
Utilizing Edge Attention in Graph-Based Code Search
Wei Zhao

School of Software Engineering
Tongji University
Shanghai, China

2031569@tongji.edu.cn

Yan Liu*
School of Software Engineering

Tongji University
Shanghai, China

yanliu.sse@tongji.edu.cn

Abstract—Code search refers to searching code snippets with
specific functions in a large codebase according to natural
language description. Classic code search approaches, using
information retrieval technologies, fail to utilize code semantics
and bring noisy and irrelevant keywords. During the last recent
years, there has been an ample increase in the number of deep
learning-based approaches, which embeds lexical semantics into
unified vectors to achieve higher-level mapping between natural
language queries and source code. However, these approaches are
struggling with how to mine and utilize deep code semantics. In
this work, we study how to leverage deeper source code semantics
in graph-based source code search, given graph-based
representation is a promising way of capturing program
knowledge and has rich explainability. We propose a novel code
search approach called EAGCS (Edge Attention-based Graph
Code Search), which is composed of a novel code graph
representation method called APDG (Advanced Program
Dependence Graph) and a graph neural network called EAGGNN
(Edge Attention-based GGNN) which can learn the latent code
semantics of APDG. Experiment results demonstrate that our
model outperforms the GGNN-based search model and DeepCS.
Moreover, our comparison study shows that different edge
enhancement strategies have different contributions to learning
the code semantics.

Keywords—semantic code search; graph neural network; graph
representation learning

I. INTRODUCTION
Code search is one of the most common activities in software

development, some studies [1][2] have shown that 19% of
developers’ time will be spent searching desirable code snippets.
Especially in recent years, with the rise of agile development [3],
the developer needs to iterate the projects rapidly. Accurate
search results can be reused with only slight reconstruction and
help quickly realize specific project functions to boost
developers’ productivity. However, the existing code search
engines, such as those on GitHub [4] and Stack Overflow [5],
treat the source code as plain text and search the code snippets
mainly based on keyword matching, lacking the semantic
understanding of natural language and source code. Therefore, it
is difficult to use such IR (Information Retrieve) techniques to
optimize code search.

More recently, deep learning-based code search can reduce
the interference of noisy keywords and learn code features by
vectoring the code, which can recognize semantically related
words. For example, DeepCS [6] obtained the API sequence,
method name and token information according to defined rules

and embedded them into unified vectors to represent the code.
Therefore, the basic code representation method has a far-
reaching impact on the expression of code semantics, which will
further affect search performance. As code is structural and has
unique language-specific semantics, the graph is a natural and
effective representation of code. Taking Java as an example,
there are a series of implicit relationships between code elements
[7], such as the order of method calls, class inheritance, etc., and
these relationships can reveal the potential code semantics.
Inspired by this, many researchers utilized variants of abstract
syntax tree (AST) [8] and other code graphs to represent latent
code semantics. For instance, DeepCS extracted API sequence
from AST, and Xiang et al. [9] generated a code graph based on
AST with different nodes (terminal/non-terminal nodes) and
edges. However, code with different syntax structures may
express the same functionality [10], as shown in Figure 1 and
Figure 2, which indicates that simply using AST to represent
code is not enough to accurately express the deep code semantics.
So we need to break through the current limitations of sequential
data and enhance code semantics via utilizing the rich structural
information behind programs.

Figure 1. Two code snippets with the same functionality

Figure 2. The two ASTs correspond to the code snippets in Figure 1, where
the nodes and edges marked in red indicate the structural differences.

