is full, the process will enter bu f fer Full state;

3) enQueue(...) is a function, responsible for enqueuing
frames to the buffer queue of a specified port.

C. TSSDN Controller Model

The timed automata template of TSSDN controller can
be found in Fig. 5. During the system initialization, in-
stantiated controller process will send a default flow table
to the switch and move to working state. After receiv-
ing a packetIn message from a switch, the controller will
spend maxProcessTime on calculating and generating a
processing rule via function processRule(...) for the re-
quested frame based on the real-time global network state.
The function can be defined by designers and the addi-
tional latency in the worst case can be measured based on
mazxProcessTime. Then the process will send a packetOut
message back to the switch to handle the frame waiting for

the processing rule. It takes PACKET__IN_TRANS_TIME and
PACKET_QUT_TRANS_TIME for packetIn and packetOut
messages to pass through a port respectively. Here we assume
that inFrame is always included in these two messages.
Therefore, the transmission time of these two messages de-
pends on the maximum length of frames.

initial
©

defaultConfl
defaultConfigurate()

working

—C

isAllFinished(

N\

terminated
packetin?
timer =0

receiveRequest
timer <= PACKET_IN_TRANS_TIME * 2

()

timer == PACKET_IN_TRANS_TIME * 2
timer =0

processing
) timer <= maxProcessTime

)

timer == maxProcessTime

timer =0,
proResult = processRule(tempFrame)
C response
timer <= PACKET_OUT_TRANS_TIME * 2

timer == PAGKET_OUT_TRANS_TIME * 2
_packetOut!)

Fig. 5. Timed Automata of Controller Model

After scheduler process and all generator processes reach
finished state, controller process will move to terminated
state, indicating that the system has been ended. The remaining
variables and functions are defined as follows:

1) maxProcessTime represents the maximum processing
time to calculate and generate processing rules, which is
specified when instantiating the controller process;

2) defaultConf is a synchronization channel used to active
the flow table process;

3) defaultConfigurate(...) is a function initializing sys-
tem global variables and issuing the flow table.

D. Scheduler Model

According to IEEE 802.1Qbv, a scheduling period is divided
into protected windows and unprotected windows. A guard
band is introduced to prevent a new transmission of the non-
time-critical traffic (i.e., AVB and BE traffic).

The timed automata template of the scheduler is shown in
Fig. 6. A scheduler process will be employed to schedule
frames according to different scheduling mechanisms for the
frame queues at each egress port of the switch. The variables
and functions are defined as follows:

1) slots]...] is an array of time slots, whose values depend
on the length of unprotected windows and protected
windows;

2) portID indicates the port associated with the scheduler;

3) schClock is the clock of the scheduler, whose value is
updated by function updateClock(...);

initial
finished

isSchFinished(portID)
schFinished[portID] = true

initial_()

@ slotTimer <= startTime

slotTimer == startTime

slotTimer == slots[slotindex]

updateClock()

proWindowEnd isCDTQueueEmpty(portID) fc‘
&/

lisCDTQueueEmpty(portID)

unprowindow isSchedule()
a Cc\ transTimer = 0 transmitting
H lisSchFinished(portiD) selectedFrame = selectFrame() transTimer <= selectedFrame.transTime
transTimer == selectedFrame.transTime
transmitFrame(selectedFrame),
lisSchedule() adjCreditinTrans(selectedFrame)
adjCreditldle(slots[slotindex])
\unprcWindowEnd
nextSlot() (J slotTimer <= slots[slotIndex] slotTimer > §) transmitted

slots[slotIndex] - GUARD_BAND

slotTimer == slots[slotindex]

slotTimer <= slots[slotIndex]

N
CJ schClock = schClock +
slotTimer <= sIdts[slotindex]

]
“ proWindow

slotTimer == slots[slotIndex]

rame = deQueue(portlD,CDT) O transmittingCDT

transmitFrame(selectedFrame)

