
Data Selection for Cross-Project Defect Prediction
with Local and Global Features of Source Code

Xuan deng
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China

xuan_deng@qq.com

Peng He*
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China

penghe@hubu.edu.cn

Chun Ying Zhou
School of Computer Science and

Information Engineering
Hubei University
Wuhan, China
zcy9838@qq.com

Abstract1 ： An open challenge for cross-project defect prediction
(CPDP) is how to select the most appropriate training data for target
project to build quality predictor. To our knowledge, existing
methods are mostly dominated by traditional hand-crafted features,
which do not fully encode the global structure between codes nor the
semantics of code tokens. This work is to propose an improved
method which is capable of automatically learning features for
representing source code, and uses these feataures for training data
selection. First, we propose a framework ALGoF to automatically
learn the local semantic and global structural features of code files.
Then, we analyze the feasibility of the learned features for data
selection. Besides, we also validate the effectiveness of ALGoF by
comparing with the traditional method. The experiments have been
conducted on six defect datasets available at the PROMISE
repository. The results show that ALGoF method helps to guide the
training data selection for CPDP, and achieves a 48.31%
improvement rate of F-measure. Meanwhile, our method has
statistically significant advantages over the traditional method,
especially when using both the local semantic and global structural
features as the representation of code files. The maximum
improvement of F-measure can reach 42.6%.

Keyword ： cross-project defect prediction; semantic feature;
structural feature; software quality; representation learning.

I. INTRODUCTION
The main purpose of cross-project defect prediction (CPDP)

is to predict defect-prone files in a project based on the defect
data collected from other projects.. Peter et al. [1] proposed that
a major issue in CPDP is how to find the appropriate training
data set (TDS) for the target project. That is, the selection of
high-quality cross-project training data is a key
breakthrough.Nowadays,there is a growing collection of defect
datasets on the Internet.Thus, the construction of an appropriate
TDS is a more serious challenge for CPDP.

To address this issue, researchers in this field have
attempted to characterize code files by using traditional hand-
crafted features (e.g., CK, Halstead, MOOD, and McCabe’s
CC metrics), and guide the TDS selection based on these
metric values[3-4,6]. Unfortunately, these metrics only contain
statistical information of programs and require human design.
As we known, programs have well-defined syntax and rich

1DOI reference number: 10.18293/SEKE2022-086

semantics hidden in the Abstract Syntax Trees (ASTs), which
have been successfully extracted and used for defect prediction
[7]. In addition, researchers also validated that the globally
structural information extracted by network representation
learning can lead to more accurate defect prediction [9-11].In
other word, both the local semantic and global structural
information of source code files may affect the selection of
TDS in CPDP.

Thus,we propose a new framework called ALGoF to
Automatically learn the Local semantic (fine-grained) and
Global structural (coarse-grained) Features of code files for
data selection in CPDP and seek empirical evidence that they
can achieve acceptable performance compared with the
traditional method. Our contributions are summarized as
follows:

We leverage representation learning technique to
automatically learn the local and global features of the
program from source code files, and use to guide the
training data selection in CPDP.
The results on six projects show that the proposed ALGoF
method can improve CPDP, compared to using traditional
hand-crafted features. The combination of global and
local features has greater impact on the improvement of
prediction performance.
The rest of this paper is organized as follows. Section 2 is a

review of related work. Sections 3 describes the proposed
approach.Section 4 is the detailed experimental setups, and
Section 5 shows and discusses the experimental results. Finally,
Section 6 concludes the work and presents the agenda for
future work.

II. RELATED WORK

A. Data Selection for CPDP
In software engineering, CPDP has drawn wide attention

and many studies are carried out to explore the strategies of
training data selection. Peters et al. [1] proposed a filter guided
by the structure of content-rich source project data and
achieved great performance.To obtain a comprehensive
evaluation, Bin et al. [8] even conducted a thorough experiment
to compare nine relevancy filters on 33 datasets.Hosseini et al.
[6] further showed that the selection of training data can lead to

mailto:zcy9838@qq.com

better performance in CPDP, and concluded that search-based
methods combined with feature selection was a promising way.

From the above rich results, there is a commonality that is
the defect data used are represented by traditional hand-crafted
software metrics.

B. Representation Learning in Software Engineering
Representation learning has been widely applied to feature

learning.In software engineering, some algorithms have been
adopted to the Abstract Syntax Trees (ASTs) representation of
source codes. For example, Wang et al. [7] leveraged Deep
Belief Network to automatically learn semantic features from
token vectors extracted from programs’ASTs and further
validated that the learned semantic features significantly
improved defect prediction.Besides, some studies have
demonstrated the effectiveness of structural features in
improving defect prediction. For example, Qu et al. [10] used
network embedding technique, node2vec, to automatically
learn to encode dependency network structure into low-
dimensional vector spaces to improve software defect
prediction. Zeng et al. [11] also recently analyzed the influence
of network structure features of code on defect prediction.

