
Modeling and Verifying AUPS Using CSP
Hongqin Zhang, Huibiao Zhu∗, Jiaqi Yin, Ningning Chen

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—The Internet of Things (IoT) is an important tech-
nology in IT industries. The wide adoption of IoT raises concerns
about security and privacy. The Authenticated Publish/Subscribe
(AUPS) model is an IoT system which aims to address the security
and privacy issues in the IoT environment. AUPS is attracting
more and more attention from industries. Hence, the reliability
of AUPS is worth investigating.

In this paper, we model AUPS using Communicating Sequen-
tial Processes (CSP). Five properties (Deadlock Freedom, Data
Availability, Data Leakage, Device Faking and User Privacy
Leakage) of the model are verified by utilizing the model
checker Process Analysis Toolkit (PAT). The verification results
demonstrate that AUPS cannot ensure the security of critical
data. To solve the problem, we improve the model by using a
digital certificate. The verification results of the improved model
indicate that our study can enhance the security and reliability
of the AUPS model.

Index Terms—AUPS, CSP, PAT, Modeling, Verifying

I. INTRODUCTION

As an important paradigm in IT industries, the Internet
of Things (IoT) connects heterogeneous devices to provide
users with required services [1]. Communication efficiency,
data security and user privacy are the three major issues of
IoT [2]. In order to cope with these issues, several solutions
have been proposed [3]–[5]. Shi et al. came up with an
IoT system [3] which used a machine learning method to
improve the efficiency of data processing. Jung et al. proposed
a distributed IoT scheme where two or more servers created a
group and a client viewed the group as a powerful server [4].
This scheme reduced network latency. However, it cannot
protect user privacy. Shang et al. presented a publish/subscribe
IoT framework [5]. It adopted data authentication to improve
the communication security without considering user privacy
issues. These solutions improved communication efficiency.
However, they did not fully explore security and privacy issues.

Thus, a publish/subscribe IoT system called Authenticated
Publish/Subscribe (AUPS) [6] was proposed. AUPS adopted
Attribute-based Access Control (ABAC) [7] to improve the
security and privacy of the system. ABAC controls access
to data by evaluating rules against the attributes of users.
According to the experimental results [6], AUPS was more
efficient than the other existing secure solutions. As AUPS
is attracting more and more attention from industries, we
believe that it is valuable to analyse the functional and security
properties of AUPS using formal methods.

In this paper, AUPS is formally modeled using the process
algebra CSP [8]. The model checking tool PAT [9] is adopted

∗Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

to verify its functional and security properties. According to
the verification results, AUPS may cause data leakage, device
faking and user privacy leakage once intruders appear. Thus,
we improve the model by using a digital certificate. Then we
verify the improved model using PAT. The verification results
show that our work can guarantee the security of AUPS.

The rest of this paper is organized as follows. Section
II briefly introduces AUPS and CSP. Section III is devoted
to the modeling of AUPS. In Section IV, we analyse the
verification results and give the improvement that can address
the vulnerabilities of the model. Finally, conclusion and future
work are given in Section V.

II. BACKGROUND

In this section, we give a brief description of AUPS. After
that, we introduce the process algebra CSP.

A. AUPS

As shown in Fig. 1, the Authenticated Publish/Subscribe
(AUPS) contains the following entities:

Fig. 1: AUPS schema

• Device: It collects data from the environment and sends
them to the Networked Smart Object (NOS).

• Networked Smart Object (NOS): The NOS deals with
the collected data and publishes them to the broker.

• User: The user subscribes to services to get the required
data by interacting with the broker.

• Broker: It handles the subscription requests from users,
and then forwards data to the legal subscribers.

• Enforcement Framework (EF): The EF is a policy
enforcement framework. It performs access control and
manages the data encryption/decryption keys using a key
table. The structure of key table is shown in TABLE I.

• Keys Topics Manager (KTM): It generates the data
encryption/decryption keys according to the services.

