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Abstract—Code search refers to searching code snippets with 
specific functions in a large codebase according to natural 
language description. Classic code search approaches, using 
information retrieval technologies, fail to utilize code semantics 
and bring noisy and irrelevant keywords. During the last recent 
years, there has been an ample increase in the number of deep 
learning-based approaches, which embeds lexical semantics into 
unified vectors to achieve higher-level mapping between natural 
language queries and source code. However, these approaches are 
struggling with how to mine and utilize deep code semantics. In 
this work, we study how to leverage deeper source code semantics 
in graph-based source code search, given graph-based 
representation is a promising way of capturing program 
knowledge and has rich explainability. We propose a novel code 
search approach called EAGCS (Edge Attention-based Graph 
Code Search), which is composed of a novel code graph 
representation method called APDG (Advanced Program 
Dependence Graph) and a graph neural network called EAGGNN 
(Edge Attention-based GGNN) which can learn the latent code 
semantics of APDG. Experiment results demonstrate that our 
model outperforms the GGNN-based search model and DeepCS. 
Moreover, our comparison study shows that different edge 
enhancement strategies have different contributions to learning 
the code semantics. 

Keywords—semantic code search; graph neural network; graph 
representation learning 

I.  INTRODUCTION 
Code search is one of the most common activities in software 

development, some studies [1][2] have shown that 19% of 
developers’ time will be spent searching desirable code snippets. 
Especially in recent years, with the rise of agile development [3], 
the developer needs to iterate the projects rapidly. Accurate 
search results can be reused with only slight reconstruction and 
help quickly realize specific project functions to boost 
developers’ productivity. However, the existing code search 
engines, such as those on GitHub [4] and Stack Overflow [5], 
treat the source code as plain text and search the code snippets 
mainly based on keyword matching, lacking the semantic 
understanding of natural language and source code. Therefore, it 
is difficult to use such IR (Information Retrieve) techniques to 
optimize code search. 

More recently, deep learning-based code search can reduce 
the interference of noisy keywords and learn code features by 
vectoring the code, which can recognize semantically related 
words. For example, DeepCS [6] obtained the API sequence, 
method name and token information according to defined rules 

and embedded them into unified vectors to represent the code. 
Therefore, the basic code representation method has a far-
reaching impact on the expression of code semantics, which will 
further affect search performance. As code is structural and has 
unique language-specific semantics, the graph is a natural and 
effective representation of code. Taking Java as an example, 
there are a series of implicit relationships between code elements 
[7], such as the order of method calls, class inheritance, etc., and 
these relationships can reveal the potential code semantics. 
Inspired by this, many researchers utilized variants of abstract 
syntax tree (AST) [8] and other code graphs to represent latent 
code semantics. For instance, DeepCS extracted API sequence 
from AST, and Xiang et al. [9] generated a code graph based on 
AST with different nodes (terminal/non-terminal nodes) and 
edges. However, code with different syntax structures may 
express the same functionality [10], as shown in Figure 1 and 
Figure 2, which indicates that simply using AST to represent 
code is not enough to accurately express the deep code semantics. 
So we need to break through the current limitations of sequential 
data and enhance code semantics via utilizing the rich structural 
information behind programs.  

 
Figure 1. Two code snippets with the same functionality 

 

 
Figure 2. The two ASTs correspond to the code snippets in Figure 1, where 
the nodes and edges marked in red indicate the structural differences. 

To deal with the aforementioned challenges and utilize 
structural information, we propose a novel code search approach 
called EAGCS, which can significantly enhance the expression 
of structural and semantic information of source code. More 
specifically, we first construct a statement-level advanced 
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program dependence graph (APDG) which transforms three 
common control statements and adds control and data edges to 
improve the awareness of neighbors. Program dependence graph 
(PDG) [11] is the graphical representation of a program where 
nodes represent program statements and edges represent latent 
dependence information, but it fails to reflect the order in which 
statements are executed and the implicit control logic [12]. In 
APDG, we enrich code semantics based on our defined data and 
control dependence rules, introducing the statement execution 
information and control logic missed in PDG. Besides, the 
APDG is constructed based on AST, which can keep the syntax 
information of source code, and statement-level graph nodes can 
preserve local semantics compared with excessive fine 
granularity nodes in AST (i.e., NameExpr and ExpressionStmt 
nodes in Figure 2). Concentrating on multiple edge types, we 
apply EAGGNN to learn the semantic features of ADPG. 
Furthermore, we calculate the cosine similarity of the code and 
description vector embedded by our model and search the top-k 
relevant code snippets according to the given user queries. 
Experiments have been conducted and the results demonstrate 
that our model outperforms the other start-of-the-art models. 