Fig. 6. Timed Automata of Scheduler Model

4) schFinished]...] indicates whether all frames in the port
buffer have been scheduled;

5) selectFrame(...) is a key function used to schedule
a frame from queues according to different scheduling
mechanisms. CDT traffic is scheduled according to FIFO
mechanism, whereas AVB traffic and BE traffic are
scheduled based on credit-based shaping (CBS) mech-
anism, whose details are introduced in the Forwarding
and Queuing enhancements for Time-Sensitive Streams
(FQTSS) [18];

6) adjCreditldle is a function to update credits in CBS
when no frame transmitted, while adjCreditInTrans is
to do so after a frame is transmitted;

7) transitFrame(...) is a function used to calculate the
latency of frames and to transmit frames through the
egress ports of the switch;

8) isSchedule(...) is a function to check whether scheduling
a frame is allowed according to CBS mechanism.

When slotTimer equals to startTime, the scheduler pro-
cess transits from initial state to working state. Then the
process enters three windows (i.e., unprotected, guard band,
protected) in turn. CDT traffic can only be scheduled in
protected windows, whereas AVB and BE traffic can be
scheduled in unprotected windows. Once the process enters
the guard band, it is not allowed to start the transmission of
any frame. When all of the slots are exhausted, the process will
return to the working state and start a new cycle. Particularly,
when all frames in the port buffer have been scheduled, the
process will move to finished state and stop scheduling.

IV. FORMAL VERIFICATION AND TIMING ANALYSIS

In this section, we perform the formal verification and
timing analysis over the formal model given in section III.
A. Experimental Configuration

We mainly focus on the transmission of four classes of
data frames: CDT, AVB_A, AVB_B, and BE. The parameters

of traffic classes are shown in Table II. For simplicity, the
frame of each class is generated and delivered to the switch
at a fixed interval and the transmission rate of the port is
100 Mbps in our experiment. In the table, transTime, which
depends on the size of frame and the transmission rate of ports,
indicates the transmission time of the frame through a switch
port. 3Tand 3~ denote the increasing rate and the decreasing
rate of credits in CBS mechanism, respectively.

TABLE I
PARAMETERS OF TRAFFIC CLASSES

Class CDT | AVB_A | AVB_B BE
Length 300B 425B 275B 325B
transTime 18us 34us 2241 26us
Interval 100 30us 40us 40us

Priority 4 3 2 1

5+ - 3 4 -

B~ - 4 3 -

In view of IEEE 802.1 TSN [19], [20], TSSDN period is
set to 500us in our experiment, which is divided into two
unprotected windows and two protected windows. Note that
the last 34 us of each unprotected window is configured as
a guard band, which is equal to the transmission time of the
frame with maximum length.

In our experiment, four instantiated generator processes are
employed to simulate four flows waiting to be processed by the
switch. We instantiate a flow table process and two schedulers
to simulate a switch with two egress ports (i.e., PORT_1 and
PORT_2). The flow table of the switch is shown in Table
III. One controller process communicates with the flow table
process and handles frames that request processing rules.

In particular, each frame of FLOW_D will be included
in the packetIn message to request processing rule from
the controller. In order to minimize the average latency of
FLOW_D, the controller process always decides to forward the
frames of FLOW_D to the egress port with the fewest frames.
Additionally, the length of packetIn and packetOut messages

TABLE III
FLOW TABLE OF THE SWITCH
Header Field | Counters Action
FLOW_A 0 PORT_1
FLOW_B 0 PORT_2
FLOW_C 0 DROP
FLOW_D 0 CONTROLLER

is set as 450 bytes to accommodate the frame with maximum
length, resulting in a transmission time of 36us for both.

B. Formal Verification and Analysis

1) Formal Verification. We employ ten assertions to verify
the model satisfies the following four properties.

Property 1: Deadlock-free Property

Al] not deadlock

This property asserts that the system will never progress
into a deadlock situation, which is satisfied in our model.

