
Mapping Modern JVM Language Code to Analysis-
friendly Graphs: A Pilot Study with Kotlin

Lu Li
School of Software Engineering

Tongji University
Shanghai, China

2033816@tongji.edu.cn

Yan Liu*
School of Software Engineering

Tongji University
Shanghai, China

yanliu.sse@tongji.edu.cn

Abstract—Kotlin is a modern JVM language, gaining adoption
rapidly and becoming Android official programming language.
With its widely usage, the need for code analysis of Kotlin is
increasing. Exposing code semantics explicitly with a properly
structured format is the first step in code analysis and the
construction of such representation is the foundation for
downstream tasks. Recently, graph-based approaches become a
promising way for encoding source code semantics. However,
current works mainly focus on representation learning with
limited interpretability and shallow domain knowledge. The
known evolvements of code semantics in new-generation
programming languages have been overlooked. How to establish
an effective mapping between naturally concise Kotlin source
code with graph-based representation needs to be studied by
analyzing known language features. In this paper, we propose a
first-sight, rule-based mapping method, using composite
representation with AST, CFG, DFG, and language features. We
evaluate mapping strategies with ablation experiments by
simulating a code search solution as a downstream task. Our
graph-based method with built-in language features outperforms
the text-based way without introducing greater complexity. By
addressing the practical barriers to extracting and exposing the
hidden semantics from Kotlin source code, our study also helps
enlighten source code representations for other modern
languages.

Keywords- Kotlin; graph representation of code; code analysis;
language feature;

I. INTRODUCTION
In*2017, Google announced Kotlin as an Android official

programming language. It combines object-oriented and
functional features. Being a more modern, expressive, and safer
programming language, Kotlin has achieved a significant
diffusion among developers, the adoption of the Kotlin was
rapid. It was the fastest-growing language on GitHub 2018[1]
and ranked 7th among mobile development languages in Top
Programming Languages 2021 published by IEEE Spectrum[2].

As more and larger codebases written in Kotlin appear, the
need for code analysis is increasing. Code analysis is learning
from source code through relevant means to solve downstream
tasks such as code defect detection, code search, etc., bringing

* Corresponding author
DOI reference number: 10.18293/SEKE2022-079

lots of amazing tools and great convenience. The first step of
machine learning-based approaches of code analysis is to map
source code into intermediate code representation. Generated
methods can be categorized as sequence-, tree-, and graph-
based[3][4][5], among which graph-based representation has
better performance in code analysis these years, becoming a
more promising approach for intermediate representation.

However, there is a lack of code analysis related research
based on Kotlin for now, and also no related research on the
Kotlin graph representation method. Even the graph
representation of code itself is still an issue under study, that
there is no widely accepted method to convert code into graph
representation[6]. Furthermore, Kotlin is a concise language,
with less information presented in source code. The usage of
language features of Kotlin is also under study. So, no one
knows what is a more suitable way to map Kotlin source code
to graph representation.

Therefore, in this paper, we conduct a pilot study on how to
map Kotlin source code to analytics-friendly graphs. The
contribution of this work is as follows:

• This is the first study focused on graph representation
of Kotlin code to our knowledge. We proposed a first-
sight rule-based feature-enhanced graph mapping
method. It can provide other Kotlin downstream task
researchers with a basis for constructing graph
representation for programs.

• We verify the necessity of studying graph
representation of Kotlin separately by comparing the
difference between Kotlin and Java in graph
representation through the method of induction and
summary.

• Through a downstream source-code query task, we
proved our graph-based method is more effective than
text-based methods. We also proved that language
features are useful to enhance graph representation
with no greater cost.

II. BACKGROUND
To our best knowledge, there has not been any study on

the graph representation method of Kotlin Language. Yet,
some Kotlin related studies and graph representation of

program do exist. In this section, we will review the relevant
literature.

A. Kotlin
Since Kotlin has 100% interoperability with Java, quite a

few Kotlin related studies did a comparative study between
Java and Kotlin language[7][8][9]. They concluded that Kotlin
is concise and safe, can improve the productivity of the
programmer, and also improve the quality of applications.

Besides, there are several empirical studies conducted on its
adoption by the developers. Mateus.B.G et al.[10] explored the
source code of 387 Android applications, describes the
evolution of usage of Kotlin language features on these
applications. Martinez.M et al.[11] and Coppola.R et al.[12]
did research on the evolution of Java to Kotlin and believed
that Kotlin can ensure the seamless migration of Android
developers from Java to Kotlin.

