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Abstract—Heterogeneous information network (HIN) embed-
ding, aiming to project HIN into a low-dimensional space, has
attracted considerable research attention. Existing heterogeneous
graph representation learning methods also take temporal evo-
lution into consideration in Euclidean space which, however, un-
derestimates the inherent complex and hierarchical properties in
many real-world temporal networks, leading to sub-optimal em-
beddings. To explore these properties of a dynamic heterogeneous
network, we propose a dynamic hyperbolic heterogeneous embed-
ding(DyHHE) model that fully takes advantage of the hyperbolic
geometry and structural heterogeneity. More specially, to capture
the structure and semantic relations between nodes, we employ
the meta-path guided random walk to sample the sequences
for each node. Then DyHHE maps the temporal graph into
hyperbolic space, and capture the structural heterogeneity and
evolving behaviors by facilitating the proximity measurement.
Experimental results on two real-world datasets demonstrate the
superiority of DyHHE, as it consistently outperforms competing
methods in link prediction task.

Index Terms—Dynamic Graphs, Hyperbolic Space, Heteroge-
neous Information Network

I. INTRODUCTION

Modeling data in the real world as heterogeneous informa-
tion networks(HINs) can capture the internal relations of rich,
complex data across various modalities. However, many real-
world graphs are dynamic where graph structures constantly
evolve over time. They are usually represented as sequence of
graph snapshots at different time steps [1]. Examples include
co-authorship networks where authors may periodically switch
social network whose users may develop their multiple-type
connections(follow, reply, retweet, etc) with others over time.
The dynamics of a network and the structural heterogeneity
provide abundant information for encoding nodes. So far,
a number of HIN embedding methods have been proposed
such as metapath2vec [2] and HAN [3]. These methods have
overlooked a problem, that is, the formation of the neighbors
is actually in order, it is related to time. There has been an
ever-increasing amount of research on dynamic networks like
DySAT [4] and HDGAN [5]. However, in the vast majority
of these works, the space used for representing networks is
Euclidean. In recent years, it has been suggested that complex
networks may have underlying hyperbolic geometry and that

hyperbolic space can better represent the structure of networks
[6]. One fundamental property of hyperbolic space is that it
expands exponentially and can be regarded as a smooth version
of trees, abstracting the hierarchical organization. Despite the
recent achievements in hyperbolic graph embedding, attempts
on temporal heterogeneous networks are still scant. To fill this
gap, in this work, we propose a novel dynamic hyperbolic
heterogeneous embedding model, which fully takes advantage
of the hyperbolic geometry and structural heterogeneity to
capture the spatial dependency and temporal regularities of
evolving networks via a recurrent learning paradigm. In sum-
mary, the main contributions are stated as follows:
• We propose a novel hyperbolic temporal graph embed-

ding model on heterogeneous network, named DyHHE,
to learn temporal regularities and implicitly hierarchical
organization.

• We devise a hyperbolic structural network(HSN) module
to preserve the HIN structure and semantic correlations
in hyperbolic spaces based on the meta-path guided
random walk. Then we apply a hyperbolic temporal
network(HTN) module to effectively extract the diverse
scope of historical information. To the best of our knowl-
edge, this is the first study on dynamic heterogeneous
network embedding in hyperbolic space.

• Experimental results on two real-world datasets demon-
strate the superiority of DyHHE, as it consistently out-
performs competing methods in link prediction task.
The ablation study further gives insights into how each
proposed component contributes to the success of the
model.

II. RELATED WORKS

Recently, some methods have been proposed representation
learning methods for HIN. Heterogeneous networks are usu-
ally characterized by meta-paths to find hidden relationships
between nodes. Metapath2vec [2] obtains a corpus through
random walks based on meta-paths, and uses skip-Gram for
training. HAN [3] applies the attention mechanism to het-
erogeneous graphs through meta-path based neighbors. Real-
world networks are not static, on the contrary, many networks
are constantly changing, such as social networks. HDGAN
[5] attempts to use the attention mechanism to take the
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heterogeneity and dynamics of the network into account at
the same time. DySAT [4] use the scaled dot-product form
of attention to learn dynamic graph embedding. Most of the
prevalent methods are built-in Euclidean space which, how-
ever, may underemphasize the intrinsic power-law distribution
and hierarchical structure. Existing representation learning in
hyperbolic space such as HGCN [11] and PoincareEmb [21]
mainly focus in static graph. Despite the recent achievements
in hyperbolic graph embedding, attempts on dynamic hetero-
geneous networks are still scant, which motivates us to explore
hyperbolic geometry on dynamic heterogeneous networks.

