
Multi-Label Code Smell Detection with Hybrid
Model based on Deep Learning

Yichen Li
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: ycli1024@stu.suda.edu.cn

Xiaofang Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: xfzhang@suda.edu.cn

Abstract—Code smell is an indicator of potential problems in
a software design that have a negative impact on readability
and maintainability. Hence, it is essential for developers to make
out the code smell to get tips on code maintenance in time.
Fortunately, many approaches like metric-based, heuristic-based,
machine-learning based and deep-learning based have been
proposed to detect code smells. However, existing methods, using
the simple code representation to describe different code smells
unilaterally, cannot efficiently extract enough rich information
from source code. What is more, one code snippet often has
several code smells at the same time and there is a lack of multi-
label code smell detection based on deep learning. In this paper,
we propose a hybrid model with multi-level code representation
to further optimize the code smell detection. First, we parse the
code into the abstract syntax tree(AST) with control and data
flow edges and the graph convolution network is applied to get
the prediction at the syntactic and semantic level. Then we use
the bidirectional long-short term memory network with attention
mechanism to analyze the code tokens at the token-level in the
meanwhile. Finally we get the fusion prediction result of the
models. Experimental results show that our model can perform
outstanding not only in single code smell detection but also in
multi-label code smell detection.

Index Terms—Code smell, multi-label, code representation,
hybrid model, deep learning

I. INTRODUCTION

Code Smells indicate problems related to aspects of code
quality such as understandability and modifiability, and imply
the possibility of refactoring [1]. So Code smell analysis,
which allows people to integrate both assessment and im-
provement into the software evolution process, is of great
importance. Software engineering researchers have studied the
concept in detail and explored various aspects associated with
code smells, including causes, impacts, and detection methods
[2].

Many approaches have been proposed to detect code smells.
Traditionally, metric-based [3] and heuristic-based methods [4]
use the manually designed regulations to extract the features
inside the code. However, it’s difficult for developers to reach
an agreement on the appropriate rules and corresponding met-
rics. Machine-learning based methods [5], which apply Sup-
port Vector Machine, Naive Bayes and Logistic Regression,
still have a long way to go to conquer problems of manually

DOI reference number: 10.18293/SEKE2022-077

selected features and extra computation tools [6]. In recent
years, a universally well-performing deep learning model [7]
has been applied to code smell detection. In addition, the
abstract syntax tree(AST) has been used to extract the syntactic
features from the source code to detect the code smell [8].

Furthermore, multi-label code smell detection has attracted
attention. Since the code snippet tends to have many code
smells that may lead to potential problems, multi-label code
smell detection means to find out all code smells inside the
code snippet instead of one at a time. Guhhulothu et al. carried
the experiment on a multi-label dataset of combining labels
of two code smell datasets and Random-Forest was applied
to detect two code smells at the same time [9]. All of the
methods above solve the problem to some extent, but they all
have the limitations below:

• The models just use code tokens or ASTs simply. Such
methods will lose part of the information that helps
recognize each code smell more efficiently.

• No one has proposed a model which can make the multi-
label classification based on deep learning. Since the code
snippet may has several code smells at the same time, it’s
necessary to propose an efficient and convenient model
to find out code smells.

To address these limitations, in this paper we propose a
hybrid model with multi-level code representation(HMML).
We first parse the AST from the source code and add the
control and data flow edges [10] to get the code property graph.
Then we apply the graph convolution network(GCN) [11] to
learn information from the high dimensions at the syntactic
and semantic level. Meanwhile, we use the bidirectional long-
short term memory(LSTM) network with attention to analyze
the code tokens at the token-level. Finally, we use the outputs
of two models by weight to get the predication result. What
is more, all of the models mentioned in this paper have been
optimized to fit for the multi-label classification task. We apply
our HMML method to 100 high-quality Java projects from
Github. Better results have been achieved not only on multi-
label code smell detection but on some single code smell
detections.

The main contributions of this article are as follows:

• We propose a hybrid model that extracts the multi-level

Fig. 1. Overview of the HMML

code representation information and separately applies
the appropriate deep learning neural network.

