
Context-Aware Model for Mining User Intentions
from App Reviews

Jinwei Lu†, Yimin Wu†§, Jiayan Pei‡, Zishan Qin†, Shizhao Huang‡ and Chao Deng§
†School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

‡School of Software Engineering, South China University of Technology, Guangzhou, China
§School of Computer Science and Engineering, Guangdong Ocean University at yangjiang, Yangjiang, China

cskilljl@mail.scut.edu.cn, csymwu@scut.edu.cn, seasensio@mail.scut.edu.cn,
csqzs@mail.scut.edu.cn, se hsz@mail.scut.edu.cn, dengchao@gdou.edu.cn

Abstract—Due to the highly competitive and dynamic mobile
application (app) market, app developers need to release new
versions regularly to improve existing features and provide new
features for users. To accomplish the maintenance and evolution
tasks more effectively and efficiently, app developers should
collect and analyze user reviews, which contain a rich source
of information from user perspective. Although there are many
approaches based on intention mining that can automatically
predict the intention of reviews for better understanding valu-
able information, those approaches are limited since contextual
information of the whole review text may be lost. In this paper,
we propose Mining Intention from App Reviews (MIAR), a novel
deep learning model to predict the intention of app reviews au-
tomatically. We adopt a Contextual Feature Extractor to capture
the context semantic information and fuse it with the local feature
through a fusion mechanism. The experiment results demonstrate
that MIAR has made significant improvement over the baseline
approaches in Precision, Recall, and F1-score evaluation metrics,
achieving state-of-the-art performance in this task. Our model
also performs well in other intention mining tasks, proving its
generalization ability and robustness.

Keywords—Software Maintenance; Deep Learning; App Re-
view; Intention Mining

I. INTRODUCTION

With the highly competitive and dynamic app market, it is
essential for app developers to regularly release new versions
to fix bugs and offer new features to users. In order to
understanding the changing user needs which are related to
app maintenance and evolution, many app stores offer a review
module to users, which provide a communication channel to
users and developers [1]. However, manually processing such
user reviews is a big challenging. Many useless reviews do
not express any valuable information, or unstructured reviews
use non-technical language, making review processing task
become time-consuming and error-prone. Therefore, many
researchers have developed a variety of approaches to automat-
ically identifying relevant user reviews [2] [3], or by clustering
and prioritizing user reviews to find the most crucial topics [4].

Apart from previous approaches which are helpful to cope
with large amounts of user review, it is also important for
app developers to understand the intention that users ex-
pressed implicitly in reviews [5], which could provide valu-
able information in detecting relevant content to accomplish

DOI reference number: 10.18293/SEKE2022-084

several maintenance and evolution tasks. To help identify
user intentions more accurately, many researchers leveraged
a process called intention mining to analyze and filter user
review sentences. While these researches have performed well
in classifying app reviews into different user intentions, their
methods based on linguistic patterns matching may waste a
lot of time and manual inspection in pattern identification.
Moreover, it is still difficult to accomplish this task when
reviews are unstructured or intentions are implicit, which
will be hard for these methods to distinguish the relevant
components and patterns for classification.

In recent years, some researchers adopt deep learning to
overcome this shortcoming. With the strong non-linear fit-
ting ability, deep learning can effectively extract semantic
information. Some researchers have adopted deep learning
to identify intentions from various communication channels
[6] [7]. Taking Huang et al.’s [7] work as an example, their
approach builds a convolutional neural network (CNN) to
classify sentences from issue tracking systems. However, they
only adopt neural network to learn local representation of
sentence, which ignores the contextual information of the text.

This paper conducts research based on Huang et al.’s work.
In order to leverage intention mining to accomplish review
mining task, we propose a novel model, named Mining Inten-
tion from App Reviews, which can detect intentions via neural
network. To better understand the contextual information in the
review, we build a context-aware model based on BiLSTM [8]
that can deeply learn the global representation. To evaluate
the proposed model, we conduct experiments on the review
dataset to compare with state-of-the-art method, and results
demonstrate the superior performance of our proposed method.

