
Automated Unit Testing of Hydrologic Modeling Software
with CI/CD and Jenkins

Levi T. Connelly, Melody L. Hammel, Benjamin T. Eger, Lan Lin
Department of Computer Science, Ball State University, Muncie, IN 47306, USA

{ltconnelly, mlhammel, bteger, llin4}@bsu.edu

Abstract

Composed of developers with diverse backgrounds in
multiple disciplines, the NSF CyberWater project team
needed to research and implement effective software test-
ing methods to improve the team’s workflow efficiency and
software quality. In this paper we present a practical and
effective strategy for automated black-box testing of Cyber-
Water modules using a Continuous Integration / Continuous
Deployment (CI/CD) pipeline and the Jenkins automation
server, Python unittest and ptest, and a novel technique we
call object-method replacement, which isolates the backend
from the front-end logic. Our experience can be adapted
and extended to other research projects to mitigate the risk
of programming errors and mistakes incurred through con-
tinuous development on a code repository.

1 Introduction and Related Work

An automated software testing workflow plays a cru-
cial role in preventing issues from creeping into the soft-
ware, but the implementation of these workflows varies
from project to project due to the complicated nature of soft-
ware and testing. The NSF CyberWater project team faced
some unique challenges with automated testing. In partic-
ular, their software was derived from legacy systems that
integrated with VisTrails [7], a third-party software used to
build scientific workflows as well as to support data analy-
sis and visualization needed for hydrologic modeling and
simulation. The design of CyberWater modules (as ex-
tended VisTrails modules) tightly couples the frontend and
backend logic. We came up with a new technique called
object-method replacement that allows us to address the
testing problem created by the tightly coupled frontend and
backend code without the need for proprietary tools for
Windows-based GUI testing. Using this technique, we de-
veloped black-box unit tests using both Python unittest [6]
and ptest [5] frameworks for two example modules: the

PythonCalc module that comes with the VisTrails pack-
age and CyberWater’s MainGenerator module. Addi-
tionally, we researched and developed a CI/CD pipeline
with a minimal set of tools supported by Jenkins [4] so that
software developers from the domain would be able to use
the pipeline on daily basis after a few training sessions effi-
ciently and effectively.

Light-weight, agile methods and processes have drasti-
cally impacted the practice of software testing and quality
control, putting testing first and in parallel with develop-
ment to decrease development cost while increasing prod-
uct quality [8]. State-of-the-art testing practices such as
unit testing, continuous integration (CI), test-driven devel-
opment, a test pyramid, test coverage analysis, etc. are
considered a mandatory and indispensable part of modern
software development [11]. A crucial step to leverage the
benefits brought by the best industry practices, shared with
successful practitioners, relies on a CI implementation [12].
Although the ideas are appealing to embrace, the choices for
implementing unit testing, CI and test automation are usu-
ally heavily influenced by the particular software task and
development environment, and unavoidably intimidating to
software developers whose main expertise is in the domain
sciences [9, 10]. The risk of software faults, programming
errors and mistakes can be mitigated by continuous integra-
tion, regression testing and test automation, implemented
by a testing workflow proposed here.

2 The NSF CyberWater Project and Chal-
lenges of Automated Unit/Module Testing

Funded by NSF, the CyberWater project aspires to build
a new cyber infrastructure with an open data, open modeling
framework and software to reduce the user time and effort
required for hydrologic modeling studies, allowing related
discoveries to be made sooner [2].

One of the key challenges of testing CyberWater mod-
ules is that the frontend and the backend are tightly coupled.
Because the backend code depends on the frontend code for

DOI reference number: 10.18293/SEKE2022-074



input, the backend cannot be tested apart from the frontend
without modifying the code for the backend.

In the VisTrails GUI (see Figure 1), each module is dis-
played with a set of input and output ports. Users can spec-
ify values for certain input ports for modules, while other
input ports must receive data from the output of another
module. Users can specify the flow of data from one module
to the next by dragging a connector from the first module’s
output port to the next module’s input port. A collection
of connected modules that produces an output is called a
workflow. When executed, the workflow usually generates
a graph or model that visualizes the input datasets.