• We are the first to carry out the multi-label code smell
detection based on the deep learning method and achieve
a good result.

• We modify many other approaches to fit into multi-label
classification tasks and conduct extensive experiments to
find the maximum capacity and best configuration.

The rest of this paper is organized as follows. Section II
introduces the background; Our HMML method is introduced
in Section III; Section IV describes the experimental setup and
results are in Section V; The conclusion of this paper and the
future work are presented in Section VI.

II. BACKGROUND

A. Code smell

Code smells were first introduced by Fowler [1] as ”struc-
tures with technical debt which affect maintainability neg-
atively”. Code smells imply the possibility of refactoring
and have an impact on software development and evaluation.
Fowler categorized code smells as implementation, design [12]
and architecture [13] smells based on the scope and granularity
[14].

B. Abstract syntax tree

Abstract Syntax Tree (AST) is a tree representation of the
abstract syntactic structure of source code written in a pro-
gramming language [15]. Developers can get the declaration
statements, assignment statements, operation statements and
realize operations by analyzing the tree structures [16].Nowa-
days, Some studies use AST-based approaches for source code
clone detection [15], program translation [17], and code smell
detection [8].

C. Motivation

Existing methods take a one-sided approach to the code
smell detection problem. On the one hand, no one has applied
the state-of-art deep learning to the multi-label code smell
detection. On the other hand, many researchers focus on the
token-based method [7] or AST-based method [8]. Although
code fragments have some similarities with natural language

texts and AST extracts some syntactic information, the in-
formation is still far from enough. Some code smells are
caused by several aspects and the simple code representation
fails to distinguish them. For example, Long Method is a
general code smell and it is caused by the length of the code,
long comment, complex conditional statement and messy loop.
Existing methods cannot catch the cause of the code smell
accurately because token-based methods ignore the syntax
information by treating each code seperately and AST-based
methods lose the words meaning and information about the
comment, code length when compiling the code.

In the meanwhile, recent work has demonstrated the su-
periority of a graph-based approach to code representation
over other approach [10]. Intuitively, the rich semantic and
structural information in the graph will help us in smell
detection. In terms of the Missing default, AST-based methods
simply treat the statement as branch of the tree and ignore
the possible logical errors linked to the data flow due to
the missing default. By contrast, the graph-based methods
with control and flow data can vividly show the change by
adding extra edges among statements. To ensure the model’s
ability to catch different code smells, we fuse the token-
based approach and graph-based approach to entirely get
the structural, syntactic, semantic information to detect code
smells.

III. APPROACH
This section introduces the method we use to detect code

smells. Figure 1 gives an overview of our method.
To extract tokens and AST from Java programs, we use a

python package javalang1. We use the method proposed in
[10] to add the control and data flow edges. We focus on the
following essential control flow types: Sequential execution,
Case statements, While and For loops, which are linked to
code smells mentioned in our motivation. In this paper, we
use two different neural networks: a traditional LSTM for
word tokens and a GCN that catches the information inside
the graph.

1) LSTM Model: We use bidirectional long-short term
memory network with attention mechanism to capture the

1https://github.com/c2snet/javalang

Fig. 2. Details of the Model

information in front and behind of the current position. Figure
2(a) shows details of the LSTM Model.

The attention is designed to selectively focus on parts of the
source sentence during translation. We use global attention in
this model to extract source context vector.

cj =

|x|∑
i=1

aijhi (1)

where aij is the attention weights of hidden state hi. The
attention mechanism will give more weight to the hidden state
vectors of important tokens.

rij = hi ∗ cj (2)
y = Sigmoid(Wsrij + bs) (3)

where Ws, bs are parameters for Sigmoid layer. Here we
use the Sigmoid layer as output layer to reveal the multi-label
classification task.