The main contributions of this paper are as follows: 

• We introduce a novel statement-level code representation 
method called APDG, which optimizes the traditional 
PDG and strengthens both data and control dependence 
information to enrich the edge semantics. 

• We propose EAGCS, a graph-based code search approach 
that enhances the GGNN [13] via an edge attention 
mechanism to improve the expression of code semantics 
in APDG. 

• We conduct experiments on our model and other start-of-
the-art models and the results have shown that our model 
outperforms the others. Besides, we also explore the 
impact of different edges on the model performance. 

II. RELATED WORK  
With the in-depth study of code search in recent years, a 

variety of research methods have been proposed. Traditional 
code search methods treated source code as plain text and 
obtained the most relevant code snippets through the 
information retrieve (IR) technology. For example, Lv et al. [14] 
designed CodeHow, which expanded the user query with the 
APIs and applied an extended boolean model to perform code 
search. While Portfolio [15] combined keyword matching and 
PageRank to retrieve a series of functions according to user input. 

 To solve the problem that code snippets without keywords 
related to the description cannot be searched in the above-
mentioned models, Gu et al. [6] proposed the first deep learning-
based code search tool named DeepCS. DeepCS embedded code 
snippets and natural language descriptions into high-
dimensional vector space separately, which can recognize 
semantically related words. On this foundation, some other 
previous works used an attention mechanism or reconstructed 
the model structure to boost the search performance. Shuai et al. 
[16] utilized CARLCS-CNN based on Convolutional Neural 
Network (CNN) instead of LSTM used in DeepCS and built a 
semantical correlation between the code and description vectors 

via a co-attention mechanism. The work in [17] applied a self-
attention network to learn the contextual representation and 
global semantic relations for code snippets and their 
corresponding queries.  

Some other researchers are mainly dedicated to enhancing 
the representative ability of code semantics. Wan et al. [18] 
constructed the code features with the sequential tokens, ASTs 
(abstract syntax trees), and CFGs (control-flow graphs) to 
represent syntactic and semantic information of source code. 
Similarly, Zeng et al. [10] encoded source code into variable-
based flow graphs and utilized an improved gated graph neural 
network (GGNN) to model more precise code semantics. Liu et 
al. [19] transformed code snippets and descriptions into ASTs 
and dependence parsing graphs separately to capture their joint 
semantic relationship.  

In addition to semantic enhancement of source code, some 
work focused on query expansion and reinforcement. For 
instance, Sirres et al. [20] augmented user query with program 
elements, such as method and class names, from the extracted 
snippets. Xuan et al. [21] proposed DERECS to reinforce the 
code based on the method call and the structural characteristics 
of the code fragment, which reduced the difference between 
source code and query. 

III. EAGCS 

A. Overview 
Figure 3 shows the overall structure of EAGCS, including 4 

components: preprocessing, code graph generation, description 
embedding, and code graph embedding. Despite AST can 
reflect the syntax information of the source code, it is complex 
so we need to prune it to remove redundant nodes. The APDG 
we proposed not only retains the syntax information of AST in 
statement level which reduces the scale of code graph, but also 
adds data and control edges to enhance the code semantics. 
When the model searches code snippets, code semantics are 
explicitly expressed through multiple graph edges in APDG. 
Moreover, the edge attention-based GGNN (EAGGNN) can 
help to obtain a deeper understanding of APDG, it learns the 
node embeddings from multiple edges to focus on both data and 
control dependence. After embedding both descriptions and 
code snippets into unified vectors, the model can recommend 
code snippets with higher cosine similarity according to the 
given user query. 