The main contributions of this paper are as follows:
• We propose a novel intention mining model for app

review classification task, which does not rely on the
linguistic patterns and greatly reduce the manual effort.

• We implement a contextual feature extractor to capture
the global feature for better gaining the context sematic
information and understanding user intentions.

• We evaluate our approach on several relevant datasets,
and the result shows that our model not only outperforms
previous methods in app review domain, but also have a
good performance in other software engineering domains.



The rest of the paper is organized as follows. Section
2 briefly presents the related work of our study. Section 3
introduces the overall framework and technical details of our
approach. Section 4 describes the experimental settings and
presents the experiment results. Finally, Section 5 concludes
the paper and outlines future work.

II. RELATED WORK

App review is essential to app developers, as it contains
valuable insights that can help successfully accomplish app
maintenance and evolution tasks. Pagano and Maalej [1]
identified 17 topics in user feedback by manually investigating
the content of selected user reviews, which included the topics
of feature request or bug report that could be mined for
requirements-related information.

Many previous researchers used machine learning methods
based on linguistic rules or heuristics patterns to extract such
information. Iacob and Harrison [2] extracted feature requests
from app reviews utilizing linguistic rules and used Latent
Dirichlet Allocation (LDA) to group them. AR-Miner, which
was proposed by Chen et al. [4], also employed LDA to group
informative reviews. Maalej and Nabil [3] generated a list
of keywords to be applied for the classification task. Then,
they applied various machine learning methods to classify
reviews. Panichella et al. [5] hypothesized that understanding
the intention in a review has an important role in extracting
useful information for developers. Therefore, they leveraged
intention mining, which was proposed by Di Sorbo et al.
[9], to catch useful contents. They merged three techniques
to mining user intention for classify app reviews into the
categories which are relevant to user intention. After that, they
proposed AR-Doc [10], which is based on J48 algorithm, to
use linguistic patterns for classification. In a later work, Di
Sorbo et al. [11] proposed SURF to summarize app review
for software change recommendation. Palomba et al. [12]
proposed ChangeAdvisor to extract the intention of reviews
to analyze potential app evolution. These tools leveraged
classifier proposed by Panichella et al. [5], which means that
intention mining can be a fundamental component to support
complicated tasks. In order to minimize the manual effort
of relevant pattern tagging, Di Sorbo [13] proposed NEON
to automatically mine linguistic rules for review analysis
and classification. However, these methods based on syntax
analyzing or linguistic patterns matching limit the ability to
extract semantic information from reviews, which means that
the classifier could not understand the implicit intentions and
just use the explicit feature to identify the category of app
reviews. Therefore, to solve this problem, we leverage deep
learning to model high-level abstractions in data by building
neural networks with multiple layers.

In recent years, some researchers have explored the possibil-
ity of applying deep learning for intention mining. Stanik et al.
[14] used a simple CNN-based model to classify user feedback
for software development. Huang et al. [7] also proposed
a CNN-based approach, which improves Di Sorbo et al.’s
approach [9] and the other automated sentence classification

approaches by a substantial margin. However, in their work,
deep learning approaches were based on the local feature
extraction model, which learns the representation of the recep-
tive field and only calculates the relevance between adjacent
n-gram elements. Hence these methods can not sufficiently
consider the contextual information of the whole text, which
is essential to predicting the intention of app review. Therefore,
based on deep learning, we adopt the global feature extraction
mechanism to learn the contextual information, hoping to
achieve better performance in the review intention mining task.

III. APPROACH

According to Panichella et al. [5], user intention categories
of app review can be defined as the following four classes:

• Information Giving (IG) : sentences that inform or update
users or developers about an aspect related to the app.

• Information Seeking (IS) : sentences related to attempts to
obtain information or help from other users or developers.

• Feature Request (FR) : sentences expressing ideas, sug-
gestions or needs for improving or enhancing the app or
its functionalities.