III. PRELIMINARIES

In this section, we first present the problem formulation
of dynamic heterogeneous graph, then we introduce some
fundamentals of hyperbolic geometry, which are essential in
our proposed framework.

Definition 1. Heterogeneous Information Network(HIN) [7].
An HIN is defined as a graph G = (V,E), in which V and
E are the sets of nodes and edges. Each node v ∈ V and
each edge e ∈ E are associated with their mapping functions
φ(v) : V → V and ψ(e) : E → E respectively. V and E denote
the sets of node and relation types, where |V|+ |E| > 2.

Definition 2. Meta-path [2]. Given a HIN G = (V,E), a
meta-path P is a sequence of node types Vv1 ,Vv2 , ...,Vvn
connected by edge types Ee1 , Ee2 , ..., Een−1

: P = Vv1
Ee1−→

Vv2
Ee2−→ ...

Een−1−→ Vvn . A meta-path instance consists of
specific nodes and edges, e.g., a1

write−→ p1
publish−→ v1.

Definition 3. Dynamic Heterogeneous Graph. A heteroge-
neous temporal is defined as a graph G =< V,E,A, T >,
from definition 1, we know that |V| + |E| > 2, where V
represents the node type and E represents the edge type.
A represents an event that sequence formed for each node’s
neighbors, and T is a time stamp. By definition 2, we can get
the neighbor set of node i in the heterogeneous network. The
neighbor formation sequence of node i refers to organizing the
neighbors of the nodes in the network as a sequence based on
the time of neighbor interaction events [8].

Then, we introduce some concepts of geometry to make this
article more clear. A Riemannian manifold M is a space that
generalizes the notion of a 2D surface to higher dimensions
[9]. For each point x ∈ M, it associates with a tangent
space(Euclidean) TxM of the same dimensionality as M.
Intuitively, TxM contains all possible directions in which
one can pass through x tangentially (see Fig. 1). There are
multiple models that can be used to represent hyperbolic
space, each having different advantages. The Poincaré ball
model is the best model for low dimensional visualizations
of the embeddings. The Poincaré ball model with negative
curvature −c(c ≥ 0) corresponds to the Riemannian manifold
(Hn,c, gH), where Hn,c = {x ∈ Rn : c||x||2 ≤ 1} is an open
n-dimensional ball. if c = 0, it degrades to Euclidean space,
i.e., Hn,c = Rn. In addition, [9] shows how Euclidean and

Fig. 1. The tangent space TxM and a tangent vector v, along the given point
x of a curve traveling through the manifold M.

hyperbolic spaces can be continuously deformed into each
other and provide a principled manner for basic operations
(e.g., addition and multiplication) as well as essential functions
(e.g., linear maps and softmax layer) in the context of neural
networks and deep learning.

IV. PROPOSED MODEL

The overall framework of the proposed model DyHHE
is illustrated in Fig. 2. DyHHE has two primary modules:
hyperbolic structural module and hyperbolic temporal module,
which benefits from the expressiveness of both hyperbolic em-
beddings and temporal evolutionary embeddings. As sketched
in Fig. 2, DyHHE is a recurrent learning paradigm and falls
into the prevalent discrete-time temporal graph architecture
formulated by (1). More specifically, DyHHE can be sum-
marized as two procedures: (a)Given the original input node
feature, this procedure projects it into hyperbolic space, and
preserve the structure by facilitating the proximity between
the node v ∈ V and its neighborhoods cV ∈ CV(v) with
type V . We use meta-path guided random walks [2] to obtain
heterogeneous neighborhoods of a node. (b)These sequences
of node representations then feeds as input to the temporal re-
current module to capture the sequential patterns. Furthermore,
we propose an attention mechanism based on the hyperbolic
proximity to obtain the attentive hidden state. Owning to the
superiorities of self-attention, this unit attending on multiple
historical latent states to get a more informative hidden state.
We elaborate on the details of each respective module in the
following paragraphs.

Ht(φ) = f2(f1(At, Xt), Ht−1) (1)

A. Feature Map
Before going into the details of each module, we first

introduce two bijection operations, the exponential map and
the logarithmic map, for mapping between hyperbolic space
and tangent space with a local reference point [10], [11], as
presented below.