2) GCN Model: Figure 2(b) shows details of the GCN
Model. We use the python package PyG2 to easily build a
graph convolution network with the following propagation
rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

Here, Ã = A+IN is the adjacency matrix of the undirected
graph G with added self-connections. IN is the identity matrix,
D̃ii =

∑
j Ãij and W l is a layer-specific trainable weight

matrix. σ(.) denotes an activation function. H(l) ∈ RN×D

is the matrix of activations in the lth layer; H(0) = X . Our
forward model then takes the form below:

Z = Ã ReLU(ÃXW (0))W (1) (5)
y = Sigmoid(WsZ + bs) (6)

where Ws, bs are parameters for Sigmoid layer,W (0) ∈ RC

is an input-to-hidden weight matrix for a hidden layer with H
feature maps. W (1) ∈ RR is a hidden-to-output weight matrix.

2https://github.com/pyg-team

3) Fusion of Model: Assume the outputs of the model are o1
and o2 and the hyper parameter k , then the final probability
distribution is computed as follows:

output = k
⊗

o1 + (1− k)
⊗

o2 (7)

For the both models, we all use binary cross-entropy loss
to optimize.

Loss(xi, yi) = −wi[xilogyi + (1− xi)log(1− yi)] (8)
where wi is the parameter for loss, xi is the ith prediction

of the label and yi is the ith ground truth.

IV. EXPERIMENTAL SETTINGS
A. Projects and dataset

We first use the CodeSplit3 to split 100 high-quality Java
projects on Github covering a variety of functions into method-
level code fragments. Then we use Designite [18] to find out
the smells contained in the source code and generate smell
reports. Finally we choose nine code smells [18] at the method
level for our experiment and combine their labels into a multi-
label dataset. We divide all samples into three parts, 70% as
the training set, 20% as the validation set, and 10% as the
test set. Table I shows the number of samples used in our
experiment and baselines.

B. Baseline
As mentioned before, we are the first to apply the deep

learning methods to the multi-label code smell detection, and
we select the following two improved methods as our baseline
here, which are adapted into multi-label classification task:

1) Random–Forest Model: The model is used by [9] to
reveal the multi-label classification and performs well when
detecting Long Method and Feature Envy.

2) ASTNN Model: The ASTNN model is first introduced by
Zhang [19] and was adapted by [8] to the single code smell
detection. We refactor the model to do the multi-label code
smell detection here.

3https://github.com/tushartushar/CodeSplitJava

Fig. 3. Box plot of F-measure exhibit by HMML

TABLE I
SAMPLES DISTRIBUTIONS

Training set Validating set Testing set

Code smells P N P N P N

Magic Number 9643 76807 2748 21952 1387 10957

Long Identifier 926 85524 294 24406 132 12212

Long Statement 6816 69634 1955 22745 998 11346

Missing default 993 85457 308 24392 160 12184

Complex Method 2383 84067 713 23987 312 12032

Long Parameter List 1629 84821 33 24267 207 12137

Complex Conditional 1320 85130 346 24354 185 12159

Long Method 342 86108 92 24608 45 12299

Empty catch clause 558 85892 179 24521 75 12269

Multi smells 4972 81487 1475 23225 714 11630

C. Evaluation

Due to the extremely unbalanced distribution of positive
and negative samples in real projects, we avoid comparing
the accuracy of each model because if a model predicts all
samples as negative, it will still have high accuracy. We choose
precision, recall and F-measure as the evaluation metrics. For
multi-label code smell detection, we use the Macro weighted
F1 [20], which considers the imbalance in the category of
samples. Precisionweighted and Recallweighted are weighted
according to the number of categories. Assuming L is the
number of categories, they are defined as follows:

Precisioni =
True Positivei

True Positivei + False Positivei
(9)

Precisionweighted =

∑L
i=1 Precisioni × wi

|L|
(10)

Recalli =
True Positivei

True Positivei + False Negativei
(11)

Recallweighted =

∑L
i=1 Recalli × wi

|L|
(12)

F1i =
2 ∗ Precisioni ∗Recalli
Precisioni +Recalli

(13)

Macro weighted F1 =
2 ∗ Precisionw ∗Recallw
Precisionw +Recallw

(14)

D. Training details

In our HMML method, the hidden states of LSTM have
300 dimensions and layer is set to be 2. We apply the graph
convolution three times. In the two sub-models, the training
batch size is set to be 32 and dropout is applied to avoid
overfitting with dropout rate being 0.4. We use the Adam
optimizer algorithm with 0.001 initial learning rate. In the
ASTNN, we set two layers and 250 dimensions in the hidden
states [19] Then we choose 80 features and 50 trees in the
random forest [9]. Finally, we make our code public4.