B. Preprocessing 
1) Data Collection: To guarantee the performance of our 

model, we need a large-scale dataset that contains query 
descriptions and their corresponding code snippets. The dataset 
provided by DeepCS contains more than 18 million data items, 
which is used in most existing studies and is our ideal dataset. 
Unfortunately, the code graph generation approach we designed 
needs to be applied through the source code (raw data)， but 
the dataset provided by DeepCS has been already preprocessed 
and embedded, which fails to provide in-depth semantic 
information. Therefore we choose the dataset published by 
CodeSearchNet1, which is a little less than that of DeepCS but  

1https://github.com/github/CodeSearchNet   



contains raw code snippets. 
2) Data Processing: The CodeSearchNet dataset includes 

code snippets extracted from real projects. However, due to the 
complexity of the actual development process, participants, and 
project types, the raw data contains noisy and dirty data items. 
So we need to go through several processes to improve the 
quality of data fed to the model. 

Query Processing: We take the comments corresponding to 
the code snippets as the user query and handle them according 
to the following flow. 
• Segment the comment according to the “.” character, and 

select the first sentence as a user query. (User comment 
may include multiple sentences, but the first sentence is 
usually complete enough to describe the code, and the 
following statements are only for supplementary 
explanation) 

• Remove non-English symbols and stop words1. 

Code processing: we apply the javaparser2 library to 
transform the code snippets and generate APDG based on our 
code graph generation approach. 
• Convert the code snippets into class. (The original code 

fragment is at the function level) 

• Transform the code snippet into APDG. 

• Delete non-English characters and generate words 
according to lower CamelCase for each statement-level 
node. 

Tokenization: We first count the frequency of words in query 
and node statements separately and build two dictionaries based 
on their top 10000 words. Furthermore, we represent each word 
with a unique numeric ID and transform the query statements 
and node statements into sequences of numerical tokens. 

Embedding: Embedding is a technology that maps an object 
(i.e., a word) into a real vector, which can make objects with 

similar meanings have vectors with similar distances. The 
commonly used word embedding approaches are CBOW [22] 
and Skip-Gram [23]. In our work, we use the nn.Embedding3 
function of pytorch4 to initialize the word embeddings and then 
retrieve them using indices. 

C. Code Graph Generation Approach 
Program dependence graph (PDG) is one of the most widely 

used directed code graphs [11], where the nodes represent 
program statements and the edges represent the 
interdependence between program statements, but it fails to 
reflect the order in which statements are executed [12]. In our 
work, we propose advanced PDG (APDG) which adds 
NextStatement edges in PDG and we also provide clear 
guidelines for the optimization of common control statements 
to explore more program semantics. More specifically, we 
consider 12 types of nodes: Method Declaration, Parameter, 
Unary Expression, Variable Declaration Expression, Method 
Call Expression, Assign Expression, Construction Declaration, 
Try Statement, Class or Interface Declaration, Condition, 
Return Statement and Assert Statement based on the AST and 
the Soot’s [24] internal representation. Moreover, we have also 
defined the extraction rules of control dependence (Child, 
NextStatement, Judge Edges) and data dependence, which will 
be formally described in detail: 

1) Control Dependence: control dependence defines the 
constraint relationship of statement execution, which can reflect 
the syntax, execution order, and control information. 

Child: Child edges connect parent and child nodes in AST 
and point from parent node to child node which can reflect the 
control dependence of statements at the syntactic level. 

NextStatement: NextStatement edges concatenate 
statements inside a block according to the context, indicating 
the order of statement execution. The dashed box represents the 
virtual structure for better illustration, which will not appear in 
real APDG. 

1https://www.textfixer.com/tutorials/common-english-words.txt 
2https://github.com/javaparser/javaparser 
3https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html 
4https://pytorch.org/ 

Figure 3. Overview of EAGCS 



Judge: We transform three common control statements in 
AST: IfStatement, ForStatement, WhileStatement and add 
Judge edges to uncover the control logic. 

2) Data Dependence: data dependence defines the 
constraint relationship of variables between statements. To 
mine the data dependence relationship, we have to keep a record 
of all accesses of all variables. The data dependence rule of 
variable v from statements s1 to s2 can be described as： 
• v is defined or assigned in statement s1. 

• v is used in statement s2. 

• The scope of s2 is inside the scope of s1. 

• If s1 and s2 have the same scope level, a NextStatement 
path exists from s1 to s2.  

 
Figure 4. Illustration of Child and NextStatement edges. 