The current research on Kotlin mostly stays at analyzing the
differences between Kotlin and Java in terms of syntax,
performance, language features, as well as the research on the
quality and performance of programs written in Kotlin, the
study of graph representation of Kotlin is still empty.

B. Graph Representation of source code
There is currently no widely accepted method for mapping

programs into graph representation, different studies have
different graph representation methods. Allamanis et al.[3]
mapped program to graphs consisting of ASTs together with
control-flow edges, data-flow edges, and a hand-crafted set of
additional typed edges. Lu M et al.[4] proposed a program
graph method named FDA, which integrates the AST, function
call graph, and data-flow graph to characterize syntax and
semantic information. T. T. Nguyen et al.[5] proposed a
program graph method named Groum, where nodes represent
actions and control points, and edges represent control and data
flow dependencies between nodes.

Almost all graph representation methods are coupled to
language, like Allamanis et al.’s work[3] is for C#, Lu M et
al.’s work[4] is for C++ and Nguyen et al.’s work[5] is for Java.
But Kotlin has no related graph representation methods. This is
mainly due to the fact that Kotlin is a relatively new language
and there is a lack of tools and tagged datasets for further study.

III. ON THE NECESSITY OF STUDYING KOTLIN SEPARATELY
As Java is a mature programming language and Kotlin is so

connected with Java, can we directly convert Kotlin to Java,
and then map the converted code to graph representation? To
verify the necessity of studying Kotlin separately, we compare
Kotlin and Java in terms of 3 dimension in this section and
found some profound differences that prevent directly using
graph representation methods of Java to map Kotlin code.

A. Decompile Kotlin Code to Java Code
Kotlin is 100% interoperable with Java. Kotlin and Java

source code can even be converted to each other. Tools in
IntelliJ IDEA and Android Studio can help us do such
conversion. But there are some problems:

1) Kotlin program must be compiled before decompiled.
But it's difficult to successfully compile each projects, for
there are always many environment and configuration
requirements.

2) There is currently no tool for batch decompilation. We
need to decompile Kotlin code file by file if we want to
decompile the whole project.

3) The conversion effect is unsatisfactory. The Java file
decompiled from Kotlin always has many redundant
meaningless encoding and some even have bugs. This also
implies that the conciseness of Kotlin makes it lose some
information, and it may be harder to analyze kotlin

To sum up, decompiling Kotlin code into Java code is time-
consuming and troublesome.

B. Kotlin’s Language Features
Kotlin provides programmers with various language

features that make it concise, safe and expressive. We collected
30 Kotlin language features as Table I summarized. These
features are further summarized on the basis of Mateus B G's
work[10]. They extracted 24 Kotlin features from a document
that compares Kotlin and Java[13], Kotlin's releases notes, and
Kotlin Reference[14]. We inspect these documents and
websites, update 6 new features (marked in the table) in our list.

TABLE I. LANGUAGE FEATURES IN KOTLIN

id feature id feature
1 Type inferences 16 singletons
2 Lambda expressions 17 Companion object
3 Inline function 18 Destructing declaration
4 Null-safety 19 Infix function
5 When expressions 20 Tail-recursive function

6 Function w/arguments with a
default value 21 Sealed class and sealed

interfaces
7 Function w/named arguments 22 Type aliases
8 Smart casts 23 coroutines
9 Data classes 24 contract
10 Range expressions 25 Inline classes
11 Extension functions 26 properties
12 String template 27 Primary constructors
13 First-class delegation 28 Operator overloading

14 Declaration-site variance &
Type projections 29 Separate interfaces for read-

only and mutable collections

15 Suspending functions 30 Instantiation of annotation
classes

We can see that there are plenty of language features that
exist in Kotlin but not present in Java. If we convert Kotlin to
Java to construct graph representation, we will lose these
Kotlin language features in the graph, which contain lots of
information and represent Kotlin's characteristics.