• Problem Discovery (PD) : sentences describing issues
with the app or unexpected behaviors.

The intention of a review is predicted to be one of the
four classes mentioned above. We use raw text sentences of a
review as the input sequence. Suppose the input text sequence
is R = {w1, w2, . . . , wn} ,where n is the sequence length.

Figure 1 presents the overall framework of MIAR, which
is mainly composed of the following five modules: (1) Word
Embedding Layer, (2) Local Feature Extractor, (3) Contextual
Feature Extractor, (4) Fusion Layer, and (5) Prediction Layer.

Fig. 1. The framework of MIAR



A. Word Embedding Layer
In this Layer, we leverage Word Embedding technique to

transform words into the corresponding vector representations.
Each word wi in the input sequence is transformed into a
vector representation xi ∈ Rd through the pre-trained word
embeddings. In our work, we use the pre-trained GloVe word
embeddings with 300 dimensions [15]. Then, we train word
vectors to obtain word embeddings. Of course, all kinds of
word embedding methods can be employed in this process.

Moreover, inspired by previous work [16], making good
use of POS tag can benefit semantic understanding by extract-
ing explicit lexical information. Therefore, we add POS tag
information into word vector to augment its ability of feature
representation. Specifically, each type of POS tag is initialized
as a random vector with uniform distribution and optimized
during training. Hence, each word can be represented as:

xi = [xei ⊕ x
p
i ] (1)

Where ⊕ is the concatenation operator, xei and xpi denotes
the corresponding word embedding and the embedding of the
POS tag of the word, respectively.

Therefore, the review sequence containing n words can be
converted to corresponding matrix representation, which is the
input of the two feature extractors of the model:

Rx = x1 ⊕ x2 ⊕ . . .⊕ xn (2)

B. Local Feature Extractor
In this module, we adopt TextCNN [17], which is a type of

CNN for sentence classification, to extract the local feature in
the text sequence. The convolutional layer receives the matrix
representation Rx and performs convolution operation on it
using different filters. Each filter is also a matrix, denoted as
F , having the same width as the matrix R. The purpose of
each filter with height f is to capture the semantic feature of
each n-gram sequence in the sentence through a convolution
operation, which is computed as follows:

Ci = F ·Ri:i+f−1 + bi,∀i ∈ {1, 2, . . . , n− f + 1} (3)

Where Ri:i+f−1 represents the sub-matrix of R from the i th
row to the (i+n-1) th row, which represents the vectors of f
continuous words (n-gram), and bi is a bias value.

The j th filter is applied repeatedly to each n-grams in the
sentence with convolution operation and produces a vector:

Fj = [C1, C2, . . . , Cn−f+1],∀j ∈ {1, 2, . . . ,m} (4)

Where n is the height of matrix Rx. In order to help the extrac-
tor to learn enough semantic features in different granularities,
multiple filters with various heights are used.

After performing the convolution operation, a pooling layer
is applied to reduce the number of parameters and the com-
putation cost. Specifically, the pooling layer applies a 1-max
pooling function to the vector Fj received from each filter.
Then outputs of m filters are concatenated as a high-level
feature vector, which can catch semantic features of different
n-grams in the input, representing the local feature vector LF:

LF = maxpooling([F1;F2; . . . ;Fm]) (5)

C. Contextual Feature Extractor

To solve the problem of Local Feature Extractor that is not
sensitive to the sequential information which is essential to
understand the semantic relation and implicit intention, we
build a Contextual Feature Extractor to extract the contextual
information and generate the global representation of the
input sequence. Here, we adopt BiLSTM to incorporate the
contextual information into the original representation of each
token in input sequence. BiLSTM is composed of a forward
and a backward LSTM. Through its three gate structures,
LSTM can solve the long-term dependence information very
well, which means that bi-directional semantic dependencies
within the review can be well captured. We concatenate the
outputs of the two LSTM to generate the augmented vector
of a token, which incorporates the contextual information into
the token representation. This process can be represented as:

−→
h i = LSTM(

−→
h i−1, xi),∀i ∈ {1, 2, . . . , n} (6)

Hi = [
−→
h i;
←−
h i],∀i ∈ {1, 2, . . . , n} (7)

Where
−→
h i is the hidden state of the forward LSTM in the time

step i,
←−
h i represents the backward, xi is the input of LSTM

in the time step i, and Hi is the contextual representation.
To condense the rich information extracted by BiLSTM, we

add a convolutional layer to abstract the contextual feature.
The feature vector transferred from BiLSTM does not contain
sequential information incorporated into representation, which
is suitable for convolutional network to perform feature con-
densing. Then a max-pooling layer is leveraged to conduct
feature dimension reduction and generate the global represen-
tation. This global feature vector contains high concentration
contextual information that can help mining intention better.
The global feature vector GF can be calculated as follow:

HCi = Fh ·Hi:i+f−1 + bi,∀i ∈ {1, 2, . . . , n− f + 1} (8)

Fj = [HC1, HC2, . . . ,HCn−f+1],∀j ∈ {1, 2, . . . ,m} (9)

GF = maxpooling([F1;F2; . . . ;Fm]) (10)

Where Hi:i+f−1 = [Hi, . . . ,Hi+f−1], f is filter size, m is
the number of filters, and bi is a bias value. Then the final
representation is passed to the fusion layer for feature fusion.

D. Fusion Layer

In the Fusion Layer, LF and GF are integrated to generate
the intention representation. We fuse the features as follow:

X̃1
i = αLFi + (1− α)GFi (11)

X̃2
i = βLFi − (1− β)GFi (12)

X̃3
i = γGFi − (1− γ)LFi (13)

Where + represents feature augment computation, which high-
lights the similarity between two vectors, and − denotes the
difference between two vectors. α, β, and γ are the weighting
factors which can be tuned for controlling the fusion degree



of each feature. We concatenate the results obtained by the
above three methods and input them into another single-layer
feed-forward network F to compute the output:

X̃1
i = F ([X̃1

i ; X̃
2
i ; X̃

3
i ]) (14)

Where [; ] refers to the concatenation operation. Then the final
feature representation is passed to the Prediction Layer.

E. Prediction Layer

In the Prediction Layer, for vectors obtained from last layer,
we use a multi-layer feed-forward network L to get feature
vectors. Then a softmax function is applied to normalize the
values so that the output vector can represent the probability
of the input sequence belonging to one specific category:

σ(Vi) =
eVi∑K
j=1 e

Vj

,∀i ∈ 1, 2, . . . ,K (15)

Finally, we use the cross-entropy function to measure the
loss between the prediction result and the ground truth:

Loss = −(y log(ŷ) + (1− y) log(1− ŷ)) (16)

IV. EXPERIMENT

In this section, we conduct some experiments for answering
the following research questions.

A. Research Questions

RQ1: How effective is MIAR for predicting user intention
of different categories in app reviews?

MIAR adopts deep learning to automatically mining review
intention based on two feature extractors and the fusion
mechanism, which is much different from the previous works.
To investigate the effectiveness of our approach, we compare
the performance of MIAR with the baseline from Panichella
et al.’s work [5]. Moreover, we also conduct experiments with
other three intention mining models including AR-Doc [10],
DECA [9], and Huang et al.’s CNN-based model [7]. To
present results more accurately, we keep results of all models
to three decimal places.

RQ2: How much influence do the techniques or modules
we proposed contribute to the improvement of MIAR?

Three important techniques we proposed, including POS
tag embedding (POS), Contextual Feature Extractor (CFE),
and Fusion Layer (FL), could help MIAR to capture semantic
information and identify intention from app reviews better.
To evaluate their contributions, we conduct an ablation study
to demonstrate. We take turns to remove one of the three
techniques and compare the revised model with the original
model on the F1-score. Specifically, when we remove CFE, we
must remove FL simultaneously, since the fusion mechanism
needs global feature generated by CFE to perform the fusion
process. Thus, we perform the following ablation studies,
consisting in (1) only removing POS; (2) only removing FL
and replacing by concatenation; and (3) removing the CFE.