The core functions of AUPS are data publishing and service
subscription. Data publishing represents that the devices pub-
lish collected data to the Internet. Service subscription means

DOI reference number: 10.18293/SEKE2022-088

TABLE I: Key table
Field Description
id The identifier of the corresponding key
key The actual key
val The expiration date of the key
atb The attribute(s) owned by users allowed to get the data

that users subscribe to services to obtain the required data.
We introduce the actions of the two functions as follows. The
related notations and descriptions are listed in TABLE II.

TABLE II: Notations and descriptions
Notation Description

pukx/prkx/skx
Public/Private/Symmetric key of the user/device/
broker/NOS/intruder, x ∈ {u, d, b, n, i}

idx/sidx
Identity information/Session identifier of the user/
device, x ∈ {u, d}

Before publishing data, the device must finish device regis-
tration. The related actions are shown in Fig. 2.
• a1: A device sends a registration request reqd to the NOS.
• a2: When receiving the request, the NOS sends its public

key pukn to the device.
• a3: The device sends its identity information idd and

symmetric key skd encrypted with pukn to the NOS.
• a4: The NOS decrypts the message to get idd and skd

using its private key prkn, and then distributes a session
identifier sidd encrypted with skd to the device.

• a5: The device sends the collected data d and session
identifier sidd encrypted with skd to the NOS.

• a6: The NOS decrypts the message to get the data d using
skd, and then asks the EF for a data encryption key.

• a7: The EF sends a key kT to the NOS. After that, the
NOS can publish data encrypted with kT to the broker.

Before getting data, the user needs to register and subscribe
to relevant services. The related actions are given in Fig. 3.
• b1: A user sends a registration request requ to the broker.
• b2: The broker sends its public key pukb to the user.
• b3: The user sends its private information idu and sym-

metric key sku encrypted with pukb to the broker.
• b4: The broker decrypts the message to get idu and sku

using prkb, and then sends the session identifier sidu and
attribute at to the user. Notice that sidu is used to identify
the user without revealing its sensitive information.

• b5: The user sends a subscription request reqT encrypted
with sku to the broker.

• b6: The broker verifies the identity of the user, and then
sends an access control request to the EF.

• b7: The EF checks whether the user can access the data
of service T . If the result is positive, the EF forwards the
data decryption key kT to the broker.

• b8: The broker sends kT encrypted with sku to the user.
Finally, the user can obtain the data using kT .

B. CSP
Communicating Sequential Processes (CSP) is a process

algebra proposed by C. A. R. Hoare [8]. Here we briefly
introduce the syntax of CSP used in this paper.

P,Q ::= a→ P | c?x→ P | c!v → P | P ;Q |
P ||Q | P�Q | P C bBQ | P [[a← b]]

Fig. 2: Data publishing

Fig. 3: Service subscription

• a → P indicates that a process performs action a first,
and then acts like process P .

• c?x → P represents that a process receives a message
via channel c and assigns the received message to x, and
then behaves like process P .

• c!v → P denotes that message v is sent through channel
c, and then process P is executed.

• P ;Q is the sequential execution of processes P and Q.
• P ||Q describes that processes P and Q run in parallel.
• P�Q stands for the general choice of processes P and

Q, and the selection is made by the environment.
• P C bBQ shows that if the condition b is true, process

P is executed, otherwise process Q is executed.
• P [[a ← b]] means renaming action. Event a in process

P is replaced by event b.

III. MODELING

In this section, we focus on the modeling of AUPS. First,
we introduce some preparatory notations for the modeling in-
cluding sets, messages and channels. Based on these notations,
we give the formal model of AUPS.

A. Sets, Messages and Channels
First, we explain the sets defined in our model. Entity is

a set of entities described in Section II. Req set contains
requests of entities. Key set is composed of all the keys.
Data set contains the data collected by devices. Inf set denotes
other message contents including identifier set ID, feedback
message set Ack, attribute set Atb and service set Service.