TABLE II
VALUES OF HYPER-PARAMETERS FOR HMML

Hyper-parameter Values

Training batch size {16,32,64,128}
Embedding dimensions(E) {100,200,300}
Dimensions of hidden states in LSTM(H) {150,250,300}
Number of layer in LSTM {1,2,3}
Number of graph convolution in GCN {1,2,3}

V. EXPERIMENTAL RESULTS

In this section, we mainly focus on answering the following
research questions:

RQ1: How does our HMML method perform compared to
other baselines?

RQ2: How does multi-label code smell detection perform
compared with single code smell detection?

RQ3: What impact does each of our main components
have in our HMML method?

A. RQ1:How does our HMML method perform compared to
other baselines?

Table III shows the performance of our model and baselines
on multi-label code smell detection and Figure 3 shows the box
plot of performance of our HMML method under different
configurations in Table II. From the table and figure, we can
easily see that our model does not perform equally on all
of the smells and it performs quite well on the smell like

4https://github.com/liyichen1234/HMML

TABLE III
PERFORMANCE OF HMML AND BASELINES ON MULTI-LABEL

CODE SMELL DETECTION

HMML Random-Forest ASTNN

Code smells P R F1 P R F1 P R F1

Magic Number 0.97 0.93 0.95 0.89 0.35 0.50 0.67 0.57 0.62

Long Identifier 0.44 0.55 0.49 0.52 0.36 0.43 0.85 0.30 0.44

Long Statement 0.73 0.60 0.66 0.90 0.35 0.50 0.84 0.68 0.75

Missing default 0.98 0.99 0.99 0.96 0.29 0.44 0.71 0.23 0.34

Complex Method 0.82 0.66 0.73 0.92 0.15 0.26 0.71 0.23 0.34

Long Parameter List 0.81 0.60 0.69 1.00 0.29 0.46 0.86 0.60 0.71

Complex Conditional 0.68 0.58 0.63 0.96 0.14 0.24 0.94 0.21 0.34

Long Method 0.67 0.41 0.51 1.00 0.09 0.16 0.83 0.69 0.76

Empty catch clause 0.51 0.30 0.38 0.86 0.08 0.15 0.61 0.11 0.18

Multi smells 0.83 0.74 0.78 0.90 0.30 0.45 0.76 0.52 0.62

Magic Number and Missing default and performs not bad on
the other smells separately. In the meanwhile, the machine-
learning method Random-forest has the poor Recall-values
on each smell, which means the poor ability to find out the
real code smell and the ASTNN performs unequally on the
different smells.

In order to analyze the results, we apply the Win/Tie/Loss
indicator to compare the performance of different models
further, which has been used in prior works for performance
comparison between different methods [8]. Then we conduct
Wilcoxon signed-rank test and Cliff’s delta test to analyze the
performance of our model and other methods. Table IV shows
Cliff’s delta values(|δ|) and the corresponding effective levels.

To be specific, we make the following comparisons to
determine the result of Win/Tie/Loss indicator: For a baseline
method M, if our model outperforms M with the p-value of
Wilcoxon signed-rank test less than 0.05 and the Cliff’s delta
value greater than or equal to 0.147, the difference between
these two models is statistical significant and can not be
ignored. At this time, we mark our model as a “Win.” In
contrast, if the model M outperforms out model with a p-value
<0.05 and a Cliff’s delta≥0.147, our model will be marked
as a “Loss.” Otherwise, we mark the case as a “Tie”.