To deal with the aforementioned challenges and utilize
structural information, we propose a novel code search approach
called EAGCS, which can significantly enhance the expression
of structural and semantic information of source code. More
specifically, we first construct a statement-level advanced

* Corresponding Author

DOI reference number: 10.18293/SEKE2022-078

program dependence graph (APDG) which transforms three
common control statements and adds control and data edges to
improve the awareness of neighbors. Program dependence graph
(PDG) [11] is the graphical representation of a program where
nodes represent program statements and edges represent latent
dependence information, but it fails to reflect the order in which
statements are executed and the implicit control logic [12]. In
APDG, we enrich code semantics based on our defined data and
control dependence rules, introducing the statement execution
information and control logic missed in PDG. Besides, the
APDG is constructed based on AST, which can keep the syntax
information of source code, and statement-level graph nodes can
preserve local semantics compared with excessive fine
granularity nodes in AST (i.e., NameExpr and ExpressionStmt
nodes in Figure 2). Concentrating on multiple edge types, we
apply EAGGNN to learn the semantic features of ADPG.
Furthermore, we calculate the cosine similarity of the code and
description vector embedded by our model and search the top-k
relevant code snippets according to the given user queries.
Experiments have been conducted and the results demonstrate
that our model outperforms the other start-of-the-art models.

The main contributions of this paper are as follows:

• We introduce a novel statement-level code representation
method called APDG, which optimizes the traditional
PDG and strengthens both data and control dependence
information to enrich the edge semantics.

• We propose EAGCS, a graph-based code search approach
that enhances the GGNN [13] via an edge attention
mechanism to improve the expression of code semantics
in APDG.

• We conduct experiments on our model and other start-of-
the-art models and the results have shown that our model
outperforms the others. Besides, we also explore the
impact of different edges on the model performance.

II. RELATED WORK
With the in-depth study of code search in recent years, a

variety of research methods have been proposed. Traditional
code search methods treated source code as plain text and
obtained the most relevant code snippets through the
information retrieve (IR) technology. For example, Lv et al. [14]
designed CodeHow, which expanded the user query with the
APIs and applied an extended boolean model to perform code
search. While Portfolio [15] combined keyword matching and
PageRank to retrieve a series of functions according to user input.

 To solve the problem that code snippets without keywords
related to the description cannot be searched in the above-
mentioned models, Gu et al. [6] proposed the first deep learning-
based code search tool named DeepCS. DeepCS embedded code
snippets and natural language descriptions into high-
dimensional vector space separately, which can recognize
semantically related words. On this foundation, some other
previous works used an attention mechanism or reconstructed
the model structure to boost the search performance. Shuai et al.
[16] utilized CARLCS-CNN based on Convolutional Neural
Network (CNN) instead of LSTM used in DeepCS and built a
semantical correlation between the code and description vectors

via a co-attention mechanism. The work in [17] applied a self-
attention network to learn the contextual representation and
global semantic relations for code snippets and their
corresponding queries.

Some other researchers are mainly dedicated to enhancing
the representative ability of code semantics. Wan et al. [18]
constructed the code features with the sequential tokens, ASTs
(abstract syntax trees), and CFGs (control-flow graphs) to
represent syntactic and semantic information of source code.
Similarly, Zeng et al. [10] encoded source code into variable-
based flow graphs and utilized an improved gated graph neural
network (GGNN) to model more precise code semantics. Liu et
al. [19] transformed code snippets and descriptions into ASTs
and dependence parsing graphs separately to capture their joint
semantic relationship.

In addition to semantic enhancement of source code, some
work focused on query expansion and reinforcement. For
instance, Sirres et al. [20] augmented user query with program
elements, such as method and class names, from the extracted
snippets. Xuan et al. [21] proposed DERECS to reinforce the
code based on the method call and the structural characteristics
of the code fragment, which reduced the difference between
source code and query.

III. EAGCS

A. Overview
Figure 3 shows the overall structure of EAGCS, including 4

components: preprocessing, code graph generation, description
embedding, and code graph embedding. Despite AST can
reflect the syntax information of the source code, it is complex
so we need to prune it to remove redundant nodes. The APDG
we proposed not only retains the syntax information of AST in
statement level which reduces the scale of code graph, but also
adds data and control edges to enhance the code semantics.
When the model searches code snippets, code semantics are
explicitly expressed through multiple graph edges in APDG.
Moreover, the edge attention-based GGNN (EAGGNN) can
help to obtain a deeper understanding of APDG, it learns the
node embeddings from multiple edges to focus on both data and
control dependence. After embedding both descriptions and
code snippets into unified vectors, the model can recommend
code snippets with higher cosine similarity according to the
given user query.