RQ3: Does MIAR work well in intention mining tasks
from other software engineering domains?

TABLE I
DETAILS OF DATASETS

Domain IG IS FR PD Other Total
Review 583 101 218 488 31 1421
Issue 1,328 962 536 762 397 3,985
Email 167 264 187 170 0 788

To explore the generalization ability of MIAR, we apply
MIAR to emails mining task [9] and issue mining task [7]
for comparison. Following Huang et al.’s work, we conduct
the following studies, including (1) only using issue dataset
(Issue); (2) only using email dataset (Email); (3) using issue
dataset as training set and email dataset as test set (I to E); (4)
using email dataset as training set and issue dataset as test set
(E to I). The results of baseline models are from paper [7].

B. Dataset

We carry out experiments on the review dataset built by
Panichella et al. [5]. They sampled 1421 review sentences out
of 7696 reviews and manually labeled the sample according
to the categories of their intention taxonomy, which includes
four intention classes and Other class. We use 3-folds cross-
validation to carry out our experiments on this dataset.

Moreover, to evaluate the generalization ability of MIAR,
we also run experiments on two intention mining datasets
proposed by Di Sorbo et al. [9] and Huang et al. [7]. We
also carry out 3-folds cross-validation as Huang et al. [7] to
evaluate the performance of MIAR. The detailed data of these
three datasets is presented in Table I.

C. Evaluation Metric

We use the same evaluation metrics as Huang et al. [7] to
evaluate MIAR’s performance.

Precision represents the proportion of samples predicted to
be positive that are truly positive samples.

Precision =
TruePositive

TruePositive+ FalsePositive
(17)

Recall represents the proportion that the positive samples
are predicted to be positive correctly.

Recall =
TruePositive

TruePositive+ FalseNegative
(18)

F1-score is the weighted average of Precision and Recall.
This metric takes into account both the Precision and Recall
of the model. In the multi-class classification task, F1-score
are computed for each class and then averaged via arithmetic
mean to get Macro-F1.

F1− score = 2 · precision · recall
precision+ recall

(19)

D. Implementation Details

MIAR is implemented based on the PyTorch [18] frame-
work, experimented on an Nvidia 1080Ti GPU. For the Local
Feature Extractor, we set two different kernel sizes, which are
2 and 3, respectively, and 100 feature maps for each kernel.



TABLE II
MAIN RESULT

IG IS FR PD
P R F1 P R F1 P R F1 P R F1 Avg-P Avg-R Macro-F1

Baseline 0.680 0.904 0.776 0.712 0.684 0.698 0.704 0.225 0.341 0.875 0.776 0.823 0.743 0.647 0.659
DECA 0.327 0.730 0.451 0.723 0.640 0.679 0.516 0.281 0.364 0.733 0.810 0.769 0.575 0.615 0.566
Huang 0.677 0.788 0.728 0.793 0.396 0.528 0.512 0.401 0.450 0.745 0.717 0.731 0.682 0.575 0.609

AR-Doc 0.456 0.747 0.566 0.683 0.633 0.657 0.625 0.385 0.476 0.751 0.808 0.779 0.629 0.643 0.620
MIAR 0.750 0.880 0.810 0.871 0.692 0.772 0.578 0.646 0.610 0.829 0.836 0.833 0.757 0.764 0.756

TABLE III
COMPARING THE F1-SCORE OF MIAR AND THE REVISED MODELS

IG IS FR PD Macro-F1
MIAR 0.810 0.772 0.610 0.833 0.756

MIAR(-POS) 0.761 0.757 0.570 0.787 0.719
MIAR(- FL) 0.748 0.724 0.531 0.752 0.689

MIAR(- CFE -FL) 0.703 0.664 0.488 0.728 0.646

For the Contextual Feature Extractor, we use BiLSTM with
700 units as the encoder. Adam optimizer [19] with an initial
learning rate of 0.001 is applied. We release the source code
of MIAR and hope to facilitate future researches.1

E. Result

RQ1: How effective is MIAR for predicting user intention
of different categories in app reviews?