C. Verbosity vs Concise
Java is a verbose language, yet Kotlin’s syntax focuses on

removing verbosity. Rough estimates indicate approximately a
40% cut in the number of LOC compared to Java[8]. Fig. 1 is a
Kotlin code snippet and its decompiled Java code. Java code is
nearly 3 times longer than Kotlin to implement the same
function. Therefore, converting Kotlin to Java to construct
graph representation would take away such concise

characteristics in Kotlin, which is one of the most significant
features of Kotlin.

Figure 1. Kotlin code and its decompiled Java code

In conclusion, constructing graph by converting Kotlin to
Java is not only troublesome; but also will lose Kotlin's crucial
features. Therefore, it is necessary to study the graph
representation of Kotlin separately.

IV. GRAPH MAPPING STRATEGY

A. Graph Representation of Code
We use composite code representation and denote Kotlin

code by a joint graph with three types of sub-graphs (AST,
CFG, and DFG) and enhanced by language features nodes,
edge, and attributes. All edges in the graph are directed edges.

Figure 2. Graph representation example

AST (Abstract Syntax Tree) is the fundamental structure
of program and it contains almost all syntax information of
program, we use AST as the backbone of the graph
representation of Kotlin. The major AST nodes are shown in
Fig. 2. All boxes are AST nodes, with specific codes in the first
line and node type annotated. The dark blue arrows represent
the child-parent AST relations, which are called syntax edges
in our methods.

CFG (Control Flow Graph) describes all paths that might
be traversed through a program during its execution. The path
alternatives are determined by conditional statements, e.g., if,
for, and switch statements. In CFGs, nodes are connected by
directed edges to indicate the transfer of control. The CFG
edges are highlighted with green arrows in Fig. 2. Two
different paths derive from the if statement.

DFG (Data Flow Graph) tracks the usage of variables
throughout the CFG. Data flow is variable oriented and any
data flow involves the access or modification of certain
variables. A DFG edge represents the subsequent access or
modification onto the same variables. It is shown by yellow
arrows in Fig. 2 with the involved variables annotated over the

edge. For example, the identifier a is used both in the
assignment statement and the return statement.

Language Features extract common patterns in source
code, containing much information. We explicitly represent
Kotlin language features in the graph, some by adding edges,
some by adding nodes, and some by adding attributes to nodes,
according to each features' characteristics. In Fig. 2, inline
function feature is represented by a node with function type
inline that is illustrated by the light blue box.

B. Construction Process
The construction process is shown in Fig. 3, we first use

kotlinx.ast, a generic AST parsing library, to extract functional
external AST. This library only can parse ASTs outside
functions, so we need to manually extract ASTs inside
functions by traversing code, which is carried out to the
statement level. Nodes in ASTs represent statements, and they
are classified into 19 types according to their grammatical
structure information, such as IdentifierDeclaration,
IfStatement, etc. And we connected these nodes by syntax
edges according to their syntactic relationship.

Then, We extract control flow by analyzing ASTs we have
already gotten, including syntax information of ASTs and
control statements. Then we record the scope of variables and
statements that use the variable to get data flow.

Figure 3. Graph construction process

To extract Kotlin language features, we built a feature
detection tool operating on Kotlin source code and ASTs. For
each language features presented in Table I, we first manually
investigated how a feature is represented in source code. Then
we encoded different analyzers for detecting feature instances
on source code files. For features that cannot be detected in
source code, we extracted them by analyzing raw ASTs. Then,
we add these features information into the joint graph.

C. Points to Note
Some points need to note in the graph construction

process, including problems, limitations, and some hints.

Lack of tools Kotlin is a relatively new programming
language and there is a lack of tools, which creates
difficulties for Kotlin code analysis. For example, there are
only two AST parsing libraries for AST, kotlinx.ast2 and
kastree3. But both of them are with limited function and

2 “kotlinx/ast”, https://github.com/kotlinx/ast, 2022-03-11.
3 “kastree”, https://github.com/cretz/kastree, 2022-03-11.

cannot satisfy our requirements. Therefore, if one needs to
generate Kotlin graph representation in large batches, you
should develop a robust Kotlin AST parser first.

Maintain a Kotlin language feature diagram Kotlin is
an actively released language, new language features will be
introduced in future releases. In order to ensure the integrity
of the language features that can be represented in the graph,
one should maintain a Kotlin language feature form. Every
time there is a new release, one should check the release
note and keep the diagram up to date.