B. Preprocessing
1) Data Collection: To guarantee the performance of our

model, we need a large-scale dataset that contains query
descriptions and their corresponding code snippets. The dataset
provided by DeepCS contains more than 18 million data items,
which is used in most existing studies and is our ideal dataset.
Unfortunately, the code graph generation approach we designed
needs to be applied through the source code (raw data)， but
the dataset provided by DeepCS has been already preprocessed
and embedded, which fails to provide in-depth semantic
information. Therefore we choose the dataset published by
CodeSearchNet1, which is a little less than that of DeepCS but

1https://github.com/github/CodeSearchNet

contains raw code snippets.
2) Data Processing: The CodeSearchNet dataset includes

code snippets extracted from real projects. However, due to the
complexity of the actual development process, participants, and
project types, the raw data contains noisy and dirty data items.
So we need to go through several processes to improve the
quality of data fed to the model.

Query Processing: We take the comments corresponding to
the code snippets as the user query and handle them according
to the following flow.
• Segment the comment according to the “.” character, and

select the first sentence as a user query. (User comment
may include multiple sentences, but the first sentence is
usually complete enough to describe the code, and the
following statements are only for supplementary
explanation)

• Remove non-English symbols and stop words1.

Code processing: we apply the javaparser2 library to
transform the code snippets and generate APDG based on our
code graph generation approach.
• Convert the code snippets into class. (The original code

fragment is at the function level)

• Transform the code snippet into APDG.

• Delete non-English characters and generate words
according to lower CamelCase for each statement-level
node.

Tokenization: We first count the frequency of words in query
and node statements separately and build two dictionaries based
on their top 10000 words. Furthermore, we represent each word
with a unique numeric ID and transform the query statements
and node statements into sequences of numerical tokens.

Embedding: Embedding is a technology that maps an object
(i.e., a word) into a real vector, which can make objects with

similar meanings have vectors with similar distances. The
commonly used word embedding approaches are CBOW [22]
and Skip-Gram [23]. In our work, we use the nn.Embedding3
function of pytorch4 to initialize the word embeddings and then
retrieve them using indices.

C. Code Graph Generation Approach
Program dependence graph (PDG) is one of the most widely

used directed code graphs [11], where the nodes represent
program statements and the edges represent the
interdependence between program statements, but it fails to
reflect the order in which statements are executed [12]. In our
work, we propose advanced PDG (APDG) which adds
NextStatement edges in PDG and we also provide clear
guidelines for the optimization of common control statements
to explore more program semantics. More specifically, we
consider 12 types of nodes: Method Declaration, Parameter,
Unary Expression, Variable Declaration Expression, Method
Call Expression, Assign Expression, Construction Declaration,
Try Statement, Class or Interface Declaration, Condition,
Return Statement and Assert Statement based on the AST and
the Soot’s [24] internal representation. Moreover, we have also
defined the extraction rules of control dependence (Child,
NextStatement, Judge Edges) and data dependence, which will
be formally described in detail:

1) Control Dependence: control dependence defines the
constraint relationship of statement execution, which can reflect
the syntax, execution order, and control information.

Child: Child edges connect parent and child nodes in AST
and point from parent node to child node which can reflect the
control dependence of statements at the syntactic level.

NextStatement: NextStatement edges concatenate
statements inside a block according to the context, indicating
the order of statement execution. The dashed box represents the
virtual structure for better illustration, which will not appear in
real APDG.

1https://www.textfixer.com/tutorials/common-english-words.txt
2https://github.com/javaparser/javaparser
3https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
4https://pytorch.org/

Figure 3. Overview of EAGCS

Judge: We transform three common control statements in
AST: IfStatement, ForStatement, WhileStatement and add
Judge edges to uncover the control logic.

2) Data Dependence: data dependence defines the
constraint relationship of variables between statements. To
mine the data dependence relationship, we have to keep a record
of all accesses of all variables. The data dependence rule of
variable v from statements s1 to s2 can be described as：
• v is defined or assigned in statement s1.