Figure 1. The VisTrails GUI

To retrieve the input data needed for the module’s com-
putation, the backend code of each module calls a method
called get input, which retrieves the input data from the
module’s input ports from the frontend. This dependency
makes it so the backend code for VisTrails modules cannot
be run or tested without input from the GUI without modi-
fying the code.

3 Our Solution to Automated Unit Testing
with CI/CD

3.1 A Novel Technique for Model-View
Separation

We developed a technique called object-method replace-
ment to achieve model-view separation. To isolate and test
the backend logic we exchange a method from a specific in-
stance of a class with a newly defined function. We define
the replacement function to be nearly identical to the in-
stance’s original method, but we remove any dependencies
to the frontend logic. With the backend logic isolated, we
unit test the VisTrails module without having to modify the
source code. By replacing methods in an instance of a class
rather than modifying the class itself, changes to methods
only affect the instance that is being altered, not the class in

its entirety. Therefore, other instances of the class will not
be affected by the changes.

Object-method replacement leverages the dict at-
tribute of Python objects. This attribute is a dictionary that
maps the names of each of the object’s local attributes (as a
string) to its corresponding value. The dict attribute is
mutable, so developers can alter the values of the attributes
stored in the dict , as shown below:

Because VisTrails modules correspond to Python classes,
we can instantiate a class corresponding to a VisTrails mod-
ule and leverage the instance’s dict attribute to replace
the instance’s methods. This technique allows us to replace
methods such as get input that introduce dependencies
to the GUI. We can replace the get input method with a
new version that simulates the GUI input, as shown below:

Since we only modify the dict of a single instance
of a class, this modification only changes the method for the
specific instance of the class we are modifying.

Object-method replacement can be generalized with
the function shown below. We call this function
mutate method.

The function has three parameters: the target object, the
name (string) of the method in that object we want to re-
place, and the new function. This replacement function can
be structured like a normal function but with self parameters
and calls to self inside the function if needed. The function
we used to replace the get inputmethod is shown below.

Though this revised version of the get input func-
tion is not defined in a class, the first parameter is self.
If Python attempted to execute this revised get input
method without first binding it to a class, the program would
throw an error. However, after using the mutate method
to inject the replacement function into an instance of the
class we are testing, the replacement method functions the
same as any other method of the class.

Object-method replacement allows developers to test the
functionality of methods with dependencies to the GUI



without using specialized software to automate GUI inter-
actions. Simply write a replacement version of the method
that performs the same functionality without interacting
with the GUI, instantiate a new instance of the class one
is testing, and inject the new method in place of the old one.

3.2 Python Unit Testing Frameworks

There are two frameworks we have been using in tan-
dem throughout this project: ptest by Karl Gong [5], and
Python’s built-in unittest library [6]. Ptest provides mul-
tiple advantages: testing using decorators allows for bet-
ter in-code documentation with tags for grouping and a
description given to every test, as well as the assertion
of exceptions thrown within the decorator itself using the
expected exceptions parameter. These decorators
include BeforeMethod and AfterMethod, which de-
fine code to be run before and after every individual test is
run. They also include BeforeClass and AfterClass,
which define methods to run before all of the tests run
and to run after every test has finished, respectively. The
TestClass decorator defines a class similar to creating a
superclass of unittest.TestCase in Python’s builtin,
but has a parameter that allows for running tests in paral-
lel with multiple threads. The most notable feature, how-
ever, is the test report that is generated. Ptest, upon finish-
ing its tests, generates a graphic test report using HTML,
CSS, and JavaScript as a visual representation of the tests
that ran. It includes information about which tests failed,
as well as reports of what was happening using the library’s
preporter module. It displays stack traces and descrip-
tions of the tests that failed that were specified by the tester.
This is shown in Figure 2. Python’s unittest, alter-
natively, also offers distinct advantages. One problem we
found with Ptest is that GitHub [3] Actions, Bitbucket [1]
Flows, and Jenkins [4] Pipelines would all still recognize
a build as passing even when ptest-based tests would fail.
Using Python’s unittest, however, these systems would
recognize builds to be failing if the tests failed. It also pro-
vides setup and teardown methods, akin to ptest, and ter-
minal output. Ptest also has a terminal output, shown in
Figure 3.