Feature Representation Method Different language
features have different representation methods including
adding edge, adding nodes, and adding attributes to nodes,
according to their characteristics. Each features need to be
investigated separately to decide how to represent it in the
graph is more reasonable and analysis-friendly.

V. EXPERIMENT
In this section, we describe our experiment and discuss the

result. Our experiment is guided by the following research
questions:

• RQ1: How our graph-based method performs
comparing to text-based methods?

• RQ2: Whether is it effective to add language features
to graph representation?

A. Experiment Framework for Down-stream Task
Software developers and tools often query source code to

explore a system, or to search for code for maintenance tasks
such as bug fixing, refactoring, and optimization. Considering
the objectivity of the downstream task, we choose Wiggle[15],
a representative source code query system based on the graph
data model as a reference for our downstream tasks. We
transform it to support Kotlin query, forming a code query
framework for our experiment as shown in Fig. 4.

We develop a graph representation constructor as we
describe in Section IV, mapping Kotlin source code to graph
representation. Then we store graph representation into a Neo4j
graph database. For a given query, the framework would return
the code excerpts found (labeled with their location).

Figure 4. Source code query framework

B. Experiment Setup
1) Basic Setup

We executed various queries for different scenarios on a
corpus of three Kotlin Projects on GitHub (shown in Table II).
The dataset is relatively small because of the lack of tools as
we noted in Section IV, limiting us generate graph
representation in a large batch. But the data volume of this size
is sufficient for our study. After converting all source code into
graph representation and storing them into Neo4j, there are
2462 nodes and 2556 edges (relationships) in the database.

TABLE II. DATASET

Dataset Description LoC

Kotlin101 A collection of runnable console applications that
highlights the features of Kotlin. 747

KAndroid Kotlin library for Android to eliminate boilerplate
code in Android SDK and focus on productivity. 886

Android-
SearchView

A demonstration application for android's
SeachView. 415

All the tests commence on a MacBook Pro with 8-core
CPU, 16GB unified memory, and 512GB SSD. The graph
database Neo4j Browser version is 4.4.2 and Server version is
4.3.10 (community).

2) Query Selection
We select 11 queries in three query scenarios, which consist

of language research, complex search, and program check.
Language research and complex search refer to Wiggle's query
examples[15] and program check refer to the evaluation part in
Rodriguez-Prieto O et al.’s work[16]. We modified queries in
their work, forming 11 queries shown in Table III.

TABLE III. SAMPLE QUERIES

C. Result and Discussion
• RQ1: How the graph-based method performs

compare to text-based methods?

We provide a comparative study of text-based methods and
our graph-based method to answer this question. We choose
keyword match and regular expressions as text-based source
code search approach in our comparative study, which is the
most common and widely used text-based approaches for
searching code for now.

id Purpose Query
Q1

Language
Research

lambda expression
Q2 companion object
Q3 for statement
Q4 Inline function
Q5

Complex
Search

function with Int return type
Q6 search for classes containing recursive methods
Q7 find instances of classes that inherited from People
Q8

Program
Check

Binary conditions prefer if over when

Q9 Public functions/methods that return platform type
expressions must explicitly declare their Kotlin type

Q10 Return an empty array or collection instead of a null
value for methods that return an array or collection

Q11 Convert integers to floating point for floating-point
operations

First, we evaluate the coverage of these three approaches.
The result is shown in Table IV. Obviously, graph-based
method can cover more queries than the other two text-based
approaches, especially more complex search including more
dependency and requirements. This is mainly because that code
is texts with structures and semantics, such information is
implicit that these text-based search approaches are unable to
capture. In contrast, graph representation of code contains
plentiful syntax and semantic information, provided by nodes
and their relations, which can be leveraged for effective search.

TABLE IV. COVERAGE OF DIFFERENT APPROACHES

Query_id keyword Regular
expression

Graph
representation

Q1 √ √
Q2 √ √ √
Q3 √ √ √
Q4 √ √ √
Q5 √ √ √
Q6 √
Q7 √
Q8 √ √
Q9 √
Q10 √ √ √
Q11 √

Then, for queries that text-based methods and graph-based
method all can cover, we conduct further evaluation by
introducing two performance indicators. HitRate is the
percentage of correct search results out of all correct results,
evaluating the exhaustion of search approaches. P@all evaluate
the precision of search results. It calculates by the percentage
of correct search results out of all search results. The result is
shown in Table V.

