
The Maintenance of Top Frameworks and Libraries
Hosted on GitHub: An Empirical Study

Yi Huang, Xinjun Mao, Zhang Zhang
National University of Defense Technology, Changsha, China

{huangyi20, xjmao, zhangzhang14}@nudt.edu.cn

Abstract—The number of repositories on GitHub is huge and
growing rapidly. However, most repositories are inactive, while
active maintenance is essential in choosing a project. In this
paper, we study the maintenance of top (i.e., most starred)
frameworks and libraries hosted on GitHub, for they can be
widely reused and in critical positions in the dependency network,
so their maintenance status is significant. Furthermore, their
maintenance practices may inspire other projects to thrive on the
collaborative development platform. By investigating their adop-
tion of recommended Open Source Software (OSS) maintenance
practices and recent maintenance activities, and the association
between maintenance status and usage, we find that: (1) more
than 20% of the top frameworks and libraries have no commit for
more than one year; (2) Some maintenance practices (e.g., codes
of conduct) have relatively low adoption rates, while continuous
integration has a high adoption rate of around 80%; (3) the
maintenance status may have an effect on the usage frequency.
Index Terms—software maintenance, open source guide, software
dependency

I. INTRODUCTION

Software maintenance is critical and lasts the longest in the
software life cycle. Also, it is an essential factor for developers
to consider when choosing software [1]. Over the years, with
the rise of open source and the emergence of code hosting
platforms, more and more companies and developers maintain
their projects on code hosting platforms, especially on GitHub.
As the world’s largest code hosting platform, GitHub has
hundreds of millions of repositories and tens of millions of
users, and the number is still proliferating. However, according
to research [2], though the total number of repositories is
vast, most of the repositories hosted on GitHub are inactive.
The finding inspired us to think: are the top (e.g., most
starred) projects hosted on GitHub active? Furthermore, how
well are they maintained? Especially the top frameworks and
libraries—while they are just the tip of the iceberg, they can be
critical—they rank high, attract considerable attention, and are
more likely to be reused by other projects to save development
costs and increase efficiency. Therefore, their maintenance
status can significantly affect related projects. Additionally,
their practical experience in development and maintenance
may inspire and guide other projects to thrive on GitHub.

This paper conducts an empirical study of the top frame-
works and libraries in GitHub to investigate their adoption of

DOI reference number: 10.18293/SEKE2022-092

recommended OSS maintenance practices, recent maintenance
activities, and the association between maintenance status
and usage. We believe that on the collaborative development
platform GitHub, the maintenance complexity is greater than
the maintenance complexity of individual or single team
development. Attracting and retaining contributors and the
interaction between developers are critical. Besides, the inter-
action between developers is not limited to maintaining code
but also includes documentation maintenance, issue resolution,
and project discussion. These aspects reflect the maintenance
of the project and are worthy of in-depth exploration. In this
paper, we address the following three research questions:
RQ1. (Maintenance Practices Adoption) How well do the
top frameworks and libraries follow the recommended OSS
maintenance practices? The purpose of the question is to
investigate the adoption of some recommended maintenance
practices by top frameworks and libraries. These practices
are important factors for contributors to decide whether to
contribute to the project [3].
RQ2. (Maintenance Activity) What is the level of recent
activity present in the top frameworks and libraries? While
these frameworks and libraries received many stars, they may
be dormant, decayed, or even deprecated. Once developers use
the deprecated libraries or frameworks, this can be a potential
risk to their projects. Therefore, it is necessary to investigate
their recent maintenance activities.
RQ3. (Usage) How often are the top frameworks and
libraries used by other projects in GitHub? The goal of the
question is to investigate the usage of top frameworks and
libraries, and the association between maintenance status and
usage.
Paper Organization. The rest of the paper is organized
as follows. The information about our dataset is present in
Section II. Our research methods and results are presented in
Section III for RQ1, Section IV for RQ2, and Section V for
RQ3. In Section VI, we provide an overview of related work.
Section VII concludes our work.

II. DATASET

First, we referred to the previous work [4] and took 5,000 as
the threshold to select the top-5,000 most starred repositories
hosted on GitHub (In November 2021). Then referring to the
classification criteria and results of the existing paper [5], we



manually selected frameworks and libraries repositories from
the top-5,000 repositories, and we used the following strategies
to select them: first, we selected the repositories that have
keywords such as framework and library in their descriptions
or README files; second, we selected the repositories that
can be found in package managers (e.g., Maven, PyPI);
after the above procedures, we then manually checked the
repositories to assure the correctness of the selection.