TABLE IV
MAPPINGS BETWEEN CLIFF’S DELTA VALUES AND THEIR

EFFECTIVE LEVELS

Cliff’s delta Effective levels

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

0.474 < |δ| Large

As shown in the Table V, our method performs better almost
in each smells and has an absolute advantage in multi code
smells detection. Although weighted F1 can not accurately
represent that the model can find all code smells at the same
time, it reflects the ability of the model in multi-label code
smell detection. Our HMML method has the highest weighted
F1 and performs equally on the precision value and recall
value. Therefore, we can regard that our HMML method does
a good job in the multi-label code smell detection.

TABLE V
WIN/TIE/LOSS INDICATORS ON FMEASURE VALUES OF

RANDOM FOREST, ASTNN, AND HMML

Code smell Random Forest vs HMML ASTNN vs HMML

Magic Number <0.05(+Large) <0.05(+Large)

Long Identifier <0.05(+Medium) <0.05(+Medium)

Long Statement <0.05(+Large) 0.264(-Small)

Missing default <0.05(+Large) <0.05(+Large)

Complex Method <0.05(+Large) <0.05(+Large)

Long Parameter List <0.05(+Large) 0.06(-Small)

Complex Conditional <0.05(+Large) <0.05(+Large)

Long Method <0.05(+Large) 0.735(-Large)

Empty catch clause <0.05(+Large) <0.05(+Large)

Multi smells <0.05(+Large) <0.05(+Large)

Win/Tie/Loss 10/0/0 7/3/0

B. RQ2: How does multi-label code smell detection perform
compared with single code smell detection?

TABLE VI
PERFORMANCE OF HMML AND BASELINES ON SINGLE CODE

SMELL DETECTION

HMML Random-Forest ASTNN

Code smells P R F1 P R F1 P R F1

Magic Number 0.98 0.94 0.96 0.88 0.36 0.51 0.85 0.85 0.85

Long Identifier 0.65 0.25 0.36 0.54 0.39 0.46 0.64 9.71 0.68

Long Statement 0.79 0.64 0.71 0.89 0.36 0.51 0.92 0.85 0.88

Missing default 0.88 0.84 0.86 0.93 0.34 0.50 0.83 0.72 0.77

Complex Method 0.84 0.83 0.84 0.84 0.15 0.26 0.85 0.25 0.39

Long Parameter List 0.86 0.72 0.79 1.00 0.50 0.66 0.86 0.58 0.70

Complex Conditional 0.79 0.50 0.61 0.93 0.14 0.24 0.83 0.75 0.79

Long Method 0.65 0.24 0.35 0.80 0.09 0.16 0.86 0.85 0.85

Empty catch clause 0.89 0.63 0.73 0.86 0.08 0.15 0.22 0.09 0.13

As shown in the Table VI, models show different abilities
of detecting code smells. For each code smell, we apply the
model used in multi-label code smell detection to train seper-
ately and compare it with multi-label code smell detection
model when detecting the designated code smell. Random-
Forest performs equally in single code smell detection and
multi-label code smell detection while ASTNN performs much
better in single code smell detection. We believe this is
somewhat related to capacity of ASTNN model, which cannot
capture features of different code smells in the multi-label code
smell detection. HMML performs slightly worse in multi-label
code smell detection but still achieves a robust result.

What is more, single code smell detection needs to train
corresponding model for each smell, which can be quite
time consuming with the increase in the number of code
smell. However, our multi-label code smell detection not only
performs well in each code smell detection but can find out
all code smells by one model at the same time.

C. RQ3: What impact does each of our main components have
in our model?

We analyze the performance gain achieved due to various
components of our approach by performing an ablation study.

Table VII shows these results. Control and data flow edges play
a major role in the code smell detection. The reason is that
code smells like Empty catch clause and Missing default which
have the complex data flow information can be found out
effectively in the GCN model. We can also find that the LSTM
model and GCN model all perform bad on Long Method. This
is because Long Method needs not only structural information
but syntactic and semantic information.