• v is used in statement s2.

• The scope of s2 is inside the scope of s1.

• If s1 and s2 have the same scope level, a NextStatement
path exists from s1 to s2.

Figure 4. Illustration of Child and NextStatement edges.

Figure 5. Illustration of control statements optimization and Judge edges.

Figure 6. APDG corresponds to the code snippets in Figure 1.

As shown in Figure 6, we constructed APDG for the code
snippets in Figure 1 based on the designed control dependence

and data dependence rules. And latent code semantics can be
expressed through node contents and multiple edges.

D. Description Embedding
By word embedding, we view a description D as a sequence

of token vectors: w1, ..., wN, D = {w1, ..., wN}. We use a bi-
LSTM to extract semantic information from the input in both
forward and reverse directions, and embed the description into
a vector d.

𝒉𝒕""""⃗ = 𝐿𝑆𝑇𝑀"""""""""""⃗)𝒘𝒕, 𝒉𝒕"𝟏""""""""⃗ ,)1,
𝒉𝒕"⃐""" = 𝐿𝑆𝑇𝑀"⃐"""""""""")𝒘𝒕, 𝒉𝒕$𝟏"⃐""""""",)2,

𝒉𝒕 = 𝒉𝒕""""⃗ ⨁𝒉𝒕"⃐"""		∀𝑡 = 1, . . . , 𝑁)3,
𝒅 = 𝒎𝒂𝒙𝒑𝒐𝒐𝒍𝒊𝒏𝒈(𝒉𝟏, … , 𝒉𝑵))4,

where 𝒘𝒕 ∈ ℝ&, ht is the hidden states at step t, t = 1, ..., N, N is
the length of the sequence, ⨁ is the concatenation operation.

E. Code Graph Embedding
1) Node Embedding: We view a graph node V as several

token vectors: t1, ...,tM. V = { t1, ...,tM }. For there is no strict
order between these tokens, we use a multilayer perceptron
(MLP) to embed the node into a vector n.

𝒉𝒊 = tanh(𝑊(𝒕𝒊)	 ∀𝑖 = 1, . . . , 𝑀)5,
𝒏 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔([𝒉𝟏, … , 𝒉𝑴]))6,

where 𝒕𝒊 ∈ ℝ&, i= 1, ..., M, M is the number of the tokens, WT
is the learnable matrix in the MLP.

2) Edge Attention Based GGNN
Gated Graph neural network (GGNN) is a kind of graph

neural network (GNN) that directly uses graph data as the
structured input. For most GNNs, much information sharing
might reduce the weight of the original information of the node
itself, which can lead to overfitting. To overcome this issue,
GGNN can selectively remember the hidden information of
neighbor nodes and the hidden information in the process of
node iteration by adding a GRU [13] component. As we have
already enriched edge semantics in APDG, we propose
EAGGNN which enhances the GGNN via an edge attention
mechanism to deal with different types of edges to focus on both
data and control dependence information for each iteration.
Considering the program graph 𝒢 = (𝒱, ℰ) , 𝒱 is the node
collection and ℰ is the adjacency matrix. For each node v ∈ 𝒱 ,
𝒉𝒗
(𝟎) is the initial hidden state of node v through node

embedding, and 𝒉𝒗
(𝒌) is the hidden state of node v in hop k.