In this work, we use Poincaré model with constant curvature
c = 1 as the hyperbolic space for entity embeddings [12].
In particular, we denote d-dimensional Poincaré centered at
origin as Hn,c = {x ∈ Rn : c||x||2 ≤ 1}, where || · || is the
Euclidean norm. The Poincaré model of hyperbolic space is
equipped with Riemannian metric:

gHx = λ2x′g
R (2)
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Fig. 2. Architecture of DyHHE.

where λcx′ := 2
1−c||x′||2 and gR denotes the Euclidean metric,

i.e., gR = I. The mobius addition ⊕ defined on Poincaré model
with curvature c is given by:

u⊕ v :=
(1 + 2c 〈u, v〉+ c||v||2)u+ (1− c||u||2)v

1 + 2c 〈u, v〉+ c2||u||2||v||2
. (3)

For each point x′ ∈ Hd,c, the tangent space Tx′Hd,c is the
Euclidean vector space containing all tangent vectors at x′.
For x′ ∈ Hd,c, a ∈ Tx′Hd,c, b ∈ Hd,c, and a 6= 0, b 6= x′.
One can map vectors in Tx′Hd,c to vectors in Hd,c through
exponential map expcx′(·) : Tx′Hd,c → Hd,c as follows:

expcx′(a) = x′ ⊕c (tanh(

√
cλcx′ ||a||

2
)

a√
c||a||

) (4)

Conversely, the logarithmic map logcx′(·) : Hd,c → Tx′Hd,c
maps vectors in Hd,c back to vectors in Tx′ , in particular:

logcx′(b) :=
2√
cλcx′

artanh(
√
c||−x′⊕cb||) −x

′ ⊕c b
|| − x′ ⊕c b||

(5)

Also, the hyperbolic distance between u, v ∈ Hd,c is:

dc(u, v) = (2
√
c artanh(

√
c|| − u⊕c v||)) (6)

B. Hyperbolic Structural Network(HSN)

On a dynamic heterogeneous graph, various kinds of in-
teractions are constantly being established over time, which
can be regarded as a series of observed heterogeneous events.
We aim to learn the representation of nodes to preserve the
structure and semantic correlations in hyperbolic spaces for
each snapshot. In each time step, HSN is employed to preserve
the structure by facilitating the proximity between the node
v ∈ V and its neighborhoods cV ∈ CV(v) with type V , which
leveraging promising properties of hyperbolic geometry.

The input of HSN is the node feature, whose norm could
be out of the Poincaré ball defined in hyperbolic space. To
make the node feature available in hyperbolic space, we use
the exponential map to project the feature into the hyperbolic
space, shown in (4). Specifically, let an Euclidean space vector
xEi ∈ Rd be the feature of node i, and then we regard it
as the point in the tangent space Tx′Hd,c with the reference

point x′ ∈ Hd,c, using the exponential map to project it into
hyperbolic space, obtaining xH ∈ Hd,c, which is defined as:

xHi = expcx′(x
R
i ). (7)

Then, We use meta-path guided random walks to obtain
heterogeneous neighborhoods of a node [2]. Given an arbitrary

meta-path P = Vv1
Ee1−→ Vv2

Ee2−→ ...
Een−1−→ Vvn , our goal is

to learn the semantically meaningful embeddings for all nodes
under the constraint of meta-path P . The transition probability
at step i is defined as follows:

p(vi+1|viVvi ,P) =

{
1

|NVvi+1
(viVvi

)| , (vi+1, viVvi
) ∈ E

0, otherwise
(8)

where viVvi is node v ∈ V with type Vvi , and NVvi+1
(viVvi

) de-
notes the Vvi+1

type of neighborhood of node viVvi .The meta-
path guided random walk strategy ensures that the semantic
relationships between different types of nodes can be properly
incorporated into HSN.

The premise of network embedding models is to preserve
the proximity between a node and its neighborhood. Therefore,
in hyperbolic space, we use distances in Poincaré model to
measure their proximity, as given in (6). We use a probability
to measure the node cV is a neighborhood of node v as
following:

p(v|cV ; Θ) = σ[−d(u, v)] (9)

where σ(·) = 1
1+exp(−x) is an activate function. According

to the (9), the object of HSN module is to maximize the
probability as followings:

argmax
∑
v∈V

∑
cV∈CV (v)

log p(v|cV ; Θ) (10)