Besides, we define the encryption function E and decryption
function D to model the messages:

E(k, m); D(k, E(k, m)); D(k−1, E(k,m))

Function E(k,m) means that we encrypt the message m
using k. D(k,E(k,m)) denotes that we use a symmetric key

k to decrypt the message which is encrypted by k. D(k−1,
E(k,m)) indicates that we use the corresponding decryption
key k−1 to decrypt the message encrypted by k.

Based on the sets and functions defined above, we abstract
and classify the messages as follows:
MSGreq = {msgreq.a.b.req,msgreq.a.b.E(k, req) |

a, b ∈ Entity, k ∈ Key, req ∈ Req}
MSGkey = {msgkey.a.b.E(k1, k) | a, b ∈ Entity, k1, k ∈ Key}
MSGinf = {msginf .a.b.inf | a, b ∈ Entity, inf ∈ Inf}
MSGdata = {msgdata.a.b.d,msgdata.a.b.E(k, d) |

a, b ∈ Entity, d ∈ Data, k ∈ Key}
MSGin = {msgreq1.t,msgkey1.k | t ∈ Service, k ∈ Key}
MSGout = MSGreq ∪MSGinf ∪MSGkey ∪MSGdata

MSG = MSGout ∪MSGin

MSGreq represents the set of request messages. MSGkey

denotes the set of messages containing the keys. MSGinf

involves messages containing identifiers, feedback messages,
attributes and services. MSGdata consists of messages con-
taining the data collected by devices. MSGout means the set
of messages transmitted between entities. MSGin consists
of the internal processing messages of entities. MSG is
composed of all the messages in the model.

Then we give the definitions of communication channels:
• Channels between honest entities shown by COM PATH:

ComDN, ComNB, ComUB, ComBE, ComNE,

GetE, ComEK

• Channels for intruders to intercept or fake the transmitted
messages denoted by INTRUDER PATH:

FakeDN, FakeND, FakeUB, FakeBU

The declaration of the channels is given as follows:

Channel COM PATH, INTRUDER PATH : MSG

Fig. 4: Channels of AUPS model

B. Overall Modeling

In this subsection, we give the whole model of AUPS.
System0 only contains legal entities which are running in
parallel. Based on the model System0, we construct the model
of System by introducing attacks from intruders.

System0 =df Broker‖User‖EF‖ProcessE‖KTM‖
Device‖NOS‖Clock

System =df System0[|INTRUDER PATH|]Intruder
Broker, User, EF , Device, NOS and KTM are pro-

cesses describing the behavior of the broker, user, EF, device,
NOS and KTM respectively. ProcessE denotes the internal
processing procedures of the EF. The process Clock is used
to realize the synchronization of time. In addition, the process
Intruder simulates the actions of intruders. The channels
between all processes are shown in Fig. 4.

C. Clock Modeling

AUPS adopts a temporary key to encrypt the published
data. Before using the temporary key, the entity needs to
check the expiration date of the key. Hence, we define the
process Clock to realize the synchronization of all entities.
The process Clock serves to record the time and return the
current time whenever the entities want it.

Clock(t) =df tick → Clock(t+ 1) � T ime!t→ Clock(t)

D. User Modeling

We formalize the process User0 to describe the behavior
of the user without intruders as follows:

User0 =df ComUB!msgreq.U.B.requ →
ComUB?msgkey.B.U.pukb →
ComUB!msgreq.U.B.E(pukb, idu.sku)→
ComUB?msginf .B.U.E(sku, sidu.at)→
ComUB!msgreq.U.B.E(sku, reqT.at)→
ComUB?msgkey.B.U.E(sku, kT)→ ComUB?msgdata.B.U.E(kT, d)→

User0 CD(kT,E(kT, d))B (fail→ User0)
CD(sku, E(sku, kT))B (fail→ User0)


CD(sku, E(sku, sidu.at))B (fail→ User0)


The above actions correspond to b1 − b5 and b8 in Fig.