Property 2: Starvation-free Property

A <> scheduler.selectedFrame.class == CDT
A <> scheduler.selected Frame.class == AVB_A
A <> scheduler.selectedFrame.class == AVB_B
A <> scheduler.selected Frame.class == BE

These assertions claim that frames of all classes will even-
tually be scheduled, whose results can be found in Fig. 7.
Property 3: Window Exclusive
Al] scheduler.transmitting imply
scheduler.selected Frame.class! = CDT
Al] scheduler.transmittingC DT imply
scheduler.selected Frame.class == CDT
The above assertions verify that CDT can only be scheduled
in protected windows, which are satisfied in our model.
Property 4: Validity of Flow Table Matching
Al] switch_.dropFrame imply
(action == DROP || proResult == DROP)
Al] switch_.deliverController imply
flowTable[matchedIndex][ACTION]

== CONTROLLER)
Al] switch_. forward imply (action == proResult
|| action == flowT able[matchedIndex][ACTION])

These assertions claim that the switch always handles
frames correctly according to the matched flow table entry. The
variable matchedIndex indicates the index of the matched
flow table entry.

2) Timing Analysis. The latency of a frame within a switch,
to be precise, is the time elapsed from the frame beginning to
match the flow table entries to the last bit of the frame being
transmitted from the egress port of the switch. We measure the
latency of frames of three flows (i.e., FLOW_A, FLOW_B and
FLOW_D) within the switch, whose results can be found in
Fig. 8. Note that, frames of FLOW_C are not considered here
because they will be discarded according to the flow table.

We can see from the figure that the latency of BE and AVB
frames in the three flows is basically stable, and the latency of
traffic with higher priority is lower overall. The latency of most
BE and AVB frames in FLOW_D is higher than that in FLOW_A

Al] not deadlock

Verification/kernel/elapsed time used: 0.19s / 0.022s / 0.213s.
Resident/virtual memory usage peaks: 110,816KB / 4,443,424KB.
Property is satisfied

A<> scheduler.selectedFrame.class == CDT
Verification/kernel/elapsed time used: 0.026s / 0.008s / 0.036s.
Resident/virtual memory usage peaks: 113,380KB / 4,444,448KB.
Property is satisfied

A<> scheduler.selectedFrame.class == AVB_A
Verification/kernel/elapsed time used: 0.027s / 0.004s / 0.032s.
Resident/virtual memory usage peaks: 113,588KB / 4,444,448KB.
Property is satisfied

A<> scheduler.selectedFrame.class == AVB_B
Verification/kernel/elapsed time used: 0.025s / 0.003s / 0.03s.
Resident/virtual memory usage peaks: 113,704KB / 4,444,448KB.
Property is satisfied

A<> scheduler.selectedFrame.class == BE
Verification/kernel/elapsed time used: 0.002s / 0.002s / 0.004s.
Resident/virtual memory usage peaks: 113,704KB / 4,444,448KB.
Property is satisfied

Al] scheduler.transmitting imply scheduler.selectedFrame.class != CDT
Verification/kernel/elapsed time used: 0.1165 / 0.003s / 0.121s.
Resident/virtual memory usage peaks: 114,032KB / 4,444,576KB.
Property is satisfied

Al] scheduler.transmittingCDT imply scheduler.selectedFrame.class == CDT
Verification/kernel/elapsed time used: 0.083s / 0.002s / 0.087s.
Resident/virtual memory usage peaks: 114,032KB / 4,444,576KB.
Property is satisfied

A[] switch_.forward imply (action == flowTable[matchedIndex][ACTION] || action == proResult)
Verification/kernel/elapsed time used: 0.085s / 0.001s / 0.09s.
Resident/virtual memory usage peaks: 114,032KB / 4,444,576KB.
Property is satisfied