TABLE V. TEST RESULT

id
HitRate P@all

Key
word

Regular
expression

Graph-
based

Key
word

Regular
expression

Graph-
based

Kotlin101
Q1 N/A 20% 100% N/A 60% 100%
Q2 100% 100% 100% 70% 50% 100%
Q3 100% 100% 100% 67% 100% 100%
Q4 100% 100% 100% 70% 50% 100%
Q5 100% 100% 100% 17% 100% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 100% 100% 100% 25% 67% 100%

KAndroid
Q1 N/A 26% 100% N/A 100% 100%
Q2 - - - - - -
Q3 100% 100% 100% 4% 100% 100%
Q4 100% 100% 100% 93% 100% 100%
Q5 100% 100% 100% 10% 80% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 0% 100% 100% 0% 20% 100%

Android-SearchView-Demo
Q1 N/A 0% 100% N/A 0% 100%
Q2 100% 100% 100% 100% 100% 100%
Q3 100% 100% 100% 40% 67% 100%
Q4 - - - - - -
Q5 100% 100% 100% 91% 100% 100%
Q8 N/A 100% 100% N/A 100% 100%
Q10 100% 100% 100% 33% 50% 100%

For both HitRate and P@all, Graph-based approach has
significantly better performance, especially for P@all. Text-
based approaches has low P@all, because they often return
some code that matches the query but is not related, like
description in comment or unrelated code contains keyword or
match the regular expression. Fig. 5 shows some unrelated
results examples with their corresponding queries in text-based
methods for Q5. Better performance of graph-based methods
shows that preferentially extracting language features and add
them to graph representation is more promising than extracting
them directly from text.

Figure 5. Unrelated results examples in text-based methods

• RQ2: Whether is it effective to add language
features to graph representation?

To assess the coverage of our approach, we analyze which
code representations are necessary to describe different kinds
of queries. The results of this analysis are presented in Table VI.

Obviously, the AST alone provides only a little information
for querying source code. By combining AST with CFG or
DFG, we obtain a better view of the code and can describe
almost every query except language feature-related query. But
language features contain much information and represent
characteristics of Kotlin, so language features related queries
should not be excluded. After adding language features, we are
finally able to model all the query samples, making use of
information available from AST, CFG, DFG, and language
features representation.

TABLE VI. COVERAGE OF DIFFERENT GRAPH REPRESENTATION

id AST AST+
CFG

AST+
DFG

AST+language
features

AST+CFG+
DFG+language

features
Q1 √ √
Q2 √ √
Q3 √ √ √ √ √
Q4 √ √
Q5 √ √ √ √ √
Q6 √ √
Q7 √ √
Q8 √ √ √ √ √
Q9 √ √ √ √ √
Q10 √ √ √ √ √
Q11 √ √

We also calculated the graph complexity of different graph
representations as shown in Table VII. The graph complexity
measurement method uses the graph measures proposed by
Dehmer M et al[17] using a polynomial-based approach.
Through the comparison, we can see that adding language

features in the graph representation will not increase the
complexity greatly, but it really can represent more information.

TABLE VII. COMPLEXITY OF DIFFERENT REPRESENTATION

Dataset AST AST+CFG+DFG AST+CFG+DFG+
language features

Kotlin101 0.28351 0.35987 0.37066
KAndroid 0.16175 0.20886 0.21384

SearchView 0.36623 0.41296 0.42089
Average 0.27049 0.32723 0.33513

VI. THREAT TO VALIDITY
ASTs inside functions. Because of the lack of tools, we

need to manually extract ASTs insides functions by using types
of nodes and edges defined by ourselves. So ASTs inside
functions may lack of unity. When nodes and edges are defined
differently, the results are different.

Feature representation method. Different language
features have different representation methods including adding
edges, adding nodes, and adding attributes to nodes, according
to their characteristics. Feature representation in this paper is
all reasonable, but anyway, there will be better ways of
representation, which also will affect the results.

Queries of text-based methods. Though key-word method
and regular expression method is standardized, queries is not.
Different queries will lead to different results.