 

 
Figure 5. Illustration of control statements optimization and Judge edges. 

 

 
Figure 6. APDG corresponds to the code snippets in Figure 1. 

As shown in Figure 6, we constructed APDG for the code 
snippets in Figure 1  based on the designed control dependence 

and data dependence rules. And latent code semantics can be 
expressed through node contents and multiple edges.  

D. Description Embedding 
By word embedding, we view a description D as a sequence 

of token vectors: w1, ..., wN, D = {w1, ..., wN}. We use a bi-
LSTM to extract semantic information from the input in both 
forward and reverse directions, and embed the description into 
a vector d. 

𝒉𝒕""""⃗ = 𝐿𝑆𝑇𝑀"""""""""""⃗ )𝒘𝒕, 𝒉𝒕"𝟏""""""""⃗ , )1, 
𝒉𝒕"⃐""" = 𝐿𝑆𝑇𝑀"⃐"""""""""")𝒘𝒕, 𝒉𝒕$𝟏"⃐""""""", )2, 

𝒉𝒕 = 𝒉𝒕""""⃗ ⨁𝒉𝒕"⃐"""		∀𝑡 = 1, . . . , 𝑁 )3, 
𝒅 = 𝒎𝒂𝒙𝒑𝒐𝒐𝒍𝒊𝒏𝒈(𝒉𝟏, … , 𝒉𝑵) )4, 

where 𝒘𝒕 ∈ ℝ&, ht is the hidden states at step t, t = 1, ..., N, N is 
the length of the sequence, ⨁ is the concatenation operation. 

E. Code Graph Embedding 
1) Node Embedding: We view a graph node V as several 

token vectors: t1, ...,tM. V = { t1, ...,tM }. For there is no strict 
order between these tokens, we use a multilayer perceptron 
(MLP) to embed the node into a vector n. 

𝒉𝒊 = tanh(𝑊(𝒕𝒊)	 ∀𝑖 = 1, . . . , 𝑀 )5, 
𝒏 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔([𝒉𝟏, … , 𝒉𝑴]) )6, 

where 𝒕𝒊 ∈ ℝ&,  i= 1, ..., M, M is the number of the tokens, WT 
is the learnable matrix in the MLP. 

2) Edge Attention Based GGNN 
Gated Graph neural network (GGNN) is a kind of graph 

neural network (GNN) that directly uses graph data as the 
structured input. For most GNNs, much information sharing 
might reduce the weight of the original information of the node 
itself, which can lead to overfitting. To overcome this issue, 
GGNN can selectively remember the hidden information of 
neighbor nodes and the hidden information in the process of 
node iteration by adding a GRU [13] component. As we have 
already enriched edge semantics in APDG, we propose 
EAGGNN which enhances the GGNN via an edge attention 
mechanism to deal with different types of edges to focus on both 
data and control dependence information for each iteration. 
Considering the program graph 𝒢 = (𝒱, ℰ) , 𝒱  is the node 
collection and ℰ is the adjacency matrix. For each node v ∈ 𝒱 , 
𝒉𝒗
(𝟎)  is the initial hidden state of node v through node 

embedding, and 𝒉𝒗
(𝒌) is the hidden state of node v in hop k. 

𝒂𝒗|𝑫
(𝒌) = 𝐴1|23 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃 )7, 

𝒂𝒗|𝑪
(𝒌) = 𝐴1|73 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃 )8, 

𝒂𝒗
(𝒌) = 𝒂𝒗|𝑫

(𝒌) ⊕𝒂𝒗|𝑪
(𝒌) )9, 

𝒛𝒗
(𝒌) = 𝜎)𝑊8𝒂𝒗

(𝒌) +𝑈8𝒉𝒗
(𝒌"𝟏), )10, 

𝒓𝒗
(𝒌) = 	𝜎)𝑊9𝒂𝒗

(𝒌) +𝑈9𝒉𝒗
(𝒌"𝟏), )11, 

𝒉𝒗
(𝒌)k = tanh l𝑊𝒂𝒗

(𝒌) +𝑈)𝒓𝒗
(𝒌)⊙𝒉𝒗

(𝒌"𝟏),n )12, 

𝒉𝒗
(𝒌) = l1 − 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌"𝟏) + 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌)k n )13, 

𝒄 = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔)𝒉𝟏𝑲…𝒉|𝓥|𝑲 , )14, 
where 𝐴1|2 and 	𝐴1|7 are the columns corresponding to node v 
in data adjacency matrix and control adjacency matrix 



separately, 	𝑧1
(;) is the update gate, 𝑟1

(;) is the reset gate, K is the 
number of hops in EAGGNN and c is the final code 
representation.  