3.3 Jenkins for CI/CD

One challenge that our team faced was developing a
CI/CD pipeline to automatically test and merge changes
made to CyberWater modules. We found that an efficient
solution was to setup a Jenkins [4] server and link it to our
Bitbucket repository. With Jenkins, developers can define
jobs, which automatically run a set of tests to determine
whether to automatically merge the changes from the dev
branch into the master branch.

Figure 2. Ptest’s generated test report

Figure 3. Ptest’s terminal output

After installing Jenkins on our Linux server, our team
defined a Freestyle project from the dashboard. We then
linked the Freestyle project to our Bitbucket repository in
the Source Code Management section. This section allows
developers to insert the URL and credentials for Jenkins to
access the Bitbucket repository.

We then configured Jenkins to build the dev branch. Un-
der Build Triggers, we selected Build when a change is
pushed to Bitbucket. This trigger configures Jenkins to au-
tomatically run the job every time someone pushes changes
to the repository. Finally, we added a build step to execute
a Unix shell command to run our ptest and unittest scripts.

Developers also have the option to add Post-build Ac-
tions which offer helpful features such as sending an email
with the build results or publishing an HTML report of the
build.

4 CyberWater Unit Testing Case Studies

4.1 PythonCalc Module Testing

The PythonCalc module is a simple module designed
to incite familiarity with how to create VisTrails modules
and the functionality of the VisTrails interface. It func-
tions as a simple calculator with four possible operations:



addition, subtraction, multiplication, and division. Its in-
put ports consist of two Floats or Integers and a
String. All of these are wrapped as VisTrails modules,
not Python literals. The Float / Integer input ports
consist of two numbers to be operated on. The String
input port is where the module expects an operator – this
can be either ‘+’, ‘-’, ‘*’, or ‘/’. Anything else entered will
raise an exception. The module then reads the values of the
number input ports, reads the String input port, and per-
forms the operation on the numbers. For example, if the
user entered 3, 5, and ‘+’, the module would add 3 and 5,
and return 8. The output port of the module is the result of
the operation. It is typically sent to the StandardOutput
module to print it to the persistent console that accompanies
VisTrails. Shown in Figure 4 is an example of a possible
workflow with the module, with the output in the console.

Figure 4. Usage of the PythonCalc module
within VisTrails

Beginning the tests is where object-method replacement
must be used. After injecting our own get input method
into the instance of the class we created as shown in Fig-
ure 5, we first test to ensure that all of the operators work
properly, using two arbitrary numbers and an operator, as-
serting that the result is correct (four tests). We then test
using an invalid operator to assert that an exception is
raised, and we attempt to divide by zero to assert that a
ZeroDivisionException is raised (two tests; see Fig-
ure 6). All the unit tests (using either Python unittest or
ptest) pass when configured to run within Jenkins.

4.2 MainGenerator Module Testing

The MainGenerator module is designed as a compo-
nent of the CyberWater framework to set up the directory for
running a user’s model where the simulation will take place
and data will be stored. Shown in Figure 7, its input ports
consist of 01 Path and 02 GPF, of types Directory
and File, both wrapped as VisTrails modules. It then has
15 more input ports, named Dataset 01, Dataset 02,
etc. 01 Path is the aforementioned directory of the simu-
lation, and 02 GPF is a “global parameters file,” designed
to hold specific information needed in the simulation. The

Figure 5. Setup methods for the PythonCalc
tests using ptest, including object-method re-
placement of get input

Figure 6. Testing for an invalid operator and
the divide-by-zero fault using ptest

Dataset NNs are of type (VisTrails) String, indicating
all the received datasets (with a maximum of 15) to be im-
ported for running the user’s model.

Based on the module specification provided by the de-
velopment team, it begins by checking whether the direc-
tory the user has entered in 01 Path exists. If it does, it
deletes the folder and re-creates it (to ensure there are no
files inside it already). If it doesn’t, it creates the folder. It
then copies the file specified in 02 GPF into the new direc-
tory that was created. Then, it outputs the directory from
01 Path in its first output port, and all the String ob-
jects of the Dataset NN input ports are compiled into a
Python Dict<str, str>, with the keys being the input
ports, Dataset NNs and the values being the Strings
that were given to those input ports, but converted back into
Python strs.

It is necessary to use object-method replacement to re-
place the get input method of this module, just as with
all other modules with input ports (see Figure 8). Figure 9
shows a diagram of our designed unit tests based on the
MainGenerator module specification.