VII. CONCLUSION
In this paper, we conduct a pilot study on graph

representation method of Kotlin source code. We first verify
the necessity of studying graph representation of Kotlin
separately by comparing the difference between Kotlin and
Java in graph representation through the method of induction
and summary. Then we proposed a first-sight, rule-based graph
mapping method. It takes AST as the skeleton, enriching with
control flow edge and data flow edge, together with some
edges and attributes representing Kotlin's language features
ostensive. We present our graph construction process and
summarized points to note in the process, aiming to provide
other Kotlin downstream task researchers with a basis for
constructing graph representation for programs.

We evaluate our method through a source-code query
down-stream task, came to the following conclusions: 1) Graph
representation methods outperform text-based methods both on
query coverage and search result. This is because graph
representation contains more syntax and semantic information
which can be well leveraged in source-code search and even
other source-code analysis tasks. 2) Language features are
useful to enhance graph representation. First, graph
representation with language features can cover more queries.
In addition, preferentially extracting language features and
adding them to graph representation is more promising than
extracting them directly from text. 3) Adding language features
to graph representation will not add much complexity.

In the future, we plan to study next steps of code analysis
for Kotlin, including graph embedding, neural network, and so
on, aiming to conduct a full-link study on code analysis for
Kotlin and promote its application in the field of “big code”.
Furthermore, our study with Kotlin is instructive for the
analysis of similar concise modern languages, that adding
language features to graph representation is an exploration
direction.

REFERENCES
[1] “The State of the Octoverse 2018,” https://octoverse.github.com/2018/

projects#languages, last access: 2022-03-11.
[2] “Top Programming Languages 2021,” https://spectrum.ieee.org/top-

programming-languages/, last access: 2022-03-11.
[3] Allamanis M, Brockschmidt M, Khademi M. Learning to represent

programs with graphs[J]. arXiv preprint arXiv:1711.00740, 2017.
[4] Lu M , Tan D , N Xiong, et al. Program Classification Using Gated

Graph Attention Neural Network for Online Programming Service[J].
2019.

[5] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. AI-Kofahi and T. N.
Nguyen, "Graph-based mining of multiple object usage patterns",
Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering ser. ESEC/FSE '09, pp. 383-392,
2009.

[6] Allamanis M. Graph Neural Networks in Program Analysis[M]//Graph
Neural Networks: Foundations, Frontiers, and Applications. Springer,
Singapore, 2022: 483-49

[7] Gotseva D, Tomov Y, Danov P. Comparative study Java vs
Kotlin[C]//2021 27th National Conference with International
Participation (TELECOM). IEEE, 2021: 86-89.

[8] Flauzino M, Veríssimo J, Terra R, et al.. Are you still smelling it? A
comparative study between Java and Kotlin language[C]//Proceedings of
the VII Brazilian symposium on software components, architectures, and
reuse. 2018: 23-32.

[9] Mateus B G, Martinez M. An empirical study on quality of Android
applications written in Kotlin language[J]. Empirical Software
Engineering, 2019, 24(6): 3356-3393.

[10] Mateus B G, Martinez M. On the adoption, usage and evolution of
Kotlin features in Android development[C]//Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 2020: 1-12.

[11] Martinez M, Mateus B G. How and Why did developers migrate
Android Applications from Java to Kotlin? A study based on code
analysis and interviews with developers[J]. arXiv preprint
arXiv:2003.12730, 2021.

[12] Coppola R, Ardito L, Torchiano M. Characterizing the transition to
Kotlin of Android apps: a study on F-Droid, Play Store, and
GitHub[C]//Proceedings of the 3rd ACM SIGSOFT International
Workshop on App Market Analytics. 2021: 8-14.

[13] 2016. Comparison to Java Programming Language.
https://Kotlinlang.org/docs/ reference/comparison-to-Java.html Online;
accessed 01-July-2019.

[14] JetBrains. 2019. Kotlin Language Documentation.
https://Kotlinlang.org/docs/Kotlin-docs.pdf.

[15] Urma R G, Mycroft A. Source-code queries with graph databases—with
application to programming language usage and evolution[J]. Science of
Computer Programming, 2015, 97: 127-134.

[16] Rodriguez-Prieto O, Mycroft A, Ortin F. An efficient and scalable
platform for Java source code analysis using overlaid graph
representations[J]. IEEE Access, 2020, 8: 72239-72260.

[17] Dehmer M, Chen Z, Emmert-Streib F, et al. Measuring the complexity
of directed graphs: A polynomial-based approach[J]. Plos one, 2019,
14(11): e0223