3. First, the user sends a registration request requ to the
broker and receives the broker’s public key pukb. Then the
user requests an attribute by sending its identity information
idu and symmetric key sku encrypted with pukb to the broker.
Once getting the attribute at and session identifier sidu, the
user sends a subscription request reqT encrypted with sku to
the broker. If the request is accepted, the user receives the data
decryption key kT and encrypted data. Finally, the user can
obtain the required data d using kT . Then we consider attacks
from intruders.

Based on the achieved model User0, we formalize the
process User with intruders via renaming as follows:
User =dfUser0[[

ComUB!{|ComUB|} ← ComUB!{|ComUB|},
ComUB!{|ComUB|} ← FakeUB!{|ComUB|},
ComUB?{|ComUB|} ← ComUB?{|ComUB|},
ComUB?{|ComUB|} ← FakeBU?{|ComUB|}]]

{|ComUB|} represents the set of all communications over
the channel ComUB. The first two lines mean that whenever
User0 transmits a message on the channel ComUB, User

can transmit the same message on the channel ComUB or
FakeUB. The last two lines are similar.

E. Broker Modeling
We give the model of process Broker0 to describe the

behavior of the broker without intruders as follows:
Broker0 =df ComUB?msgreq.U.B.requ →

ComUB!msgkey.B.U.pukb →
ComUB?msgreq.U.B.E(pukb, idu.sku)→

ComUB!msginf .B.U.E(sku, sidu.at)→
ComUB?msgreq.U.B.E(sku, reqT.at)→

ComBE!msgreq.B.E.req.at.T →
ComBE?msginf .E.B.ack.kT →

ComUB!msgkey.B.U.E(sku, kT)→
ComNB?msgdata.N.B.E(kT, d)→
ComUB!msgdata.B.U.E(kT, d)→
Broker0 C (ack == true)B
(fail→ Broker0)


CD(sku, E(sku, reqT.at))B (fail→ Broker0)


CD(prkb, E(pukb, idu.sku))B (fail→ Broker0)


The above actions correspond to b1− b8 in Fig. 3. During

user registration, the broker sends its public key pukb to the
user, and then obtains the user’s identity information idu and
symmetric key sku through decryption. After that, the broker
distributes the attribute at and session identifier sidu encrypted
with sku to the user. When receiving the subscription request
reqT , the broker verifies the user’s identity by sending the
attribute at and service T to the EF. If the feedback message
ack from the EF is true, the broker sends the data decryp-
tion key kT encrypted with sku to the user. Otherwise, the
subscription request is rejected.

Based on Broker0, the model of the process Broker with
intruders can be acquired via renaming similar to the process
User. We leave out the details.

F. EF Modeling
The EF interacts with the broker and NOS to perform access

control. We model the process EF using general choice �.
EF =df ComBE?msgreq.E.B.req.at.T →

ack := check(at, T)→ GetE!msgreq1.T → GetE?msgkey1.kT →
ComBE!msgkey.E.B.ack.kT → EF0

C(ack == true)B (fail→ EF0)


�ComNE?msgreq.N.E.reqK → GetE!msgreq1.T →
GetE?msgkey1.kT → ComNE!msgkey.E.N.kT → EF0

The model before � describes the communication between
the EF and broker. check(at, T) is a function used to verify
whether the user with attribute at can access service T . After
receiving the broker’s request req, the EF adopts check(at, T)
to verify the access authority of the user. If the result ack
is true, the EF sends a key request to its internal process
ProcessE. Once receiving the data decryption key kT from
ProcessE, the EF forwards kT to the broker. These actions
correspond to b6 and b7 in Fig. 3. The model after � describes
the communication between the EF and NOS. When receiving
the NOS’s request reqK, the EF requests a data encryption
key from ProcessE, and then forwards the key to the NOS.
The related actions are illustrated by a6 and a7 in Fig. 2.