Finally, we got 2,092 repositories. We collected the ba-
sic information (e.g., the number of stars, forks, commits,
contributors). Besides, we collected events of issues, pulls,
and commits for the repositories for the recent year between
November 2020 and October 2021 through GitHub REST API.
To investigate the usage of top frameworks and libraries by
other repositories hosted on GitHub, we further selected repos-
itories with more than 500 stars and had at least one commit
in the past three months (for quality assurance), resulting in
an initial set of 24,605 repositories. Then we selected the
repositories with manifest files from the initial set, and we
ended up with 14,666 repositories as potential client projects.
We used libraries.io1 to gather their dependency information.
The more detailed data for analysis and its extraction process
will be elaborated in the following methodology subsections.
The data and scripts for the replication of this study are
available2.

TABLE I: Data Basic Statistics

Metric Min 25% Median 75% Max Average

Star 5,319 6,667 8,955 13,501 189,629 12,593
Fork 2 712 1,291 2,290 85,709 2,229

Age (weeks) 12 276 372 475 717 376
Commit 3 449 1,158 2,862 121,196 3,292

Contributor 1 34 85 181 4,377 163

Table I shows statistics on the number of stars, number of
forks, age, number of commits, and number of contributors
for the repositories in our dataset.

III. RQ1: MAINTENANCE PRACTICES ADOPTION

A. Methodology

TABLE II: Studied Maintenance Practices

Dimension Practices Rationale

Documentation

contribution guidelines To guide contributors do good work

codes of conduct To define community standards to facilitate
healthy community behavior

template To provide guidance for opening issues or
pull requests

good first issues To highlight opportunities for people to con-
tribute

homepage To show all kinds of information related to
the project

Community discussion To provide a collaborative communication
forum to talk about the project

chat platform Similar to the discussion

Automation continuous integration To improve the productivity of the project
team

1https://libraries.io/
210.6084/m9.figshare.18665744

Table II shows the recommended OSS maintenance practices
studied in our paper. Some practices are recommended by
GitHub, and some are recommended by previous work [6], [3],
[4]. We divided them into three dimensions: documentation,
community and automation.
Documentation Dimension. In this dimension, we con-
sidered five practices: adoption of contribution guidelines,
codes of conduct, template, good first issues and homepage.
These are practices recommended by GitHub to set projects
for healthy contributions. To investigate their adoption, we
searched for the relevant files (e.g., CONTRIBUTING.md,
CODE OF CONDUCT.md, ISSUE TEMPLATE.md) from
the repositories’ directories and checked the issue labels.
Community Dimension. In this dimension, we considered the
usage of discussion and chat platform. The discussion refers
to the new feature—GitHub Discussions. As for the usage of
chat platform, we investigated whether the frameworks and
libraries repositories have adopted Slack, Discord, or Gitter.
Automation Dimension. In this dimension, we considered the
usage of continuous integration, and we investigated whether
the top frameworks and libraries repositories have adopted
Travis CI, GitHub Actions, or CircleCI.

First, we classified the collected repositories into five
groups: the top group, which refers to the collection of top-
500 repositories by the number of stars; the bottom group;
the active group, which refers to the collection of repositories
with at least one commit in the past month (the count is 1,034,
49.43%); the inactive group, which refers to the collection of
repositories with no commits in the past year (the count is
448, 21.24%); the all group, which refers to the collection of
all repositories in our dataset. The purpose of this grouping
is to present the statistical differences between the top and
bottom repositories, active and less active repositories, and
the overall statistical characteristics of all collected reposito-
ries. Then, according to the classification of the groups, we
calculated and analyzed the corresponding adoption rates of
the above practices. The grouping shows that although these
top frameworks and libraries received many stars and ranked
high, more than 20% of them have not committed for more
than one year.

B. Results

Table III shows the adoption rate of each practice by each
group. Regardless of the group, the most followed practices is
continuous integration. For continuous integration, the inactive
group has the lowest adoption rate at 58.48%, while the active
group has the highest adoption rate at 88.88%. Nevertheless,
the adoption rates of codes of conduct, good first issues,
discussion and chat platform are relatively low, not exceeding
50% in each group. Moreover, for each practice, the inactive
group has the lowest adoption rate; and the adoption rates of
codes of conduct, template, good first issues and discussion in
inactive group are significantly low, which are 1/6, 1/4, 1/4
and 1/34 of the highest adoption rates.