Existing studies have verified the usefulness of semantic
and structural features on defect prediction, but do not involve
the analysis of the impact on data selection in CPDP.

III. APPROACH

This section introduces the entire framework of ALGoF
method in detail, mainly comprised of three parts:
automatically learning the semantic and structural features of
code files, training data selection and defect prediction (Figure
1). First, we extract the dependencies between the classes from
the source code files to construct a class dependency network.
Then, we perform network embedding learning on the CDN to
generate the global structural features of classes. Meanwhile,
we leverage a Convolutional Neural Network (CNN) to
automatically learn semantic features using token vectors
extracted from the class files’ abstract syntax trees (AST).
Second, combine the structural and semantic features of the
class obtained in the previous step, and use them as the
representation of the class file. After that, the similarity scores
between source file instances and each target file instance are
recorded and used to guide how to select appropriate source file
instances for cross-project defect prediction. Finally, we use the
resulting source file instances to train the predictor and test on
the target instances.

A. Generation of local semantic features
1) Parsing AST
As previous study [9] has shown, AST can represent the
semantic information of source code file with the most
appropriate granularity.

Figure 1. The entire framework of ALGoF method

We first parse the source code files into ASTs by calling an
open-source python package javalang. Given a path of the
source code, the token sequences of all files will be output.As
treated in [7], we only select three types of nodes on ASTs as
tokens: (1) nodes of method invocations and class instance
creations; (2) declaration nodes, i.e., method/type/enum
declarations; (3) control flow nodes, such as while, if, and
throw. For more details, please refer to our previous work [11].

Then,we convert the extracted token sequences into the
numerical token vectors.We append 0 to each integer vectors to
make each files' lengths consistent with the longest vector.Note
that, to filter out infrequent tokens, we only encode tokens
occurring three or more times, the others denote as 0.

2) Building CNN
After encoding and preprocessing token vectors,we exclude
the input and output layers. We train the CNN model with four

layers: an embedding layer (turn integer token vectors into real-
valued vectors of fixed size), a convolutional layer, a max-
pooling layer, and a fully connected layer.

Given a project P, assume tha it contains � source code
files, all of which have been converted to integer token vectors
� ∈ ℛ� , where � is the length of the longest token
sequence.Through the embedding layer, each file becomes a
real-value matrix ��×� . As the input of convolutional layer, a
filter ℒ ∈ ℝℎ×� is applied to a region of h tokens to produce a
new feature.

Then, the max-pooling operation is performed on the
mapped features and the maximum value �� = ��� { � } is
taken as the feature corresponding to that particular filter ℒ .
Usually, multiple filters with different region sizes are used to
get multiple features. Finally, a fully connected layer further
generated the local features.

http://keras.io/

B. Generation of Global structural Features
Before applying network embedding to represent global

structural features of source codes, it is necessary to build a
Class Dependency Network. As did in [11], we use
DependencyFinder API to parse the compiled source files (.zip
or .jar extensions) and extract their relationships using a tool
developed by ourselves. With the CDN, we further perform
embedding learning using the node2vec method. For more
details on node2vec, please refer to the literature [2].

C. Training Data Selection
The general training data selection process consists of three
steps: candidate TDS setup, ranking and remove duplicate.For
more details, please refer to our previous work [4].In order to
characterize each code file, the two types of features obtained
above are connected and marked with defect label, so as to
generate the defect data set required for subsequent tasks.

An instance is characterized as a feature vector, and each
target instance as an input. A similarity index (e.g., cosine
similarity) is applied to construct a model for ranking source
instances based on the given target instances. For instance, the
cosine similarity between a source instance �� and an input
target instance �� is computed via their vector representations:

��� ��, �� = ����� ∙�����

�� × ��
= �−1

� (���×���)�

�=1
� ���2� × �=1

� ���2�
(1)

Where ����� and ����� are the feature vectors for instances ��
and �� respectively. �� represents the ��ℎ feature value of the
features.

For each target instance, the top-k (k=10) source instances
are ranked by the Sim values and returned. Hence, the finally
selected TD is composed by integrating the set of top-k source
instances of each target instance (i.e., the duplicate instances
are removed to maintain uniqueness).

IV. EXPERIMENT SETUP

A. Dataset
In this paper, 6 defect datasets from the PROMISE

repository2 were selected for validation. Detailed information
on the datasets is listed in Table 1, where #files and defect rate
are the number of files and the percentage of defective files,
respectively.