C. Hyperbolic Temporal Network(HTN)

Historical information plays an indispensable role in tem-
poral graph modeling since it facilitates the model to learn the
evolving patterns and regularities. Although the latest hidden
state Ht−1 obtained by the recurrent neural network already
carries historical information before time t, some discriminate
contents may still be under-emphasized due to the monotonic
mechanism of RNNs that temporal dependencies are decreased
along the time span [13]. Inspired by [14], we design the
hyperbolic temporal attention(HTA) unit generalizes Ht−1 to
the latest time window w snapshots Ht−w, ...,Ht−1, attending
on multiple historical latent states to get a more informative
hidden state. These historical states in the state memory are
concatenate together and feed as input to the HTA unit,
which is performed in tangent space due to its computational
efficiency. Owing to the superiorities of attention, this unit
fuses the final hidden state by figuring out the importance each
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graph snapshots. The dataflow in the HTA unit is characterized
by the following equations:

HE
t = logcx′(H

H
t ) (11)

H = concat(HE
t−w, ...,H

E
t−1) (12)

HE
t−1 = softmax(kT tanh(QH))H (13)

HHt−1 = expcx(HE
t−1) (14)

The learnable weight matrix Q and K are utilized to extract
contextual information, where Q weights the node importance
in each historical state and K determines the weights across
the time windows.

Then, we use GRU, a variant of LSTM, as primary part of
HTN to incorporate the current and historical node states, in
view of the GRU is the newer generation of Recurrent Neural
networks and is pretty similar to an LSTM. GRU gets rid of
the cell state and used the hidden state to transfer information.
It also only has two gates, a reset gate and update gate.

HTN unit receives the sequential node embedding XHt from
HSN and the hidden state HHt−1 which is obtained from HTA.
As sketched in Fig. 2, the input representations of HTN unit
are assumed to sufficiently capture local structural information
as well as attentive hidden state. The dataflow in the HTN unit
is characterized by the following equations:

XE
t = logcx′(X

H
t ), (15)

HE
t−1 = logcx′(H

H
t−1), (16)

HE
t = GRU(XE

t , H
E
t−1), (17)

HHt = expcx(HE
t ). (18)

The main part of the unit is GRU. As the GRU is built
in tangent space, we use the logarithmic transformations to
project the XHt and HHt−1 into tangent space. After processing
representation using GRU, we project the embedding back to
hyperbolic space. As we can see, the final embedding HHt
fuses structural heterogeneity, content, and temporal informa-
tion.

V. OPTIMIZATION

Uniting the above modules, we formulate the learning
objective from two aspects: topological learning and temporal
evolution, corresponding to the following hyperbolic structural
loss and hyperbolic temporal loss.

A. Hyperbolic Structural Loss

We leverage the negative sampling proposed in [15], which
basically samples a small number of negative objects to
enhance the influence of positive objects. The hyperbolic
structure loss L(Θ) aims to minimize the proximity between
v and its neighborhood cV while maximize the proximity
between v and its negative sampled node n. The objective
equation (9) can be formulated as following:

L(Θ) = log σ[−d(xv,xcV )]+
M∑
m=1

Enm∼P (n){log σ[d(xv,xnm)]}

(19)

where P (n) is the pre-defined distribution from which a neg-
ative node nm is drew from for M times. Our method builds
the node frequency distribution by draw nodes regardless of
their types.

B. Hyperbolic Temporal Loss

We build a hyperbolic temporal consistency consistency
constraint L(t) on two consecutive time steps (Gt, Gt−1)),
which is defined as:

L(t) =
T∑
t=1

σ[d(xv,xnm)] (20)

where the t denotes the loss is with respect to time step t.

C. The Unified Loss

To enable the learned representations to capture structural
evolution, our objective function set the final loss function as:

L = L(Θ) + λL(t) (21)

where λ ∈ [0, 1] is the hyper-parameter to balance the temporal
smoothness and structural regularity. The final L not only min-
imizing the hyperbolic distance of a node with its connected
nodes and maximizing with the sampled negative neighbors,
but also minimizing the distance between the same node over
two consecutive timestamps. As the parameters of DyHHE
live in a Poincaré model which has a Riemannian manifold
structure, it should be noted, the back-propagated gradient is
a Riemannian gradient. It makes no sense Euclidean gradient
based optimization works in this manifold. Therefore, we
optimize L via Riemannian stochastic gradient descent(RSGD)
optimization method [16]. The gradient of their distance can
be derived as:

∆v(d(xv,xnm)) =
4

β
√
γ2 − 1

(
‖xv‖2 − 2 〈xv,xnm〉

α2
xv−

xv
α

)

(22)
where α = 1 − ‖xv‖2, β = 1 − ‖xnm‖2, γ = 1 +
2
αβ ‖xv − xnm‖2.