Figure 1 shows the frequency distribution of the number
of practices adopted by each group, where the y-axis repre-

https://libraries.io/
10.6084/m9.figshare.18665744


TABLE III: Percentage of Repositories Following Recommended Maintenance Practices

Practice Active Inactive Top Bottom All

contribution guidelines 65.57% 31.70% 71.20% 39.60% 53.11%
codes of conduct 34.43% 6.03% 36.00% 16.60% 23.57%

template 71.18% 17.19% 73.00% 37.60% 51.77%
good first issues 36.94% 9.15% 32.60% 23.80% 26.86%

homepage 76.11% 54.24% 80.60% 58.00% 67.97%
discussion 40.14% 1.79% 36.40% 17.20% 24.81%

chat platform 38.39% 15.83% 40.60% 20.40% 29.78%
continuous integration 88.88% 58.48% 88.40% 73.20% 79.73%

Fig. 1: Frequency Distribution of The Number of Practices
Adopted by Different Groups

sents the number of practices and the x-axis represents the
frequency. For the inactive group, the number of practices
adopted mainly (84%) falls into the range 0 to 3. For the
active and top groups, the top-3 number of practices adopted
are in the range of 4 to 6. Few frameworks and libraries have
adopted all the above practices though they are in active status.
For active group, only 39 (3.77%) of the 1,034 repositories
have adopted all eight studied practices.

IV. RQ2: MAINTENANCE ACTIVITY

A. Methodology

TABLE IV: The Metrics of Maintenance Activities

Dimension Metric Description

Commit commit count The number of commits
Release release count The number of releases

Issue

issue count The number of issues
issue closed average time The average time of closing an issue

issue closed ratio The ratio of closed issues
issue replied ratio The ratio of replied issues

issue replied average time The average time of replying to an issue

Pull Request

pull count The number of pull requests
pull closed ratio The ratio of closed pull requests

pull closed average time The average time of closing a pull request
pull merged ratio The ratio of merged pull requests

pull merged average time The average time of merging a pull request
pull replied ratio The ratio of replied pull requests

pull replied average time The average time of replying to a pull
request

As shown in Table IV, we investigated the maintenance
activities of the top frameworks and libraries repositories in the
past year (from November 2020 to October 2021) from four
dimensions: commit, release, issue, and pull request. And we
used the groups introduced in RQ1.

B. Results

TABLE V: Maintenance Activities of active, inactive, top,
bottom, and all Groups.

Metric Active Inactive Top Bottom All

commit count 475 0 416 181 248
release count 25 0 17 6 13
issue count 314 14 376 91 178

issue closed ratio 63.92% 15.20% 58.09% 41.50% 47.62%
issue closed average time 172.34h 257.65h 165.40h 218.91h 215.23h

issue replied ratio 76.58% 31.95% 72.48% 57.83% 62.97%
issue replied average time 48.10h 472.99h 84.29h 245.95h 180.07h

pull count 346 4 389 100 183
pull closed ratio 89.29% 11.37% 74.53% 57.80% 64.78%

pull closed average time 108.38h 412.90h 165.24h 228.00h 246.49h
pull merged ratio 66.72% 0.09% 50.17% 39.47% 44.55%

pull merged average time 100.04h 183.55h 137.26h 205.19h 171.50h
pull replied ratio 60.09% 15.67% 56.63% 41.00% 47.26%

pull replied average time 69.76h 508.34h 159.89h 216.09h 234.37h

The results in Table V show that the active group outperforms
the other groups in most metrics while the inactive group
lags behind the other groups in most metrics. For the average
number of commits and releases, the active group has the
maximum values, 475 and 25, respectively, while the inactive
group has the minimum values, both zero. For the average
number of issues and pull requests, the top group has the
maximum values of 376 and 389, while the inactive group
has the minimum values of 14 and 4, respectively. Besides,
the active group has the highest ratios of closed issues,
replied issues, closed pull requests, merged pull requests, and
replied pull requests, which are 63.92%, 76.58%, 89.29%,
66.72%, and 60.09%, respectively, while the inactive group
has the lowest which are 15.20%, 31.95%, 11.37%, 0.09%,
and 15.67% respectively.

Interestingly, we found that: in inactive group, the average
time of replying to an issue is longer than the average time
of closing an issue; the average time of replying to a pull
request is longer than the average time of closing or merging a
pull request; however, the above situation is reversed in active
group.

V. RQ3: USAGE



A. Methodology

In this section, as for the usage of top frameworks and
libraries, we investigate their usage frequency and outdated
usage. We used libraries.io to extract the dependencies of each
potential client project. The libraries.io has organized all the
manifest files (e.g., pom.xml, package.json) for the project.
Finally, we extracted 216,504 dependencies.

B. Results

TABLE VI: Statistics on the usage frequency and outdated
usage ratio

Metric Min 25% Median 75% Max Average

Usage Frequency 0 0 4 33 13,069 102
Outdated Usage Ratio 0 9.22% 49.77% 80.00% 100.00% 47.10%

Table VI shows statistics on the usage frequency and
outdated usage ratio. We define the outdated usage ratio
as the number of outdated uses of a framework or library
divided by its total uses. Of the 2,092 studied top frameworks
and libraries, 1,362 are used at least once, only 285 do not
have outdated usage, and 146 projects are wholly used with
outdated versions.