B. Experimental Design
To make a comparison between the traditional hand-crafted

features and automatically learn features in our paper, four
scenarios will be considered in our experiments.

(i)THC represents predictor based on the traditional
hand-crafted features.

(ii)ALoF represents predictor based only on the local
semantic features.

(iii)AGoF represents predictor based only on the global
structural features.

(iv)ALGoF represents predictor based on both the local

2 http://promise.site.uottawa.ca/SERepository/datasets-page.html

and global features.

C. Classifiers and Evaluation Measures
This paper utilizes logistic regression (LR), which is widely

used in the defect prediction, as the classifier. We use the
default parameter settings for LR specified in Weka3 unless
otherwise specified.

To evaluate the defect prediction model’s performance, we
use widely adopted F-measure, which is the harmonic mean of
precision and recall.

TABLE I. DETAILS OF THE DATASETS

Project Releases #files defect rate(%)
Camel 1.4 892 17.1
Lucene 2.0 186 48.9
Poi 2.5 379 65.1

Synapse 1.1 222 27.0
Xalan 2.6 875 47.0
Xerces 1.3 446 15.0

V. EXPERIMENTAL RESULTS

RQ1: Does data selection based on ALGoF and its variants of
CPDP work well?

We first take the case where the initial source TDS without
any selection is considered as a baseline, labeled as iTDS. On
contrary, we label the case of TDS selection using the features
learned in this paper as sTDS. Then we perform cross-project
predictions in both cases mentioned above.

Figure 2. A comparison on F-measure of CPDP under the case of iTDS and
sTDS.

TABLE II. THE IMPROVEMENT OF F-MEASURE OF CPDP UNDER THE
CASE OF ITDS AND STDS.

Model iTDS sTDS ∆（%）

ALoF 0.292 0.352 20.55%
AGoF 0.456 0.470 3.07%
ALGoF 0.325 0.482 48.31%

Figure 2 shows that, on average across the six datasets, for
CPDP with iTDS, the median F-measure are 0.292,0.456 and
0.325 respectively,while sTDS are 0.352,0.470 and 0.482
Clearly, the results verify the necessity of data selection for
CPDP. The improvement rate is the most obvious in the
ALGoF scenario, reaching 48.31%, followed by that of ALoF
with 20.55%. The results also show that AGoF performs better
than ALoF whether data selection is used or not. However,
ALGoF outperforms ALoF and AGoF when only considering

3 http://www.cs.waikato.ac.nz/ml/weka/

http://promise.site.uottawa.ca/SERepository/datasets-page.html

the training data selection, indicated by the largest F-measure
value in bold.

Figure 3. The improvement rate of F-measure values compared with THC
scenario (with data selection).

TABLE III. THE WILCOXON SIGNED-RANK TEST AND CLIFF'S DELTA
(0.33≤|δ| <0.474 MEANS THE MEDIUM EFFECTIVENESS LEVEL, AND |δ| ≥

0.474 MEANS THE LARGE EFFECTIVENESS LEVEL [7]).

Additionally, statistical tests assist in understanding
whether a statistically significant difference between two
results exists. We further utilize the Wilcoxon signed-rank test
and Cliff’s effect size (�) to check whether the difference
among the prediction models is significant. In Table 3, the
results highlight that there are no significant differences
between CPDP with iTDS and CPDP with sTDS in our
experiment, indicated by all the p-values >0.05. However, the
effectiveness level between ALGoF_iTDS and ALGoF_sTDS
is large, indicated by |�| = 0.484 . Besides, the effectiveness
level between ALoF_sTDS and ALGoF_sTDS is medium.

TABLE IV. COMPARISON OF WILCOXON SIGNED-RANK TEST AND CLIFF'S
EFFECT SIZE OF THE AUTOMATIC EXTRACTION FEATURES WITH THC.

In short, for the data selection task in CPDP, the features
automatically learned from the source code are helpful to guide
the task, so as to improve the prediction performance. In
addition, the global structural feature works better than the
local semantic feature, but the combination of the two is
optimal. Nevertheless, data quality is more important than data
quantity.

RQ2: For CPDP data selection, which is better: automatically
learned features or traditional hand-crafted features?

In this part, we mainly compare the ALGoF method
proposed in this paper with THC. As seen in Figure 3, the
improvement rates of F-measure of ALoF, AGoF and ALGoF
are 4.14%, 39.05% and 42.6% respectively. That is, for the data
selection problem of CPDP, the use of automatically learned

features to represent the source code files is better than the use
of traditional hand-crafted features. In addition, Table 4 also
further shows that there are significant differences between
ALGoF (AGoF) and THC, indicated by the small p-value of
0.035 (<0.05) and the large δ value of 0.667 (>0.474).
Meanwhile, according to the p-value of 0.719 and the � value
of 0.111, the local semantic features seem to have comparable
effects to traditional source code features.