𝒂𝒗|𝑫
(𝒌) = 𝐴1|23 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃)7,

𝒂𝒗|𝑪
(𝒌) = 𝐴1|73 ^𝒉𝟏

(𝒌"𝟏)𝝉…	𝒉|𝓥|
(𝒌"𝟏)𝝉_ + 𝒃)8,

𝒂𝒗
(𝒌) = 𝒂𝒗|𝑫

(𝒌) ⊕𝒂𝒗|𝑪
(𝒌))9,

𝒛𝒗
(𝒌) = 𝜎)𝑊8𝒂𝒗

(𝒌) +𝑈8𝒉𝒗
(𝒌"𝟏),)10,

𝒓𝒗
(𝒌) = 	𝜎)𝑊9𝒂𝒗

(𝒌) +𝑈9𝒉𝒗
(𝒌"𝟏),)11,

𝒉𝒗
(𝒌)k = tanh l𝑊𝒂𝒗

(𝒌) +𝑈)𝒓𝒗
(𝒌)⊙𝒉𝒗

(𝒌"𝟏),n)12,

𝒉𝒗
(𝒌) = l1 − 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌"𝟏) + 𝒛𝒗

(𝒌)⊙𝒉𝒗
(𝒌)k n)13,

𝒄 = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔)𝒉𝟏𝑲…𝒉|𝓥|𝑲 ,)14,
where 𝐴1|2 and 	𝐴1|7 are the columns corresponding to node v
in data adjacency matrix and control adjacency matrix

separately, 	𝑧1
(;) is the update gate, 𝑟1

(;) is the reset gate, K is the
number of hops in EAGGNN and c is the final code
representation.

F. Model Training
Considering a code-description pair 𝑃(𝑐, 𝑑$), where 𝑐 ∈ 𝐶,

𝑑$ ∈ 	𝐷, C denotes the set of code snippets, D denotes the set
of descriptions, 𝑐 denotes the single code snippet, 𝑑$ denotes
the corresponding query description of 𝑐 and 𝑑" denotes
another randomly selected query description from 𝐷, 𝑑" ∈ 𝐷,
𝑑" ≠ 𝑑$. Then we rebuild the pair P as 𝑃< = (𝑐, 𝑑$, 𝑑") and
train the model by minimizing the loss function L(θ) that is
formulated as:
𝐿(𝜃) = z max(0, 𝛽 − cos(𝑐, 𝑑$) + cos(𝑐, 𝑑"))

(=,&!,&")∈@#
)15,

where θ denotes the model parameters, 𝑑$denotes the positive
description, 𝑑"denotes the negative description, cos is cosine
similarity function and β denotes the constant margin.

IV. EXPERIMENTS

A. Dataset
We choose the dataset of CodeSearchNet as the training set

which contains 454,451 samples, and then filter these samples
according to the following rules:
• Remove duplicate queries. (The dataset contains override

or overload functions that have the same comments, and
we only choose the sample that appears first)

• Remove code snippets that cannot be compiled properly

• P with description d that contains less than 3 words or
more than 20 words will be filtered out. (The excessively
long query length does not meet the actual user
requirements)

• P with code c that is less than 3 lines and more than 20
lines will be filtered out. (Too short code snippets are
meaningless, while too long code is difficult to understand)

As result, we obtained 126,363 pieces of data and converted
all the processed code snippets into ASTs and APDGs. In
addition, statistics on the maximal/average/minimal number of
nodes and edges of these ASTs and APDGs were conducted and
the results were shown in Figure 7, which indicated that APDG
effectively reduced the complexity of code graph and was
conducive to model training.

For the test set, we selected the 10,000 code-query pairs
provided by Gu et al. [6]. Through the same filtering flow, we
gained 4,548 pieces of data for evaluation and utilized an
automatic evaluation approach which used the 4,548 queries as
model inputs while the corresponding code snippets were
treated as ground truth. In the automatic evaluation, we
randomly selected 99 other code snippets and combined them
with the ground truth as the search base for a query input. This
automatic evaluation approach can avoid the bias caused by
manual ranking. Besides, selecting training and test sets from
different projects can examine the generalization ability of the
model.

Figure 7. Statistical results of APDGs and ASTs on CodeSearchNet.

B. Evaluation Metrics
SuccessRate@k: The SuccessRate@k measures the

percentage of queries for which the corresponding ground-truth
code snippet could exist in the top k ranked results and it can be
formulated as:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 =
1
|𝑄|z𝛿)𝐹𝑅𝑎𝑛𝑘A ≤ 𝑘,

|B|

ACD

)16,

where Q denotes the set of queries, 𝛿(∙) denotes the function
that returns 1 if the input is true and 0 otherwise, Frank denotes
the rank position of the ground truth in the result list.