TABLE VII
EFFECTIVENESS OF EACH MODULE IN HMML

HMML−GCN HMML−LSTM HMML−control and data flow edges

Code smells P R F1 P R F1 P R F1
Magic Number 0.98 0.89 0.93 0.87 0.85 0.86 0.83 0.81 0.82
Long Identifier 0.62 0.14 0.22 0.12 0.75 0.21 0.11 0.76 0.19
Long Statement 0.75 0.51 0.61 0.61 0.79 0.69 0.59 0.72 0.65
Missing default 0.89 0.79 0.84 0.99 0.96 0.97 0.77 0.74 0.73

Complex Method 0.90 0.59 0.71 0.75 0.66 0.70 0.70 0.63 0.66
Long Parameter List 0.80 0.41 0.54 0.85 0.71 0.77 0.86 0.73 0.79
Complex Conditional 0.77 0.58 0.66 0.77 0.58 0.66 0.75 0.42 0.54

Long Method 0.56 0.11 0.19 0.57 0.18 0.27 0.48 0.22 0.30
Empty catch clause 0.50 0.04 0.08 0.85 0.70 0.77 0.74 0.62 0.67

Multi smells 0.86 0.65 0.74 0.75 0.78 0.75 0.71 0.72 0.71

Fortunately, HMML notices the advantage and disadvantage
of each model, which means the ability to catch appropriate
features in multi-label code smell detection. HMML balances
the results with the fusion of models and achieves a more
robust result.

VI. THREATS TO VALIDITY

A. Internal validity

We use the Designite tool to detect smells, which is used
to generate labels for the training data and view its results
as ground truth. The tool uses three quotes to get more than
20 labels. Although the tool has been applied to many related
works, it still needs much time to ensure the reliability of data.

B. External validity

We just did our detection on the 100 Java projects on Github.
More jobs should be carried out on other projects, even transfer
the model to the other languages since different languages may
have its own distribution of code smells.

VII. CONCLUSION AND FEATURE WORK

In this paper, we propose a hybrid model, which extracts
the multi-level code representation information to reveal multi-
label code smell detection. Then we carry out the experiment
based on the deep learning method and achieve a good result
in terms of the evaluation.

As future work, a unified framework to deal with code
smells at different granularities should be considered and we
want to figure out whether existed approaches have the ability
to find the unknown code smell. Moreover, it is of great value
to make the model feasible to other programming languages.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the National Natural
Science Foundation of China (61772263, 61872177), Col-
laborative Innovation Center of Novel Software Technology
and Industrialization, and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.

REFERENCES

[1] M. Fowler, Refactoring - Improving the Design of Existing Code,
ser. Addison Wesley object technology series. Addison-Wesley, 1999.
[Online]. Available: http://martinfowler.com/books/refactoring.html

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[3] M. Salehie, S. Li, and L. Tahvildari, “A metric-based heuristic frame-
work to detect object-oriented design flaws,” in 14th IEEE International
Conference on Program Comprehension (ICPC’06). IEEE, 2006, pp.
159–168.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[5] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detec-
tion,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[6] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?” in 2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner). IEEE, 2018, pp. 612–
621.

[7] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering,
2019.

[8] W. Xu and X. Zhang, “Multi-granularity code smell detection using deep
learning method based on abstract syntax tree,” in Proceedings of the
33rd International Conference on Software Engineering and Knowledge
Engineering (SEKE), 07 2021, pp. 503–509.

[9] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label
classification approach,” Software Quality Journal, vol. 28, no. 3, pp.
1063–1086, 2020.

[10] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[12] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[13] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[14] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell
detection by deep direct-learning and transfer-learning,” Journal of
Systems and Software, vol. 176, p. 110936, 2021.

[15] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[16] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[17] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” arXiv preprint arXiv:1802.03691, 2018.

[18] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in Proceedings of the 1st International Work-
shop on Bringing Architectural Design Thinking into Developers’ Daily
Activities, 2016, pp. 1–4.

[19] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[20] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classifi-
cation: an overview,” arXiv preprint arXiv:2008.05756, 2020.