Table II presents the experiment results. The best results
are highlighted in bold. We can see that MIAR achieves the
best results for all the four intention classes, with an average
of 75.7%, 75.4%, and 75.6% in precision, recall, and F1-
score. Although Baseline method has a better performance
of precision in some classes, the F1-score of this model
is approximately 9.7% below than that of MIAR, which is
limited by its low recall, which is 11.7% below than MIAR.
This result indicates that using the approach based on linguistic
pattern can predict intentions precisely, but this method may
be confused by some ambiguous patterns which can appear
in different intentions. Moreover, these tools relies heavily
on manual effort. The lack of relevant linguistic pattern for
matching can seriously degrade the performance of these tools.
In contrast, deep learning methods, which do not rely on the
fixed pattern, can model the high-level abstractions of reviews
to understand the whole sentence and achieve higher score.

The result of FR is lower than other classes, which indicates
that the semantic information of this class is more confused
for understanding, or the expression is more implicit. So
that Baseline and DECA are difficult to identify patterns for
classification, which leads to a poor result (34.1% and 36.4%).
This result reflect that this class limits the overall performance
of all approaches included MIAR, which still have a major
improvement of F1-score (at least 13.4%) compared with
other approaches. For the remaining three classes, MIAR’s
improvement is also significant (8.2%−24.4%) compared with

1Our model is openly available in https://anonymous.4open.science/r/MIAR/

TABLE IV
PERFORMANCE OF DIFFERENT MODELS IN OTHER DATASETS

IG IS FR PD Macro-F1
DECA 0.293 0.511 0.420 0.601 0.456

Issue Huang 0.805 0.904 0.794 0.820 0.831
MIAR 0.842 0.980 0.846 0.829 0.874
DECA 0.743 0.874 0.789 0.879 0.821

Email Huang 0.785 0.883 0.793 0.890 0.838
MIAR 0.804 0.954 0.842 0.818 0.854
DECA 0.743 0.874 0.789 0.879 0.821

I to E Huang 0.562 0.808 0.579 0.760 0.678
MIAR 0.659 0.943 0.693 0.811 0.776
DECA 0.293 0.511 0.420 0.601 0.456

E to I Huang 0.487 0.678 0.579 0.520 0.566
MIAR 0.684 0.890 0.670 0.746 0.747

Huang et al.’s approach. This result indicates that extracting
contextual features and semantic relations is essential for
understanding and identifying user intentions, especially in the
noisy and informal communication environment.

RQ2: How much influence do the techniques or modules
we proposed contribute to the improvement of MIAR?

The experimental results are shown in Table III. After
removing POS or FL, respectively, the revised models’ per-
formance decreases in some degree (3.7%and6.7%, in terms
of Macro-F1, respectively). However, after removing the CFE,
the model’s performance decreases more obviously (11.0%
in Macro-F1), especially in predicting the Feature Request
class (12.2% in terms of F1-score). This experiment results
prove the importance of the CFE, which plays an essential
role in predicting review intention. Certainly, POS and FL
also improve our model’s performance.

RQ3: Does MIAR work well in intention mining tasks
from other software engineering domains?

Table IV presents the experiment results. For Issue, Email
and E to I, MIAR outperforms other models, which include the
state-of-the-art model on these datasets. For I to E, MIAR has
a performance degradation, due to the poor performance in IG
and FR, which are also the bottleneck of other models. This
experimental result may cause by the gap between different
communication channels. The discussion from issue is more
similar to app review in the statement, which has more verbal
and indirect expression that understanding the contextual in-
formation is more important. Moreover, MIAR achieves better
results in all the four experiments than Huang et al.’s model,



TABLE V
CASE STUDY

Case Review AR-Doc Huang MIAR Label
1 Crashing Bug Normally I will be able to find a work Around but I couldn’t get a ROM to run. PD PD FR FR
2 And I’m also not sure how to search for hybrid cards am I missing something here PD PD IS IS

which shows that MIAR has good generalization ability that
can be applied to other software engineering domains.