MRR: MRR is the average of the reciprocal ranks of results
of a query set Q, which can be defined as follows:

𝑀𝑅𝑅 =
1
|𝑄|z

1
𝐹𝑟𝑎𝑛𝑘A

|B|

ACD

)17,

where the reciprocal ranks is the inverse of Frank. As we expect
to find the ground truth in the top 10 results, we set 1/𝐹𝑟𝑎𝑛𝑘A
to 0 if 𝐹𝑅𝑎𝑛𝑘A	is larger than 10.

C. Baseline Models
DeepCS is the state-of-the-art neural network to retrieve

relevant code snippets given a query description. It extracted
the method name, API sequence, and tokens of a method to
represent the code semantics, and then embedded code and
description to get the unified vectors to calculate the similarity
between them.

GGNN represents the gated neural network without edge
attention based on our APDG. It utilized the GGNN on data and
control dependence separately and then combined the two
hidden states via an avgpooling function to represent the code.

D. Implementation Details
We embedded the top 10000 tokens for the code statements

and descriptions separately with a 128-dimensional size and
used Adam [25] as the optimizer. The model was trained for
250 epochs while the batch size was set as 100. The iteration
times of EAGGNN were set as 4 and the dropout was set as 0.6
in the word embedding layer for the learning process.

E. Results
Table I summarizes the experiment results of our model and

the baseline models on the test set. The R@1, R@5, and R@10
denote the results of SuccessRate@k, where k is 1, 5, 10. The
results have shown that our model outperforms the state-of-the-
art models. The R@1, R@5, R@10, and MRR of EAGCS are
respectively 0.15, 0.16, 0.18, and 0.15 higher than GGNN,
which indicates the edge attention mechanism can effectively
aggregate the edge information.

TABLE I. COMPARISON OF THE MODEL PERFORMANCE BETWEEN OUR
MODEL AND THE BASELINE MODEL

Model R@1 R@5 R@10 MRR
DeepCS 0.2199 0.3628 0.4574 0.2846
GGNN 0.4268 0.5500 0.5910 0.4826
EAGCS 0.5785 0.7071 0.7682 0.6357

TABLE II. EFFECT OF EACH EDGE TYPE

Model D C R@1 R@5 R@10 MRR

EAGCS
✓ 0.3173 0.4807 0.5706 0.3894
 ✓ 0.2718 0.4576 0.5521 0.3507
✓ ✓ 0.5785 0.7071 0.7682 0.6357

Table II presents the influence of different types of edge on

search performance. The header D and C indicate whether data
edge and control edge exist in APDG, where the checkmark
represents that the corresponding edge is added. Incorporating
both data and control dependence can express the code
semantics to the greatest extent and can get the best model
performance. Results also show that data dependence has a
slightly greater weight than control dependence for that all
metrics are higher. Data dependence reflect the flow of
variables between basic blocks under the control structure,
which is a further and deeper analysis of program features.

F. Threats to Validity
Our work may suffer from four validity. The first one is the

model re-implementation. Replicating the baseline models may
introduce some errors. To mitigate this threat, we used the
authors’ open-source projects on GitHub and processed our
dataset into the same format required by the projects. The
second one is the selected dataset. Because the dataset provided
by DeepCS is vectorized, we can’t obtain the original code
snippets for our model to generate code graphs, so we utilized
the CodeSearchNet dataset for model training, which was
smaller than that of DeepCS but contained raw code snippets.
Furthermore, the training and test set shared the same
preprocessing flow. The third one is the model evaluation. We
took the automatic evaluation approach to avoid manual risks.
Given an input query, we set the same search base for all
baseline models. The experiment results may be influenced by
the scale or the origin of the search base, which is our future
research content. The last one is the model comparision. In our
experiment, We applied the same dataset, ran all the models in
the same hardware environment, and adopted the same data

preprocessing process to reduce this threat. While DeepCS does
not perform on the graph structure, more related baselines may
be needed to justify the advantages introduced by our proposed
model in the future.