In summary, the method proposed in this paper can pick
higher quality training sets for CPDP than using traditional
hand-crafted features. Especially when both local semantic
features and global structural features are considered.

VI. CONCLUSION
This study is to propose an improved method which is capable
of automatically learning features for representing source code,
and uses these feataures for training data selection. The results
indicate that features automatically learned from the source
code (e.g., local semantic feature and global structural feature)
are helpful to guide the training data selection for
CPDP.Meanwhile, compared with the case of no data selection
processing, the F-measure improvement rate of ALGoF is
48.31%. In addition, the results also show that our method is
significantly better than the traditional method, especially when
using both the local semantic and global structural features as
the representation of code files. Notedly, about 42.6% defective
instances can be additionally predicted by our method.

In the future, we would like to extend our automatically
feature generation approach to C/C++ projects for CPDP. In
addition, it would be promising to leverage our approach to
guide heterogeneous defect prediction.

REFERENCES
[1] F Peters, Menzies T , Marcus A . Better cross company defect

prediction[C]// in Proceedings of the 10th MSR, 2013:409–418.
[2] A. Grover and J. Leskovec, node2vec: scalable feature learning for

networks[C], in Proc. of ACM SIGKDD Inte. Conf. on Know. Dis.&
Data Min., San Francisco, CA, USA, August 2016.

[3] Ryu D , Jang J I , Baik J , et al. A Hybrid Instance Selection Using
Nearest-Neighbor for Cross-Project Defect Prediction[J]. Journal of
Computer Science & Technology, 2015, 30(005):969-980.

[4] He P , He Y , Yu L , et al. An Improved Method for Cross-Project
Defect Prediction by Simplifying Training Data[J]. Mathematical
Problems in Engineering, 2018, (PT.6):2650415.1-2650415.18.

[5] Hosseini S., Turhan B., Mäntylä M.: A benchmark study on the
effectiveness of search-based data selection and feature selection for
cross project defect prediction. Inf. Softw. Technol. 2018,95, 296–312.

[6] Hosseini S , Turhan B . A comparison of similarity based instance
selection methods for cross project defect prediction[C]. 36th ACM/
SIGAPP Symposium on Applied Computing, 2021:1455-1464.

[7] Wang S , Liu T , Nam J , et al. Deep Semantic Feature Learning for
Software Defect Prediction[J]. IEEE Transactions on Software
Engineering, 2020,46(12):1267-1293.

[8] Y. Bin, K. Zhou, H. Lu, Y. Zhou, B. Xu, Training data selection for
cross-project defection prediction: Which approach is better?[C]. Int.
Sym. on Emp. Soft. Eng. & Meas. ,2017:354–363.

[9] A. V. Phan, M. L. Nguyen, and L. T. Bui, Convolutional Neural
Networks over Control Flow Graphs for Software Defect Prediction,
2018, https://arxiv.org/abs/1802.04986.

[10] Qu Y , Liu T , Chi J , et al. node2defect: using network embedding to
improve software defect prediction[C]. The 33rd ACM/IEEE Inte. Conf.
on Automated Software Engineering, 2018:844-849.

[11] Zeng C , Zhou C Yi , Lv S K , et al. GCN2defect：Graph Convolutional
Networks for SmoteTomek-based Software Defect Prediction[C]. The
32nd Inter. Sym. on Software Reliability Engineering (ISSRE 2021)

Sig. p-value
(0.05)

cliff's delta (�)

ALoF_iTDS-ALoF_sTDS 0.934 -0.028
AGoF_iTDS-AGoF_sTDS 0.745 0.000

ALGoF_iTDS-ALGoF_sTDS 0.116 -0.484
ALoF_sTD-ALGoF_sTDS 0.219 -0.389
AGoF_sTD-ALGoF_sTDS 0.345 -0.083

Sig. p-value
(0.05) cliff's �

ALoF_sTDS - THC_sTDS 0.719 0.111
AGoF_sTDS - THC_sTDS 0.035 0.417
ALGoF_sTDS - THC_sTDS 0.035 0.667

	I. INTRODUCTION
	II.RELATED WORK
	A.Data Selection for CPDP
	B.Representation Learning in Software Engineering

	III.APPROACH
	A.Generation of local semantic features
	1)Parsing AST
	2)Building CNN

	B.Generation of Global structural Features
	Training Data Selection
	C.

	IV.EXPERIMENT SETUP
	A.Dataset
	B.Experimental Design
	C.Classifiers and Evaluation Measures

	V.EXPERIMENTAL RESULTS
	VI.CONCLUSION
	REFERENCES