G. ProcessE Modeling

In order to simulate the internal process of EF , we model
ProcessE. It mainly deals with the key requests of entities.
ProcessE =df GetE?msgreq1.T → kT := findKey(T)→ GetE!msgkey1.kT → ProcessE
C(∃e ∈ tablei • e.key == kT ∧ T ime?t→ e.val > t)B
ComEK!msgreq.E.K.reqEK.T → ComEK?msgkey.
K.E.kT → GetE!msgkey1.kT → ProcessE


findKey(T) is a function designed to find the symmetric

key that can encrypt or decrypt the data of service T . After
receiving the key request from the EF, ProcessE adopts
findKey(T) to find a symmetric key kT . Then ProcessE
verifies whether kT is valid by checking the expiration date
val. If val is later than the current system time, it means that
kT has not expired. Then ProcessE sends kT to the EF. If
kT has expired, ProcessE requests a new key from the KTM,
and then forwards the new key to the EF.

Similarly, we can define CSP processes representing the
device, NOS and KTM. The actions of them are introduced
in Section II. We omit the details of these processes here.

H. Intruder Modeling
In order to simulate the attacks from the real environment,

we model the Intruder process. It can intercept and fake the
messages on channel ComDN , ComNB and ComUB.

First, we define the set of facts that the intruder can learn.
Fact =df Entity ∪MSGout ∪ {ski, puki, prki}

Through the known facts, the intruder can deduce new facts.
The symbol F 7→ f means that the intruder can deduce a fact
f from the fact set F .

{k, c} 7→ E(k, c)

{k−1, E(k, c)} 7→ c, {sk,E(sk, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

The first rule means encryption. The second and third rules
denote the decryption in asymmetric and symmetric encryption
forms respectively. The last rule shows that if the fact f can
be derived from a fact set F , and F is a subset of F ′, then
the intruder can also deduce f from the larger set F ′.

Moreover, we use a function Info(m) to imply the facts
that the intruder can learn through intercepted messages.

Info(msgkey.a.b.E(k1, k)) =df {a, b, E(k1, k)}
Info(msgdata.a.b.E(k, d)) =df {a, b, E(k, d)}

Besides, we introduce a channel DEDUCE for the intruder
to deduce new facts. Its definition is given as below:

Channel DEDUCE : Fact.P (Fact)

Then the process Intruder0 can be modeled as follows:
Intruder0(F)

=df �m∈MSGoutFake.m→ Intruder0(F ∪ Info(m))

��f∈Fact,f /∈F,F 7→fInit{dl = false} → Deduce.f.F

→

 (
dl := true→ Intruder0(F ∪ {f})

)
C(f == d))B(

dl := false→ Intruder0(F ∪ {f})
)


When intercepting a message m, the intruder adds Info(m)
to its knowledge. If the intruder can decrypt m, it can falsify
m and send the modified message to the original receiver.

If the receiver does not recognize that the message has been
modified, it means that the intruder successfully fakes as the
original sender. Furthermore, the intruder can deduce new facts
from its knowledge via the channel DEDUCE and add them
to its knowledge. Once the intruder deduces the published data
successfully, data leakage occurs. idu represents the identity
information of the user, such as name and address. If the
intruder deduces the user’s sensitive information idu, user
privacy leakage happens. Now we give the model of Intruder.
The parameter IK is the initial knowledge of the intruder.

Intruder =df Intruder0(IK)

where, IK =df Entity ∪ {ski, puki, prki}

IV. VERIFICATION AND IMPROVEMENT
In this section, we verify several functional and security

properties of AUPS. Based on the verification results and
analysis of attacks, we improve the original model and give
the new verification results of the improved model.

A. Properties Verification

We use Linear Temporal Logic (LTL) formulas to describe
five properties of AUPS. System() denotes the model with
intruders. By using the assertion #assert System() | = F
in PAT, we verify whether the model satisfies the formula F .
Property 1: Deadlock Freedom

The system should not run into a deadlock state. We verify
this property by means of a primitive in PAT.