F. Model Training 
Considering a code-description pair 𝑃(𝑐, 𝑑$), where 𝑐 ∈ 𝐶,

𝑑$ ∈ 	𝐷, C denotes the set of code snippets, D denotes the set 
of descriptions, 𝑐 denotes the single code snippet, 𝑑$ denotes 
the corresponding query description of 𝑐  and 𝑑"  denotes 
another randomly selected query description from 𝐷, 𝑑" ∈ 𝐷, 
𝑑" ≠ 𝑑$. Then we rebuild the pair P as 𝑃< = (𝑐, 𝑑$, 𝑑") and 
train the model by minimizing the loss function L(θ) that is 
formulated as: 
𝐿(𝜃) = z max(0, 𝛽 − cos(𝑐, 𝑑$) + cos(𝑐, 𝑑"))

(=,&!,&")∈@#
	)15, 

where θ denotes the model parameters, 𝑑$denotes the positive 
description, 𝑑"denotes the negative description, cos is cosine 
similarity function and β denotes the constant margin. 

IV. EXPERIMENTS 

A. Dataset 
We choose the dataset of CodeSearchNet as the training set 

which contains 454,451 samples, and then filter these samples 
according to the following rules: 
• Remove duplicate queries. (The dataset contains override 

or overload functions that have the same comments, and 
we only choose the sample that appears first) 

• Remove code snippets that cannot be compiled properly 

• P with description d that contains less than 3 words or 
more than 20 words will be filtered out. (The excessively 
long query length does not meet the actual user 
requirements) 

• P with code c that is less than 3 lines and more than 20 
lines will be filtered out. (Too short code snippets are 
meaningless, while too long code is difficult to understand) 

As result, we obtained 126,363 pieces of data and converted 
all the processed code snippets into ASTs and APDGs. In 
addition, statistics on the maximal/average/minimal number of 
nodes and edges of these ASTs and APDGs were conducted and 
the results were shown in Figure 7, which indicated that APDG 
effectively reduced the complexity of code graph and was 
conducive to model training. 

For the test set, we selected the 10,000 code-query pairs 
provided by Gu et al. [6]. Through the same filtering flow, we 
gained 4,548 pieces of data for evaluation and utilized an 
automatic evaluation approach which used the 4,548 queries as 
model inputs while the corresponding code snippets were 
treated as ground truth. In the automatic evaluation, we 
randomly selected 99 other code snippets and combined them 
with the ground truth as the search base for a query input. This 
automatic evaluation approach can avoid the bias caused by 
manual ranking. Besides, selecting training and test sets from 
different projects can examine the generalization ability of the 
model. 

 
Figure 7. Statistical results of APDGs and ASTs on CodeSearchNet. 

 

B. Evaluation Metrics 
SuccessRate@k: The SuccessRate@k measures the 

percentage of queries for which the corresponding ground-truth 
code snippet could exist in the top k ranked results and it can be 
formulated as: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 =
1
|𝑄|z𝛿)𝐹𝑅𝑎𝑛𝑘A ≤ 𝑘,

|B|

ACD

)16, 

where Q denotes the set of queries, 𝛿(∙) denotes the function 
that returns 1 if the input is true and 0 otherwise, Frank denotes 
the rank position of the ground truth in the result list.  

MRR: MRR is the average of the reciprocal ranks of results 
of a query set Q, which can be defined as follows: 

𝑀𝑅𝑅 =
1
|𝑄|z

1
𝐹𝑟𝑎𝑛𝑘A

|B|

ACD

)17, 

where the reciprocal ranks is the inverse of Frank. As we expect 
to find the ground truth in the top 10 results, we set 1/𝐹𝑟𝑎𝑛𝑘A 
to 0 if 𝐹𝑅𝑎𝑛𝑘A	is larger than 10.  