VI. EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments with the
aim of answering the following research questions:
• RQ1 How does DyHHE perform.
• RQ1 What does each component of DyHHE bring?

A. Datasets

To evaluate the effectiveness of our model, we conduct
experiments on two datasets from real-world platforms. The
datasets are summarized in Table I
• DBLP is a database of publications. Specifically, we col-

lected the papers from four research areas which contains
three types of nodes, i.e., author(A), paper(P), venue(V)
and two types of edges, i.e., author-paper(write), paper-
venue(publish). Timestamps denote the year of the pub-
lication.

• MovieLens [17] contains knowledge about movies.
MovieLens users from the late 1990s to the early 2000s.
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We extract a subset of MovieLens, which contains three
types of nodes, i.e., actor(A), movie(M), and director(D)
and two types of edges, i.e., actor-movie(act in) and
director-movie(direct).

TABLE I
STATISTICS OF DATASETS

DBLP A P V AP PV Snapshots
14475 14376 20 41794 14376 16

MovieLens A M D AM MD Snapshots
11718 9160 3510 64051 9160 13

Data with power-law structure can be naturally modeled in
hyperbolic spaces [6]. Therefore, we use two real-world HINs
datasets which have been proved to conform to the power-law
distribution of nodes [18], [19].

B. Baselines

We present comparisons against several static graph em-
bedding methods to analyze the gains of using temporal infor-
mation for link prediction. To ensure a fair comparision, we
also conduct experiments on several heterogeneous network
representation model to further demonstrate the superiority of
the proposed model DyHHE. Moreover, we also compare to
the hyperbolic embedding model, HGCN and PoincareEmb.
• Node2vec [20] is a static embedding method to generate

vector representations of nodes on a graph. It learns low-
dimensional representations for nodes in a graph through
the use of random walks.

• Metapath2vec [2] is an HIN embedding method. It learns
feature representations by capturing node pairs within w-
hop heterogeneous neighborhood via meta-path guided
random walks in the network.

• HGCN [11] is a static embedding method which lever-
ages both the expressivenees of GCNs and hyperbolic
geometry to learn node reoresentations for hierachical and
scale-free graphs.

• DySAT [4] computes node representations by jointly
employing self-attention layers along two dimensions:
structural neighborhood and temporal dynamics.

• HDGAN [5] is based on three levels of attention, namely
structural-level attention, semantic-level attention and
time-level attention and attempts to use the attention
mechanism to take the heterogeneity and dynamics of
the network into account at the same time, so as to better
learn network embedding.

• PoincareEmb [21] is a method that preserves proximities
of node pairs linked by an edge via embedding network
into a Poincaré ball.

For random walk based methods like Node2vec and Meta-
path2vec, we set neighborhood size to 5, walk length to 80,
ignoring the temporal regularity. As for meta-path guided
random walks like metapath2vec and PoincareEmb, we use
meta-path ”A–P–V–P–A” in DBLP and ”A-M-D-M-A” in
MovieLens. For dynamic homogeneous baselines Dysat, we

treat events as homogeneous. The train/test ratio is set to
80%/20%.

C. Link Prediction Comparison(RQ1)

Link prediction is to predict the type V interaction at time
step t, which can be used to test the generalization perfor-
mance of a network embedding method. Given all temporal
heterogeneous events before time step t and two nodes u and
v. For each type of edge, we treat all events at time t as the
positive link, and an equal number of negative examples in
the training set are created by sampling the node pairs not
interconnected. Subsequently, we split the chosen edges and
negative samples into validation and test. In our experiments,
we test the models regarding their ability of correctly classify-
ing true and false edges by computing average precision (AP)
and area under the ROC curve (AUC) scores. We uniformly
train both the baselines and DyHHE by using early stopping
based on the performance of the training set.

TABLE II
AUC SCORES OF LINK PREDICTION RESULT.

DBLP MovieLens
Edge A-P P-V A-M M-D
Node2vec 85.32± 0.7 85.25± 0.8 81.27± 0.2 83.44± 1.1
Metapath2vec 87.46± 0.9 88.11± 0.9 82.3± 0.1 81.57± 1.4
HGCN 89.8± 1.2 90.27± 0.4 85.4± 0.2 85.17± 1.3
DySAT 90.66± 0.2 90.21± 0.4 87.32± 0.3 86.75± 0.9
HDGAN 87.42± 0.4 88.66± 0.6 85.78± 0.9 86.12± 0.7
PoincareEmb 87.85± 0.4 87.16± 0.3 86.71± 1.7 85.63± 0.9
DyHHE 92.69± 0.4 93.19± 0.3 90.13± 0.4 90.77± 0.3

TABLE III
AP SCORES OF LINK PREDICTION RESULT.