#assert System() deadlockfree;

Property 2: Data Availability
The property means that legal users should be able to obtain

the required data. We define a Boolean variable data suc to
verify this property. When the subscriber gets the required
data, we set the value of data suc to true.

#define Data Available data suc == true;

#assert System() reaches Data Available;

Property 3: Data Leakage
Data leakage can cause a bad effect to the system. We use

a Boolean variable dl to verify the property. If the intruder
obtains the data, we set the value of dl to true.

#define Data Leak Success dl == true;

#assert System() | = []! Data Leak Success;

Property 4: Device Faking
The property means that the intruder can pretend to be a

legal device without being recognized. We adopt a Boolean
variable df to verify the property. If the intruder fakes as a
legal device successfully, we set the value of df to true.

#define Device Fake Success df == true;

#assert System() | = []! Device Fake Success;

Property 5: User Privacy Leakage
User privacy leakage may bring great security risks to users.

Hence, we check whether the intruder can obtain the sensitive
information of the user using the following assertion.

#define User Privacy Leak pl == true;

#assert System() | = []! User Privacy Leak;

Fig. 5: Verification results of the original model

B. Verification Results
The verification results are shown in Fig. 5:
• Property 1 is valid. It represents that the model will

never run into a deadlock state.
• Property 2 is valid. It shows that the data can be

transmitted to the legal subscribers.
• Property 3 is invalid. It indicates that the intruder can

obtain the data illegally.
• Property 4 is invalid. It means that the intruder can

pretend to be a legal device to publish fake data.
• Property 5 is invalid. It indicates that the model cannot

protect the user privacy once intruders appear.

C. Attack Analysis
According to the verification results, although AUPS adopts

the access control and temporary keys, the system is still
unreliable. Now we discuss the reasons for the insecure results.
When the broker sends pukb to the user, the intruder can
intercept the message, and then replace pukb with its public
key puki. Since the user cannot detect that the key has been
changed, the user sends sku and idu encrypted with puki to
the broker. Then the intruder can decrypt the message with
prki to obtain sku and the user’s sensitive information idu,
which leads to user privacy leakage. After obtaining sku, the
intruder can get the data decryption key. Finally, the intruder
can acquire the data, which results in data leakage. We give
an example of the related attacks as follows:

A1. U −→ I : U.B.requ

A2. I −→ B : U.B.requ

A3. B −→ I : B.U.pukb

A4. I −→ U : B.U.puki

A5. U −→ I : U.B.E(puki, sku.idu)

A6. I −→ B : U.B.E(pukb, sku.idu)

A7. B −→ I : B.U.E(sku, sidu.at)

A8. I −→ U : B.U.E(sku, sidu.at)

A9. U −→ I : U.B.E(sku, at.T))

A10. I −→ B : U.B.E(sku, at.T))

A11. B −→ I : B.U.E(sku, kT)

where U , I and B mean user, intruder and broker respectively.
• A1: The user sends a request requ to the broker.
• A2: The intruder intercepts the request.
• A3: The broker sends its public key pukb to the user.

• A4: The intruder intercepts the message, and then re-
places pukb with its own public key puki.

• A5: The user sends its symmetric key sku and private
information idu encrypted with puki to the broker.

• A6: The intruder intercepts the message, and then de-
crypts the message to obtain sku and idu using prki. At
this point, user privacy leakage occurs.

• A7: The broker distributes the session identifier sidu and
attribute at encrypted with sku to the user.

• A8: The intruder acquires sidu and at using sku.
• A9: The user requests to subscribe to service T .
• A10: The intruder eavesdrops on the message.
• A11: The broker distributes the data decryption key kT

encrypted with sku to the user. The intruder intercepts the
message and gets kT using sku. Then, the intruder can
obtain the data using kT , which results in data leakage.

Similarly, the intruder can obtain the session identifier sidd
and symmetric key skd, and then fake as the device to publish
data, which leads to device faking. We omit the details here.