V. CONCLUSION
How to accurately understand and express code semantics

has become a key challenge in the process of code search. In this
paper, we propose a novel graph-based code search method
called EAGCS, which mines latent code semantics by enhancing
edge information in APDG and embeds the APDG into graph-
level vector via edge attention-based GGNN to boost the
semantic expression. In the future, we will strive to optimize the
code graph structure and model architecture to improve search
performance. We also plan to investigate the influence of the
number of nodes in APDG and the length of query statements on
the search results. Furthermore, how to excavate potential user
search intention and reinforce user query is another rich field
worthy to be penetratingly explored.

REFERENCES
[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,

“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2009, pp. 1589-1598.

[2] K. Kevic and T. Fritz, “Automatic search term identification for change
tasks,” in Companion Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 468-471.

[3] S. Nerur and V. G. Balijepally. “Theoretical reflections on agile
development methodologies”. Communications of the ACM, 2007, pp.
79-83.

[4] 2022. Github. Retrieved February 14, 2022 from https://github.com.
[5] 2022. Stack Overflow. Retrieved February 14, 2022 from

https://stackoverflow.com.
[6] X. Gu, H. Zhang, and S. Kim, "Deep Code Search," 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE), 2018, pp. 933-
944, doi: 10.1145/3180155.3180167.

[7] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code
comprehension: A learnable representation of code semantics,” in
Advances in Neural Information Processing Systems, 2018, pp. 31.

[8] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” in Proceedings of the 2005
international workshop on Mining software repositories, 2005, pp. 1-5.

[9] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and S.
Ji, “Deep graph matching and searching for semantic code retrieval,” in
ACM Transactions on Knowledge Discovery from Data (TKDD), 2021,
pp. 1-21.

[10] C. Zeng, Y. Yu, S. Li, X. Xia, Z. Wang, M. Geng, B. Xiao, W. Dong, and
X. Liao, “deGraphCS: Embedding Variable-based Flow Graph for Neural
Code Search,”arXiv preprint arXiv:2103.13020, 2021.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” in ACM Transactions on Programming
Languages and Systems (TOPLAS). ACM, 1987, pp. 319-349.

[12] S. S. Patil, “Automated Vulnerability Detection in Java Source Code using
J-CPG and Graph Neural Network,” University of Twente, 2021.

[13] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated Graph
Sequence Neural Networks,” in Proceedings of ICLR'16, 2016.

[14] F. Lv, H. Zhang, J. -g. Lou, S. Wang, D. Zhang, and J. Zhao, "CodeHow:
Effective Code Search Based on API Understanding and Extended
Boolean Model (E)," in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015, pp. 260-270, doi:
10.1109/ASE.2015.42.

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio:
finding relevant functions and their usage,” in Proceedings of the 33rd

International Conference on Software Engineering. ACM, 2011, pp. 111-
120.

[16] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension. ACM, 2020,
pp. 196-207.

[17] S. Fang, Y. S. Tan, T. Zhang, and Y. Liu, “Self-Attention Networks for
Code Search,” in Information and Software Technology, 2021, 134:
106542.

[18] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-modal
attention network learning for semantic source code retrieval,” in 2019
34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 13-25.

[19] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “GraphSearchNet:
Enhancing GNNs via Capturing Global Dependency for Semantic Code
Search,” arXiv preprint arXiv:2111.02671, 2021.

[20] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, and Y. L.
Traon, “Augmenting and structuring user queries to support efficient free-
form code search,” in Empirical Software Engineering, 2018, 23(5), pp.
2622-2654.

[21] L. Xuan , Q. Wang, and Z. Jin, “Description Reinforcement Based Code
Search,” in Journal of Software, 2017.

[22] T. Kenter, A. Borisov, and M. De Rijke. “Siamese cbow: Optimizing word
embeddings for sentence representations,” arXiv preprint
arXiv:1606.04640, 2016.

[23] A. Lazaridou, N. T. Pham, and M. Baroni, “Combining language and
vision with a multimodal skip-gram model,” arXiv preprint
arXiv:1501.02598, 2015.

[24] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework for
Java program analysis: a retrospective” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011, 15(35).

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