Al[] switch_.deliverContraller imply flowTable[matchedindex][ACTION] == CONTROLLER
Verification/kernel/elapsed time used: 0.081s / 0.001s / 0.084s.
Resident/virtual memory usage peaks: 114,032KB / 4,444,576KB.
Property is satisfied

All switch_.dropFrame imply (action == DROP || proResult == DROP }
Verification/kernel/elapsed time used: 0.077s / 0.001s / 0.079s.
Resident/virtual memory usage peaks: 114,032KB / 4,444,576KB.
Property is satisfied

Fig. 7. Verification Results

TABLE IV
AVERAGE LATENCY OF FRAMES
Traffic\Flows FLOW_A | FLOW_B | FLOW_C | FLOW_D
BE 205.2us 219.4us - 330.8us
AVB_B 128.6us 137.5us - 329.4us
AVB_A 128.8us 103.5us - 340us
CDT 626.3us 820us - 447 us
Overall
(exclude CDT) 154.2us 153.6us - 333.4us

and FLOW_B. However, the latency of CDT frames is much
higher than that of frames of other traffic, and the latency of
subsequent CDT frames continues to increase. Actually, this
issue is caused by the division of time windows: there are only
two protected windows in a scheduling cycle (i.e, a TSSDN
period), and each protected window can only transmit one
CDT frame. In other words, at most two CDT frames can be
scheduled every 500us, implying that a large number of CDT
frames will be accumulated in the queue, resulting in a sharp
increase in the latency of subsequent CDT frames.

Since our experiment mainly focuses on the additional
latency of those frames that request the processing rules from
the controller, CDT frames are excluded when calculating the
overall average latency of the flows, which has little impact
on our evaluation results. Table IV shows the average latency
of various classes of frames in different flows, from which we
find that the frames requesting the processing rule from the
controller will incur an average of 180us additional latency in
the worst case.

V. CONCLUSION AND OUTLOOK

In this paper, we used the model checker UPPAAL to
formally model and verify the TSSDN architecture. The re-
sults of verification demonstrate that the properties of the

1200 4 1600 4

—BE
AVB_B

——AVB_A

——coT

1400
1000 -

1200
800 -
1000

600 - 800 -

6004
4004

Delay within Switch(us)
Delay within Switch(us)

4004

200
200+

0 T T T T T J 0 T T T

1000 4

—BE

800 -

600 -

4004

Delay within Switch(us)

200

T T T
0 2 4 6 & 10 12 14 16 18 4 2 4 6
Frames of FLOW_A

T
8

Frames of FLOW_B

T T T T J o T T T T T T
10 12 14 16 18 0 2 4 6 8 0 12 14 18 18

Frames of FLOW_D

Fig. 8. Latency of Frames

TSSDN architecture are satisfied. Based on the model, we
also performed a timing analysis and found that the frames
requesting processing rules from the controller incurred an
average of 180us additional latency in the worst case, which
shows that the transmission over the TSSDN architecture still
retains time-sensitivity to some extent. By using our approach,
both designers and researchers can conveniently verify the
functional safety of the TSSDN architecture and assess the
effect caused by the separation of data panel and control panel
on time-sensitivity of TSSDN.

Limited by the size of the state space, our current model
did not consider the process of frames entering the switch.
State explosion is always a problem but can be mitigated by
using abstraction and optimisation techniques (i.e. partial order
reductions). [21] In the future, we would like to integrate the
Per-Stream Filtering and Policing (PSFP) protocol into the
model to capture the process by which frames are policed and
filtered at ingress ports of the switch. Our future research will
also focus on using various optimization techniques to enable
scalability of the model.

ACKNOWLEDGEMENTS

This work is supported by Shanghai Science and Technol-
ogy Commission Program under Grant 20511106002, Shang-
hai Trusted Industry Internet Software Collaborative Inno-
vation Center and the Fundamental Research Funds for the
Central Universities.

REFERENCES

M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17-27, 2017.