D. Improved Model and Verification

In order to address the above issues, we improve the model
by adding a digital certificate. Before sending the public key
to other entities, the entity needs to send its public key to
the Certification Authority (CA) to apply for a certificate. Fig.
6 depicts the flows of the digital certificate. First, the sender
applies for a certificate. Second, CA generates a certificate
based on the information of the sender, and then transmits
the certificate to the receiver. Finally, the receiver verifies the
validity of the certificate.

As the certificate is encrypted by CA’s private key, the
intruder cannot fake the certificate. It means that the intruder
cannot replace the public keys of the honest entities with its
own public key. Thus, the intruder can neither get the data nor
violate user privacy. We modify the message definitions of the
model. MSGkey is replaced by the following MSGkey2.

MSGkey2 = {msgkey2.a.b.E(k1, k.inf) |
a, b ∈ Entity, k1, k ∈ Key, inf ∈ Inf}

Then we formalize the improved processes of Broker1,
User1, Device1 and NOS1 using the new message defini-
tions. The improved model is given as follows.

System1 =df Broker1‖User1‖EF‖ProcessE‖KTM‖
Device1‖NOS1‖CA‖Clock

System =df System1[|INTRUDER PATH|]Intruder

The verification results are shown in Fig. 7. Property 3−5
are valid. It means that Data Leakage, Device Faking and
User Privacy Leakage problems are solved now.

V. CONCLUSION AND FUTURE WORK

AUPS is an IoT system based on the publish/subscribe
paradigm. In this paper, we formalized AUPS using the process
algebra CSP. Feeding the model into PAT, we verified several
functional and security properties of the model including dead-
lock freedom, data availability, data leakage, device faking and
user privacy leakage. According to the verification results, data

Fig. 6: Flows of digital certificate

Fig. 7: Verification results of the original model

leakage, device faking and user privacy leakage may occur
once intruders appear. Hence, we improved the model by using
a digital certificate. Then we verified the improved model with
PAT. The verification results show that the improved model
can prevent intruders from invading the system. In the future,
we will study more security properties of AUPS using formal
methods and improve our model to handle more attacks.
Acknowledgements. This work was partly supported by the Na-
tional Key Research and Development Program of China (Grant
No. 2018YFB2101300), the National Natural Science Foundation of
China (Grant Nos. 61872145, 62032024), Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the Dean’s
Fund of Shanghai Key Laboratory of Trustworthy Computing (East
China Normal University).

REFERENCES

[1] Tewari A, Gupta B B. Security, privacy and trust of different layers in
Internet-of-Things (IoTs) framework. Future Gener. Comput. Syst. 2020,
108: 909-920.

[2] Khan F I, Hameed S. Understanding Security Requirements and Chal-
lenges in Internet of Things (IoTs): A Review. ArXiv abs/1808.10529
2019.

[3] Shi Y, Zhang Y, et al. Using machine learning to provide reliable dif-
ferentiated services for IoT in SDN-like Publish/Subscribe middleware.
Sensors, 2019, 19(6): 1449.

[4] Jung J, Choi Dong, et al. Distributed pub/sub model in CoAP-based
Internet-of-Things networks. Proc. of the International Conference on
Information Networking (ICOIN), 2018: 657-662.

[5] Shang W, Gawande A, et al. Publish-Subscribe Communication in
Building Management Systems over Named Data Networking. Proc.
of the 28th International Conference on Computer Communication and
Networks, 2019: 1-10.

[6] Rizzardi A, Sicari S, et al. AUPS: An Open Source AUthenticated
Publish/Subscribe system for the Internet of Things. Inf. Syst. 2016,
62: 29-41.

[7] Hu V C, Kuhn D R, et al. Attribute-based access control. Computer,
2015, 48(2): 85-88.

[8] Hoare C A R. Communicating sequential processes. Communications
of the ACM, 1978, 21(8): 666-677.

[9] PAT, PAT: Process Analysis Toolkit. 2019. http://pat.comp.nus.edu.sg.