We begin by running a simple test of the compute
method with no inputs to the module, asserting that it raises
an exception. Then we proceed with three tests for the first
input port 01 Path, testing the module’s behavior on a di-



Figure 7. A diagram of the inputs and outputs of the MainGenerator Module

Figure 8. Object-method replacement of the
get input method for MainGenerator test-
ing using ptest

rectory that already exists, a directory that does not exist,
and a directory that exists but for which the module doesn’t
have permission to access. Similarly we design three tests
for the second input port 02 GPF, assuming the file exists,
or it doesn’t already exist, or it exists but with no read per-
mission. In each case, we make an assertion or assert a
raised exception.

The module has two output ports GT Path and
DataSet Class as shown in Figure 7. We test that
GT Path outputs the working directory we gave the mod-
ule (with one test). For DataSet Class we design four
tests. We first test that specifically the first data set is present
in the output when run, due to the special way it is han-
dled (its input port is always shown on the GUI). We then
test, giving the module two random datasets (say, chosen
DataSet 01 and DataSet 04) that every dataset that was not
given any input does not appear in the output. Next we give
the module any dataset that isn’t the first one, asserting that
it exists in the output and the first one doesn’t. Finally, we
test that, when given no datasets, the output simply consists
of an empty Python dictionary.

In all, there are twelve tests we designed, and all pass
using both ptest and Python unittest. The unit tests ran au-
tomatically using Jenkins jobs. Figure 10 shows the HTML
test report of ptest. Figure 11 and Figure 12 show our unit
tests that test the second input port 02 GPF using ptest and
unittest, respectively.

Figure 9. Design for the MainGenerator unit
tests



Figure 10. The ptest HTML output of the twelve
MainGenerator tests

Figure 11. Ptest tests for 02 GPF for
MainGenerator

5 Conclusion and Future Work

This paper reflects on and reports our experience in
applying black-box unit testing and test automation, in a
CI/CD pipeline supported by Jenkins, to the CyberWater
software developed for hydrologic modeling studies. We
propose a novel technique called object-method replace-
ment that provides a solution to the problem of testing
software with tightly-coupled frontend and backend with-
out the need to revise the underlying code. This is not a
replacement for model-view separation, but rather a solu-
tion for software testers who want to automate testing of a
legacy program with model-view separation violations. It
could also be applied in scenarios where a method of an ob-
ject needs to have its functionality temporarily altered. We
demonstrate a testing workflow using the Jenkins automa-
tion server for CI/CD, and Python unittest and ptest frame-
works for test automation. Future work along the line in-

Figure 12. Python unittest tests for 02 GPF for
MainGenerator

cludes automated testing of more complicated CyberWater
modules and integrated workflows. The preliminary results
are promising.

Acknowledgments

This work was generously funded by the National Sci-
ence Foundation (NSF) under Grant 1835602. It was also
supported in part by an Undergraduate Honors Fellowship,
funded by the Honors College, Ball State University.

References

[1] ATLASSIAN Bitbucket. https://bitbucket.org/
product/.

[2] CyberWater. https://www.cuahsi.org/
projects/cyberwater/.

[3] GitHub. https://github.com.
[4] Jenkins - Build great things at any scale. https://www.

jenkins.io.
[5] Ptest 2.0.3 - Light test framework for Python. https://

pypi.org/project/ptest/.
[6] Unittest - Unit testing framework. https://docs.

python.org/3/library/unittest.html.
[7] VisTrails. https://vistrails.org.
[8] P. Ammann and J. Offutt. Introduction to Software Testing,

2nd Edition. Cambridge University Press, 2016.
[9] L. D. Couto, P. W. V. Tran-Jørgensen, R. Nilsson, and P. G.

Larsen. Enabling continuous integration in a formal methods
setting. International Journal on Software Tools for Technol-
ogy Transfer, 22(6):667–683, 2020.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig.
Usage, costs, and benefits of continuous integration in open-
source projects. In 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages
426–437, 2016.

[11] D. Spinellis. State-of-the-art software testing. IEEE Soft-
ware, 34(5):4–6, 2017.

[12] S. Stolberg. Enabling agile testing through continuous inte-
gration. In 2009 Agile Conference, pages 369–374, 2009.