We applied the Mann-Whitney U test to analyze the statis-
tical significance of the difference between the top-100 most
used frameworks and libraries and the unused frameworks
and libraries in the metrics mentioned in RQ2, and we used
Cliff’s delta [7] to show the effect size of the difference. We
found a statistically significant difference between them in all
metrics, and all 14 metrics have large effect sizes. Further,
We calculated the median and the mean of the 14 metrics of
the top-100 most used and unused projects and found that the
former outperforms the latter in all metrics. For example, the
median number of commits in the past year of the former is 74
while the latter is 12, and the issue closed ratio of the former is
70.14% while the latter is 35.15%. Therefore, the maintenance
status may have an effect on the usage frequency. Then, we
used the same methods above to analyze the projects that do
not have outdated usage and projects that are wholly used
with outdated versions. We found a statistically significant
difference between them in all metrics, and 10 of 14 metrics
have large effect sizes, while the other metrics have medium
effect sizes. Further, we found that the latter outperforms the
former in 13 metrics (except the issue closed average time).

VI. RELATED WORK

Much work has been done studying software maintenance.
There is some work [8], [9] focused on investigating or
measuring the maintenance status of projects; some work [10]
focused on the barriers faced by contributors (e.g., peripheral
contributors); some work [4], [6], [11], [3] focused on the
recommended OSS maintenance practices that may guide or
automate the maintenance and contribution process. Coelho
et al. [8] proposed a machine learning model to identify
unmaintained GitHub projects and defined a metric to measure
the level of maintenance activity of GitHub projects. Lee et

al. [10] conducted an online survey to investigate the barriers
one-time code contributors faced when contributing to FLOSS
projects and highlighted the significance of timely feedback
and guidance through the patch submission process. Hilton
et al. [6] studied the usage, costs, and benefits of continuous
integration in open source projects. They found that the overall
percentage of projects using CI continues to grow, and CI
helps projects release more frequently and accept pull requests
faster. Alderliesten et al. [11] initially explored the ”good
first issues” label and found that though they are effective at
developer onboarding and considered useful, their types need
to be refined to match the types of initial contributions.

VII. CONCLUSION
In this paper, we conducted an empirical study to investigate
the maintenance of top frameworks and libraries hosted on
GitHub. We found that some OSS recommended maintenance
practices are not widely adopted even in the top frameworks
and libraries. For example, the adoption rates of codes of
conduct and good first issues are 23.57% and 26.86%. Further,
we used quantity, proportion, and response time as metrics to
analyze the recent maintenance activities of the top frame-
works and libraries. Moreover, we found that the maintenance
status may have an effect on the usage frequency. In future
work, we plan to propose a unified measure of open source
project maintenance status.

REFERENCES

[1] E. Larios Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
Selecting Third-Party Libraries: The Practitioners’ Perspective. New
York, NY, USA: Association for Computing Machinery, 2020, p.
245–256. [Online]. Available: https://doi.org/10.1145/3368089.3409711

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and
D. Damian, “The promises and perils of mining github,” 06 2014.

[3] D. Sholler, I. Steinmacher, D. Ford Robinson, M. Averick, M. Hoye,
and G. Wilson, “Ten simple rules for helping newcomers become
contributors to open projects,” PLoS Computational Biology, vol. 15,
September 2019.

[4] J. Coelho and M. Valente, “Why modern open source projects fail,” 08
2017, pp. 186–196.

[5] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016, pp.
334–344.

[6] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 426–437.

[7] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta
calculator: A non-parametric effect size program for two groups of
observations,” Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2011.

[8] J. Coelho, M. Valente, L. Milen, and L. Silva, “Is this github project
maintained? measuring the level of maintenance activity of open-source
projects,” Information and Software Technology, 02 2020.

[9] G. Avelino, E. Constantinou, M. Valente, and A. Serebrenik, “On
the abandonment and survival of open source projects: An empirical
investigation,” 09 2019, pp. 1–12.

[10] A. Lee, J. C. Carver, and A. Bosu, “Understanding the impressions, mo-
tivations, and barriers of one time code contributors to floss projects: A
survey,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 187–197.

[11] J. W. D. Alderliesten and A. Zaidman, “An initial exploration of the
“good first issue” label for newcomer developers,” in 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), 2021.

https://doi.org/10.1145/3368089.3409711

	Introduction
	Dataset
	RQ1: Maintenance Practices Adoption
	Methodology
	Results

	RQ2: MAINTENANCE ACTIVITY
	Methodology
	Results

	RQ3: USAGE
	Methodology
	Results

	RELATED WORK
	CONCLUSION
	References