DBLP MovieLens
Edge A-P P-V A-M M-D
Node2vec 86.94± 0.4 86.78± 0.6 83.17± 0.3 82.15± 0.9
Metapath2vec 87.83± 1.2 86.43± 0.7 81.77± 0.4 82.72± 0.3
HGCN 88.6± 0.7 89.33± 0.5 84.6± 1.2 84.45± 1.1
DySAT 90.37± 0.4 90.71± 0.3 85.72± 0.6 85.25± 0.3
HDGAN 89.61± 0.3 87.74± 0.6 86.33± 1.1 85.12± 0.9
PoincareEmb 88.15± 1.1 86.29± 0.2 84.12± 0.8 85.81± 0.7
DyHHE 92.13± 0.7 93.49± 0.5 91.02± 0.6 89.43± 0.8

We repeat each experiment five times and report the average
value with the standard deviation on the test sets in Table II and
Table III. It is observed our model achieves the best results and
has a more than 4−6% AUC and AP improvement comparing
to the best baseline across all datasets. First of all, the
Metapath2vec has a better performance than Node2vec which
means the advantage of the proper consideration and accom-
modation of the network heterogeneity. Despite the existence
of multiple types of nodes and edges in heterogeneous graph,
Metapath2vec performs pooly compared with the dynamic
methods DySAT and HDGAN, which confirms the importance
of temporal regularity in dynamic graph modeling. Moreover,
the performance gap between DyHHE and HDGAN suggests
that the significantly benefit from hyperbolic geometry. It is
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TABLE IV
ABLATION STUDY(AUC).

DBLP MovieLens
edge A-P P-V A-M M-D
No Hyperbolic 89.03± 0.5 90.72± 0.4 85.34± 0.3 84.79± 0.5
No Temporal 89.18± 0.5 89.14± 0.6 89.26± 0.4 90.81± 0.6
Original 92.69± 0.4 93.19± 0.3 92.13± 0.4 90.77± 0.3

worth mentioning that HGCN and PoincareEmb also has not
bad performance despite being agnostic to semantic relation-
ships and temporal information in heterogeneous graph, which
indicates further improvements to DyHHE on transforming
embeddings from Euclidean space to Hyperbolic space.

D. Ablation Study (RQ2)

To investigate the superiority of the main components of
our model, we conduct an ablation study by independently
removing the hyperbolic geometry and temporal modules from
DyHHE to create simpler architectures. And we compare Dy-
HHE with different variants on DBLP and MovieLens datasets.
When we remove the hyperbolic geometry and build the model
in Euclidean space, the HSN and HTN units are converted
to the corresponding Euclidean space. We show the variant
models results in Table IV. From the results, we observe that
in MovieLens the removal of hyperbolic geometry consistently
deteriorates performance, while the DBLP only declines about
4%. One major explanation is that the MovieLens has a
high-hyperbolicity, which indicates the dataset has a more
evident hierarchical structure. And the hierarchical structure
and tree-like data can naturally be represented and preserved
by hyperbolic geometry. The effect of temporal module is
also significant because of the performance degradation by
removing the temporal block. This observation conforms to
the nature of graph evolution since the behaviors usually have
periodical patterns such as recurrent links or communities. In
summary, DyHHE generates more appropriate embeddings for
dynamic heterogeneous neetwork than comparative baselines,
suggesting its ability to capture and incorporate the underlying
structural and temporal information.

VII. CONCLUSIONS

In this work, we introduce a novel hyperbolic geometry-
based node representation learning framework in dynamic
heterogeneous networks in which there exists diverse types
of nodes and links. To address the network heterogeneity and
temporal evolution, we propose the DyHHE model. In gen-
eral, DyHHE computes dynamic node representations through
maximize proximity in consideration of multiple types of
neighborhoods for a given node and follow the effective GRU
framework by leveraging the superiority of hyperbolic graph
neural network. Our experimental results on two real-world
datasets indicate significant performance gains for DyHHE
over several static and dynamic heterogeneous graph embed-
ding baselines. An interesting future direction is generalizing
our method to more challenging tasks.
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