C. Baseline Models 
DeepCS is the state-of-the-art neural network to retrieve 

relevant code snippets given a query description. It extracted 
the method name, API sequence, and tokens of a method to 
represent the code semantics, and then embedded code and 
description to get the unified vectors to calculate the similarity 
between them. 

GGNN represents the gated neural network without edge 
attention based on our APDG. It utilized the GGNN on data and 
control dependence separately and then combined the two 
hidden states via an avgpooling function to represent the code. 

D. Implementation Details 
We embedded the top 10000 tokens for the code statements 

and descriptions separately with a 128-dimensional size and 
used Adam [25] as the optimizer. The model was trained for 
250 epochs while the batch size was set as 100. The iteration 
times of EAGGNN were set as 4 and the dropout was set as 0.6 
in the word embedding layer for the learning process.  



E. Results 
Table I summarizes the experiment results of our model and 

the baseline models on the test set. The R@1, R@5, and R@10 
denote the results of SuccessRate@k, where k is 1, 5, 10. The 
results have shown that our model outperforms the state-of-the-
art models. The R@1, R@5, R@10, and MRR of EAGCS are 
respectively 0.15, 0.16, 0.18, and 0.15 higher than GGNN, 
which indicates the edge attention mechanism can effectively 
aggregate the edge information. 

TABLE I.  COMPARISON OF THE MODEL PERFORMANCE BETWEEN OUR 
MODEL AND THE BASELINE MODEL 

Model R@1 R@5 R@10 MRR 
DeepCS 0.2199 0.3628 0.4574 0.2846 
GGNN 0.4268 0.5500 0.5910 0.4826 
EAGCS 0.5785 0.7071 0.7682 0.6357 

 

TABLE II.  EFFECT OF EACH EDGE TYPE 

Model D C R@1 R@5 R@10 MRR 
 

EAGCS 
✓  0.3173 0.4807 0.5706 0.3894 
 ✓ 0.2718 0.4576 0.5521 0.3507 
✓ ✓ 0.5785 0.7071 0.7682 0.6357 

 
Table II presents the influence of different types of edge on 

search performance. The header D and C indicate whether data 
edge and control edge exist in APDG, where the checkmark 
represents that the corresponding edge is added. Incorporating 
both data and control dependence can express the code 
semantics to the greatest extent and can get the best model 
performance. Results also show that data dependence has a 
slightly greater weight than control dependence for that all 
metrics are higher. Data dependence reflect the flow of 
variables between basic blocks under the control structure, 
which is a further and deeper analysis of program features. 

F. Threats to Validity 
Our work may suffer from four validity. The first one is the 

model re-implementation. Replicating the baseline models may 
introduce some errors. To mitigate this threat, we used the 
authors’ open-source projects on GitHub and processed our 
dataset into the same format required by the projects. The 
second one is the selected dataset. Because the dataset provided 
by DeepCS is vectorized, we can’t obtain the original code 
snippets for our model to generate code graphs, so we utilized 
the CodeSearchNet dataset for model training, which was 
smaller than that of DeepCS but contained raw code snippets. 
Furthermore, the training and test set shared the same 
preprocessing flow. The third one is the model evaluation. We 
took the automatic evaluation approach to avoid manual risks. 
Given an input query, we set the same search base for all 
baseline models.  The experiment results may be influenced by 
the scale or the origin of the search base, which is our future 
research content. The last one is the model comparision. In our 
experiment, We applied the same dataset, ran all the models in 
the same hardware environment, and adopted the same data 

preprocessing process to reduce this threat. While DeepCS does 
not perform on the graph structure, more related baselines may 
be needed to justify the advantages introduced by our proposed 
model in the future. 

V. CONCLUSION 
How to accurately understand and express code semantics 

has become a key challenge in the process of code search. In this 
paper, we propose a novel graph-based code search method 
called EAGCS, which mines latent code semantics by enhancing 
edge information in APDG and embeds the APDG into graph-
level vector via edge attention-based GGNN to boost the 
semantic expression. In the future, we will strive to optimize the 
code graph structure and model architecture to improve search 
performance. We also plan to investigate the influence of the 
number of nodes in APDG and the length of query statements on 
the search results. Furthermore, how to excavate potential user 
search intention and reinforce user query is another rich field 
worthy to be penetratingly explored. 
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