L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, “On the adequacy
of sdn and tsn for industry 4.0,” in 2019 IEEE 22nd International
Symposium on Real-Time Distributed Computing (ISORC). 1EEE, 2019,
pp. 43-51.

N. G. Nayak, F. Diirr, and K. Rothermel, “Software-defined environment
for reconfigurable manufacturing systems,” in 2015 5th International
Conference on the Internet of Things (I0T). 1EEE, 2015, pp. 122-129.
M. Bhm, J. Ohms, O. Gebauer, and D. Wermser, “Architectural de-
sign of a tsn to sdn gateway in the context of industry 4.0, in 23.
ITG-Fachtagung “Mobile Communications”, ISBN: 978-3-8007-4577-
7, 2018.

M. B6hm, J. Ohms, M. Kumar, O. Gebauer, and D. Wermser, “Time-
sensitive software-defined networking: a unified control-plane for tsn
and sdn,” in Mobile Communication-Technologies and Applications; 24.
ITG-Symposium. VDE, 2019, pp. 1-6.

[2]

[3]

[4]

[5]

[6] T.I. ul Huque, K. Yego, C. Sioutis, M. Nobakht, E. Sitnikova, and F. den
Hartog, “A system architecture for time-sensitive heterogeneous wireless
distributed software-defined networks,” in 2019 Military Communica-
tions and Information Systems Conference (MilCIS). 1EEE, 2019, pp.
1-6.

V. Balasubramanian, M. Alogaily, and M. Reisslein, “An sdn architecture
for time sensitive industrial iot,” Computer Networks, vol. 186, p.
107739, 2021.

T. Gerhard, T. Kobzan, 1. Blocher, and M. Hendel, “Software-defined
flow reservation: Configuring ieee 802.1 q time-sensitive networks by the
use of software-defined networking,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2019, pp. 216-223.

N. G. Nayak, F. Diirr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066-2075, 2017.
N. G. Nayak, F. Diirr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in International
Conference, 2016, pp. 193-202.

D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive ethernet,” in 2016 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 31-36.

O. N. Foundation. ”sdn architecture”. Tech. Rep. Issue 1, TR-502,
2014. [Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf/

N. K. Haur and T. S. Chin, “Challenges and future direction of time-
sensitive software-defined networking (tssdn) in automation industry,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2019, pp. 309—
324.

0. S. Consortium et al, “Openflow switch specification ver-
sion 1.0.0,” http://www.openflowswitch.org/documents/openflow-spec-
v1.0.0.pdf, 2009.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal methods for the design of real-time systems. Springer, 2004,
pp. 200-236.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Up-
paal—a tool suite for automatic verification of real-time systems,” in
International hybrid systems workshop. Springer, 1995, pp. 232-243.
J. Lv, Y. Zhao, X. Wu, Y. Li, and Q. Wang, “Formal analysis of
tsn scheduler for real-time communications,” IEEE Transactions on
Reliability, vol. 70, no. 3, pp. 1286-1294, 2020.

I. S. Association et al., “Ieee standard for local and metropolitan
area networks—virtual bridged local area networks amendment 12
forwarding and queuing enhancements for time-sensitive streams,” [EEE
Standard, vol. 802, pp. 10016-5997, 2009.

“leee standard for local and metropolitan area networks—bridges and
bridged networks,” [EEE Std 802.1Q-2014 (Revision of IEEE Std
802.1Q-2011), pp. 1-1832, 2014.

S. Thangamuthu, N. Concer, P. J. Cuijpers, and J. J. Lukkien, “Analysis
of ethernet-switch traffic shapers for in-vehicle networking applications,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1EEE, 2015, pp. 55-60.

V. Klimis, G. Parisis, and B. Reus, “Towards model checking real-world
software-defined networks,” in International Conference on Computer
Aided Verification. Springer, 2020, pp. 126-148.

[7

—

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