F. Case Study

To investigate how our architecture makes a difference in
details, we visualize two examples from different classes in
Table V. The most important phrases extracted by CNN-based
architectures are highlighted in bold, and we underline the
important contextual information extracted by CFE.

In case (1), AR-Doc captures the linguistic pattern: ”some-
one get something”, and this pattern generally apply to express
some problems. So that the linguistic pattern belongs to PD,
leading to the wrong predicting. Huang et al.’s approach
extracts the most important phrase “Crashing Bug”, which
generally indicates some bugs. Thus their model misclassifies
this review into PD. In contrast, MIAR not only captures
the important local feature“Crashing Bug”, but also extracts
some contextual information: “couldn’t get” and “run”, which
belong to long distance dependency and could be ignored by
Local Feature Extractor. These contextual features can provide
more semantic information for predicting the correct label.

In case (2), both AR-Doc and Huang et al.’s approach are
disturbed by the influential local feature “missing something”,
which is inclined to report some errors appeared in the app,
while MIAR can consider the helpful contextual feature “not
sure” and “search for”, which is effective on understanding the
implicit intention and predicting IS correctly. In short, with the
help of CFE, MIAR can extract more useful information and
provide to the classifier for efficiently mining intentions.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a deep learning model MIAR
based on the feature fusion mechanism to predict the user
intention from app review, which can reduce the manual effort
and better help developers obtain useful information for soft-
ware maintenance and evolution. The experiment results show
MIAR’s effectiveness and consistency in predicting review
intention, outperforming some baseline models in previous
works. Moreover, in some other intention mining tasks, MIAR
can also achieve state-of-the-art performance, which proves
its generalization ability. We will explore the application that
identify the intention of other written communication channels
from software engineer domain in future work.

REFERENCES

[1] D. Pagano and W. Maalej, “User feedback in the appstore: An empir-
ical study,” in 2013 21st IEEE international requirements engineering
conference (RE). IEEE, 2013, pp. 125–134.

[2] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in 2013 10th working conference on
mining software repositories (MSR). IEEE, 2013, pp. 41–44.

[3] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in 2015 IEEE 23rd
international requirements engineering conference (RE). IEEE, 2015,
pp. 116–125.

[4] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th international conference on software engineer-
ing, 2014, pp. 767–778.

[5] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE international
conference on software maintenance and evolution (ICSME). IEEE,
2015, pp. 281–290.

[6] M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug
reports with related app reviews,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 970–981.

[7] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, vol. 46, no. 10,
pp. 1098–1119, 2018.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention mining
in developer discussions (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 12–23.

[10] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “Ardoc: App reviews development oriented classifier,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 1023–1027.

[11] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 499–510.

[12] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests
for mobile apps based on user reviews,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 106–117.

[13] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora, and
H. C. Gall, “Exploiting natural language structures in software informal
documentation,” IEEE Transactions on Software Engineering, vol. 47,
no. 8, pp. 1587–1604, 2021.

[14] C. Stanik, M. Haering, and W. Maalej, “Classifying multilingual user
feedback using traditional machine learning and deep learning,” in
2019 IEEE 27th International Requirements Engineering Conference
Workshops (REW). IEEE, 2019, pp. 220–226.

[15] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[16] L. Shi, M. Xing, M. Li, Y. Wang, S. Li, and Q. Wang, “Detection of
hidden feature requests from massive chat messages via deep siamese
network,” in 2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering (ICSE). IEEE, 2020, pp. 641–653.

[17] Y. Kim, “Convolutional neural networks for sentence classification,”
Eprint Arxiv, 2014.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


